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The problem of thermal stress in a long hollow cylinder, in which heat
is transmitted at a uniform rate from the inner to the outer surface or in
the reverse direction, was solved among others by Lorenz.? In the solution
he assumed the coefficient of thermal expansion and the shearing modulus
of elagticity as constant, but it is experimentally known that they are not
constant, the former increasing and the latter diminishing as temperafure
rises. Among the recent experimenters on the elastic modulus may be
mentioned K. Iokibe and 8. Sakai® and T. Kikuta.®

As far as the writer is aware, there has been published no solution of
thermal stress considering the coefficient and the modulus as variable. To
fill up the gap he has studied the problem, taking them as functions of
temperature and accomplished a solution, which will be recorded hereinafter.

The following notation will be employed :—

r=radial distance of any point in the cylindrical wall,

z=axial distance of the same point from the coordinate cross plane,

4dr=change of r,

{=change of z,

1) H. Lorenz, ,,Technische Elastizititslehre®,
2) The 45th Rep. of Iron and Steel Research Inst., Sendai.
3) The 50th Rep. of Iron and Steel Research Inst., Sendai.
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€., &, g,=radial, tangential and axial strains,
g,, @, o,=corresponding stresses,
G =shearing modulus of elasticity,
a =cofficient of thermal expansion,
m =Poisson’s constant,
T =absolute temperature at radius r,

T,=mean temperature in the wall.

The radial, tangential and axial stresses in terms of the corresponding
? g D
gtrains are

A
o, = 20(€,+ =_+i+_€)

m—2
g, = .‘ZG(ez + %;i), B trerirrrereerierrerreeer e (1)

while we have the relations

6+ a(T—T,) = ";’" ;)

T

4
TG AT S S @
e+ a(T— Ty =-25_

oz J

Substituting (2) in (1) we get

" odr 1 (odr | 4dr , OC m+1 ]‘
=26 +— + =) oT-1T,
7 L or + m—2\ or r 0% m—2 ( )}

[~ dr 1 odr | 4dr lild m-+1 :|
=20| 4 ( A 0y mEL gy s
7 -7 + m—2 \ or F r + 0z m—1 “ )} @)

0,=2G

of + 1 (_a.éli.{_ﬂ_i. ig_)— m+1 a(T—Tm)].J

ra m—1 or 7 0z m—1
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The condition of equilibrium of stresses requires,

00 =0 _o
ar 7
0a,
02

=0.

In a long cylinder, in which the temperature distribution is alike in

all cross sections, 7' is a function of # alone, i.e.

while @ and G are in turn functions of 7' alone. Therefore they must also

be functions of r alone, i.e.

G
—_ ~0 B £ RSPt 6
0z 0z ( )
Also L g, 9 o ogna L) o
or 0% 0 r or

Substituting the values of (3) in (4) and putting as in (5), (6) and
(7) we have

et (S ) o]
+6{m— nL id(;"”] (m+1)[(T—Tm)%+a Cg"}zo, , (8)

€ _o.

dz? J

If @ and G be assumed constant,

[1 d(rdr)] m+1 28T
dr

dx =0
d#

Whence we get
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dr= m+1 arT'+ Br+ ¢ ,
m—1 L P (10)
¢= 4z,

where 7" =i2j Trdr and 4, B, C are the integration constants.
7 '

Equations (3) then become

o, _ 4 +mB+m+1aT—0——m+1aT’
2G m—2 m—2 m—2

g _ A mB m+1
G m—2 T =g T e

— AT =), 311

g, _ m—1 y 2B m+1 T, m-+1
2G m—2 m—2 m—2 m—1 J

or if we put

K= A " mB +m+1 T,

H=""2 44 28, M,

m— m—22 m—2
we have
G, K i_ m+1 aT’, A
2 r? m—1
O gy Oyt gy, U, 11
Ye + )2 ( )7 > ( )5

Considering a and @ as functions of temperature and accordingly as those
of radial distance » the solution of the first of the differential equations (8)

will not be accomplished. Functions, which correspond fairly well with the
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experimental results and at the same time make the equation integrable are
unlikely to be found. Thus the problem is left unsolved.

The writer has succeeded in a solution, perhaps hitherto unknown, in
which @ and G may be of any forms whatever as empirical functions of
temperature.

A cylindrical wall is divided into

a number of coaxial thin cylindrical

layers 1, 2, .......... n as shown in Fig.
. s —
1 and in any one layer a and G are 2o
assumed constant. Then for each layer /Z}Lz
the equations as (11), will be built up. Aw
Let for the layers 1, 2, ............ n, .
Ay Oy vrsrennns @, be the coefficients o’s; z -
Gy Gy eevvnennns G, the moduli G’s; _M
e R S
K, K, ......... K, the constants K’s;
C, Cp wenn... C, the constants C’s;
H, H, ......... H, the constants H’s. Fig. 1.
Then for any layer <
g C m+1 )
T =K 7t o, T
2@, C m—1 ’
g C;,, m+1
r =Kz+ ° a; -7
2G¢ 7'2 + m—]. ( )7 P eeiiereiaeieireisecesneensanas (12)
o » m+1
= =H,— a,T
QG,L ‘ m—"l ’ )
¢ standing for any one of 1, 2, ......... n.

At the junction of any two adjacent layers the radial stress belonging to
the one layer will be equal to that belonging to the other layer. For the
tangential and axial stresses the same could not be said. The stresses
belonging to the one layer may at the junction be different in magnitude
from those belonging to the other layer. Nevertheless we put them equal

but avoid any error arising therefrom by making n=c0 as will be done later.
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The radial and tangential stresses at 7, are

201( —G _ mtl alT,’), .............................. (13),
7y m—1
61'1:
2G2(K2— G _ m+. ale’), .............................. (13),
L 7y m—1
2@1[1;1+ O mtl a,(T{-—Tl)J, ..................... (14),
s m—1
On=
202[1(24— G 4 mtl az(T1’~T1)]. ..................... (1),
L 7y m—1

Equating (14),—(13), to (14),—(13),

G,C,=G0; + —;— mt i (o Gh—a,G) (2T - T)).

Similarly

GiCy= G0+~ L o206, 0 Y@1Y - T))
2 m—1

=G0+ % M LTty Gy — G2 T — T) 10ty Gy — 0, G o) (2 T — TZ):I,

m—1

G0, =G0, + % m+ 1 [rf(alGl — 0GR — Ty) + (G — g G2 TY — Ty) +

m—1

.................. 4124t 1 Goa— G 2T — i_l)J,

G.C,=6G0 + % :Zi } l:rlz(alal —ayG) 2T — 1)+ 1 (G —a,G3) 2T — T3) +

.................. 12 (G — 0,6 (2T — Tn_l)],

or if the series in the square brackets be denoted by

i—1

— D\[rde @T'—T)] and — ﬁ[rmaa(gzv ~1)]
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" respectively, we have

6.0, = @0, 1 m+1 2[¢2AaG(2T' T)] .................. (15),

@.0.=G.C— _1m+1 E[Maa(zT' () FR— (L5).

Next equating (13);+(14), to (13),+(14),

G K, =G K — L m“( G —aG)T,.
2 m—

Similarly

G3K3=G2 z"‘l mt1 (‘lzG2—03G3)T2
2 m—1

=G.K, ; m :11 [(alal—aﬁz)m(azaz—aaGs)TzJ,

G.K,=G.K,— 1E m+1 |:(,11G1 ) T+ (0,Gy— 4 G) Tyt v
............... (o1 Gy — a Gy) TH],
' 1 m+1
G, =G — - " [(alGl—ang)Tl (0BG Tyt oeveeeren.
............... + (s Gry— 0, G) T, _]

or if the series in the square brackets be denoted by

—1

—Z[AaG T] and - E} [AaG T]

respectively, we have

G K= G+ L m“ Z[A 2 4 IR (16):
G.K,=G.K, ; s [A 5 [ (16),
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The constants C,, C,, K, K, are determined by the boundary condition

that ¢,=0 at r, and r,, with the aid of (15), and (16), and from C,;, K,
the constants C,, K, are found. By (12) we have

GIKI_ _1'2_G101 - m + 1 a1G1%,= O, .............. Secennecesesscnnsse (17)1
7‘0 m_l

Q.K,— GG—m“ QT =0.

.............................. 7).
»2 m—1

Substituting (15), and (16), in (17),

GIK1+% Zi E[Aaa T —%{GIUI ; Zf} Z[ 12 4o (2T — 1’)]}
1 n

- m+i PR L N (18)

m —

Subtracting (17), from (18)

(55— %) G0t E (WG Lo, T)

7y Py

; zil 2[4 GT]

1m+1 1

r*daG 1" T)] =0,

whence

2
a,0,="+t1 "_o
m—l _ro

{ X, T —a, @, T

[AaG T]

n—}
——z[maa @1 T)} ............ (19),
and then by (15),
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n~-1
00=2t L I Gl 6.~ B 3 46 1]
1

m—1 ri—nt 2

- %E[ﬂduG(QT’—T)]

_ _;_( ::2 - 1)2[724(1@ @7'~1)] } (19),

With the value of G4(; in (19), we have from (17),

n—1
GE="t1 1 {—rozalGlT5+¢3anGnT,ﬁ— T [ daG 7]
1

m—1 ri—r’ 2

n—1

— 2 [ 21"~ T)]} ............ (20),

and then by (16),

N . n—1
G K= "F1 #{_ﬁ WGkt o, 6T~ ”22 Z[Aa(} r]

m—1 ri—r?

i—1

+ %(7‘2—7‘3) ZI[AaG T]

1 n—1
— g 2[rae6 @1/~ 1] } ............ (20),
Further by the condition that the resultant of the axial stresses must
vanish
n
27rj g, r dr=0.
To
The integral is the sum of the integrals for the layers 1, 2, ......... n. We

have with the value of ¢, in (12)
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0=G,H/(ri—re¥) + G Hyrj—rH+.eveunen + G H (7 2y)
Tn
g M+ 1 [a,G J’7 Trdr +a,G, j Trdr+..veeees .+ a,,GnS T’/‘d?‘].
m 1 " -

But the last term is

-2 +:i [ — 1o, G, T+ 1, X0y Gy — 0,Gy) T+ 1 2,Gy— 03Gg) Ty +
m—
............ 2 (g1 Gy — G Ty + 120, G T,:]
or
1 n-1
_9 Zil {—roaG T4 7, 2,G, T, — Z[Maa T’]}
Therefore
0=GH(rl—rd+ GHrpt—rD+ ...c..... + G H,(r2—r12)
m+1 <
—gmtl { G T 4120, G T — Z[rzdaG 1”]} .. @1)

On the other hand the axial stress at », is

whence G,H,= G H,— :Zii (2,Gy—a,G,) T,

Similarly GH,=G, H— (a Gy—ayGy) T,

1 -
=G, H,— Zil [(%Gz—az(;z)Tx"' (asz_asGs)Tz_ ’
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G.H,=GH ~ Zi} [(%Gl_ 0,G) T, +(4,Gy— a3G5) T+

..... e (4G — ) T,-_l]

G, = GH— F L] (0,6~ G T, + (=G Ty

......... (s G s — G T,H:l
et
= G H, + zﬁ Z[Aaa T v (22).
Putting all these in (21)
0= GLH[(rZ—rd)+ ([ 2—72) + evveenn. +(r2=n2)]

1
=] =G~ G Tt (=) Gy 4G Ty

m—

............ + (7'"2 - Tng_l)(an_l G,,,_]_ et anG‘n) T n—l]

n—1
—2 m+i { PG, Ty r, 20,6, T > [124a G T’]}
- 1

m

=G, H(rt—rf— m+ T { =2 rdu,, T, +2 i, G, T,

m—

n—1

—')‘,“:Z[AaG T]
1

n—1

~ > [124aG @1~ 1] }

whence
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2 2

G H,= m+1 1 { —2rla, G\ T4+2 ria, G, T,
m—1 ri—wr,

— 9',,221[41(? T]
1

_ 21[7'24116’ @1 — T)]} e 23),
and by (22),

n—1
GH="F1 1 {~21~02a1G1T{,+2r,?a,,G,,T,{—r,fZ[AaG 7]
1

m—1 r2Z—w,

i—1

+ (12— 7)) Z[Aaa ]

n—1

_Zl[TzAaG(zT'— T)]}. ............ (23),

Introducing the values of (19),, (20), and (23), into (12) we get the
component stresses at a point in the layer <.

So far the number of layers has been considered finite but it may as
well be taken as infinite in order to arrive at the exact solution. Then
o, G, C, K, and H; in (12), which were the stepwise changing constants
now become the coutinuous functions of r. They will be written henceforth

dropping the suffix ¢. Also will be written

a, for a, G, for @G,

3 n—1

& i—1 anGr
Tda@ for Z[AaG T], s T da@G for El[daG T],

JapGy ayGy
(oG i—1
PRI —T)daG for D[1%4aG (21" 1T)],
JaGy i
(G n—

1
»( 20"~ T)daG  for [r2daG@1"—1T)].
v aOGO 1
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Then by (12) with (19),, (20), and (23);

0, = 2GK— 260 _omtl aq
r2 m—1

0, = 20K+ 260 LomFL gy, b s (24)
I m—1

o, = 2GH—"*1 sqm
m—1 /

with

20K = m+1 1

m—1 r2—rs?

{ 913, Go T +2 720, G, T

G onGhn
— NS TdaG—?‘,ﬁS TdaG
oGy G

1, G
_S 2T — T daG }
Gy

m—1 r2—r]

GnGn
2000 = m+1 Pyt : {__2 rX0Gy Ty —a, G, 1)) —r,“," Tda@G
Gy

2 oG on G
L S (2T — T)daG—S (21" — T)daG},
0 JeagGy oG

1
{ —2 rlayG, T+ 2 r,2a,G, T — rozj TdaG

aGo

oGH=9 M+l 1

m—1 ri—r?

“nGn nGa
—r},s TdaG—-s r2(2T’—T)daG}.
oG aoGo

As GH=2GK, we have

g, + 0, = 0,

Let us now try a verification, whether the values of the component
stresses here obtained satisfy the fundamental equations (4). From (24)



74 ' Tsuruzo Matsumura.

+
dr ) 3

dr m—1 dr m—1\

de, _ m+1 TdaG N m+1 {2T'—T) deG | 4GC

—9 m-+1 {aG dT'+T, daG)

m—1 \ dr dr
- 4G0C _9 m+1 @ ar )
8 m—1 dr
But
ar1” =i(LjT¢dr)=_iij+l=_£—_£
dr dr \ 72 73 r r
Therefore
do, — 4G0C 19 m+1 o 2T’—T.
dr 73 m—1 7
And

o,—0, __ 4GC _9 m+1 aG2T’—T i
r 73 m—1 r

With these values the first of the equations (4) is satisfied to the proof of
correctness of the solution.

To find the component stresses at the inner surface of the hollow
cylinder we put in (24)

a=ay, G=G,, =", T=T, =T,

aw:gzozgz*‘i q«zlw {-2r02aoGoT3+2rfanG,,T,',
- n 10

anGn
—(r2—rdaG, T, -rnzs T da@
aGy
clnGn
—S 2T — T)daG} C e (26),
Gy



A Contribution to the Theory of Thermal Stress. 75

And to find those at the outer surface we put in the same equations

a=a, G=G, r=r, T'=T, T=T,

They are
0,,=0,
atn=o.zn=2 A 1 ! -2 7'02‘10G0T<'>+27‘2anGnT7:
m—1 r2—r?
0 Grn
—(rt—rda, G, T, — rozs Tda@G
G
dnGn
—s 2T — T)daG}. ......... (26),
ayGy

The law of temperature distribution was determined by Lorenz from
the fact that the quantity of heat passing in unit time through the cylin-
drical plate of the area 2mrl and the thickness dr is constant,  being the
length of the cylinder. It is

= ——Td"—log r + Tilogr,—Tilogre . (27),
logr,,—logr, logr,—log r,
or
T Ty (T TAOBT =180 e, @7,
log r,—logr,
and
QT — —2——j‘T7'dr __ T.-T (log . L) + Tyog r,— T,log 7,
7 logr,—lognr, 2 log r,—log 7,
........................... (28)
or
o —T=—L _T=To  _, const=D BAY.  eecerrerranees (29)

2 log r,—log 7,
Putting in (26), and (26),
27"—-T=D, 2T=D+ T, 2=D+ T,

we get
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. oanGn
Op=0,=2" +1 1 Tnz(anG'n T, —ayGyTy— TdaG)
m—1 12—rt w0Go
G
D (r,,ZanGn-roz%Go s rzdaG)} (30),
%Gy
1 onGn
G =0,,=2 m+ ( —a,G,Ty— TdaG)
m—1 r 2—90 30Go
oG
+ D(r 2a,, 1}, — 2oy T, — S '}"Zd(l(r>} (30),
#Go
anGn Anln
5 TdalG and s r’da@ can easily be found graphically.
“OGO a()Go
KI

Ci% "‘”f
. JE
NE Tr 2, N 2m
. i,

\
E§A oG €<— T——»z

Fig. 2.

Draw T-a( curve from the experimental data and r-7' curve by (27)

anGn
as in Fig. 2. Then the area 4BCDE represents =+ s 1'da@, the upper

aGy
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or lower sign being taken according as a(' increases or decreases from
a0,y to a,G,. To show the variation of al¥ in dependence on # draw ordinate
MN at any radial distance, from the intersection P draw a straight line
parallel to the base line and take MN=R(). Then the points M’s similarly
plotted will trace 7-aG curve. Next draw #%a( curve by taking the

horizontal ordinates equal to the squares of those of 7-aG curve. Then the
anGn

area FH'K'L represents =+ s r*da(@, the upper or lower sign being taken
aGy

as said above. Drawing #*-a@ curve may be inconvenient in some cases,

then draw —T_Z--aG curve instead of it and multiply the estimated area by
7ok k .

In the foregoing Poisson’s constant m was considered constant but it
is like @ and G subject to a variation as temperature rises and according
to Cl. Schifer approaches to 2 at the melting point of the material, although
the experimental data in this concern hitherto published are but scanty.
This variableness can also be taken into account. In equations (12) «
m—+ 1

always accompanies the factor I
m—

Therefore considering m as variable

m+1
m—1
2G'H belonging to equations (21) as

and denoting by g we may write the expressions of 26K, 2G(C and

va@G
20K = o { — 2ot G Lo+ 20 21,0, G T — v Td(pa@)
(el to%Go
p’”“"G” o Gl
- 7‘,,25 Td(pal) — s 121" — I"d(pa ) } ,
pald too Go
.2 ’P-n“nGn
26G0=—""— { — 272t Gy Ty — oty G T) — ﬂs Td(pa@)
) oGy

o 2 va@
—In N QT — 1) (G
"o po%Go

Y% G
—s 21" —1) d(,aaG)} )
e
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pa@
2GH= 2 - { —2 120, Gy To+ 2 v, 2,0, G T~ 7’02§ Td(paG)
oo Gy

Tnz —Fy

pnanGn Vnn Gn
_s Td(,laa)-g AT, 1)),

paG vo%oGo

equations (26), and (26), as

T0=00=— 2 — { —2 12ttt G To+2 12 1,0,G T — (r,2— 1) ey Gy Ty
n 1y
UnotaGn untn Gy .
—7',,25 Td(/zaG)—g 21" — T)d(yaG)} )
oo G 0% G
........................ (31),
61=0,,= — 2 — { —2 72t Gy T+ 2 v 21,0, G T — (12— ¥ D, G T,
n 10

UntinGn ntnGn
—nfs Td(/zaG)—S 7'2(2T’-—T)d(/mG)},

vorGy 1% Glo
........................ (31),
and equations (30), and (30), as
vadnGln
T =0n=—F— {73 [/%%Q; T — oG Ty— S T d(/mG)]
Tn 7o oo Go

Unln Gn -
+ Dl:w,ﬁ/znanGn—— vt G —S 7“2d(;taG)J},
' 000G

PvnanGn

Td(pe. G)]

to%Go

O =0,,= 2 { » 02[ W G T — 1 G Ty — s

2 —7 g

Unln Gn
+D [7'712/%“1; G — 1oty Gy — S r*d(pa G)] } .
%G
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Summary. |

The object of tho present paper is to find the thermal stress in a long
hollow cylinder, in which heat is transmitted at a uniform rate from the
inner to the outer surface or in the reverse direction, considering the co-
efficient of thermal expansion and the shearing modulus of elasticity as
functions of temperature. The writer has succeeded in a solution, perhaps
hitherto unknown, in which the coefficient and the modulus may be of any
forms whatever as empirical functions of temperature. Dividing the
cylindrical wall into a number of coaxial thin cylindrical layers and as-
suming the coefficient and the modulus in any one layer as constant the
radial, tangential and axial stresses at any point of any layer are found.
At last the number of layers is taken as infinite in order to arrive at the
exact solution. The tangential and axial stresses at the inner and outer

surfaces are reduced to

m+1 1 G
Gy =0,= — {7'n2(anGnT,,— ay Gy Ty~ TdaG
m—1 72— a0 Gl
G
+ D(r,ﬁaﬂGn — 1oy — S 7'2daG) } ,
aoGy
+ 1 1 anGhn
gpmo, =2t 1 {9'02((4,,0,, T— oG — TdaG)
m—L 12—r? %G
anGn
+ D(wf,an G 1Pty — S 1*da G) } .
Gy

For the determination of the definite integrals a graphical method
may be conveniently used.

If, besides the coefficient and the modulus, Poisson’s constant be con-
sidered variable the stresses become
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Unln G

Td(yaG):I
voxGo

2 2
n_70

Oy =0, = oy 2 { Tnzl:;unan Gn Tn - /loflo Go To - s

!LnanGn
+ D[o‘nz/znan G~ gty Gy — s rzd(yaG)_—J} )
wo% G

P&y G

{T oz[ﬂnan Gn Tn — Moy Go 110 — ‘ Td ( Ha G)J
J oG

2

2 a2
TpE—%g

P-nanGn
+ Dl:o'nz/z,,an G — 1t Gy— s r2d( /zaG)]} )
oGy
wheré
m+1
m—1




