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ON THE ORDINARY THEORY. 

The ordinary theory of bending strength of curved rods was esta

blished on the following base condition :-In Fig. 1 if FF and F' F' two 

Fig. 1. 

f' 

cross-sections infinitely near to each 

other, then when the longitudinal 

stress a causes the fibre element AA' 

to elongate or to shorten to the 

length AA" the point A" shall lie 

on a plane, which being the plane 

of the cross-section F' F' in the 

deformed state. 

If w be the specific variation 

of angle between the two cross

sections and f 0 the strain of the 

element ds on the centre line. the 

expressions of a, w and £ 0 as found 

as the results of this theory are 

P M M z n=-+---+--- ---
F Fr0 Fr0 x ro+::: 

w = _·_1_ (r+ M + M ), 
EF ro ro-r 

T (' //1/) to= -- / + -- ' 
EF ru 
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where 
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E = modulus of elasticity, 
F "= cross-sectional area, 
P = normal component of the resultant force acting at G', 
M = resultant moment acting round the axis through G' and 

perpendicular to the plane of centre line, 

. If z d'r:' x = a constant= --- -- r. 
F r0 +z 

This theory is known very early. It appears in Grashof's Elasticitat 

und Festigkeit published in 1878. Theory of curved rods given in the 

majority of text books on the strength of materials published thereafter is 

materially the same as that given in the work of Grashof. So it is likely 

that the theory has been regarded to be strict up to the present. 

According to the present author, however, the theory is not free 

from some loo~eness and accordingly Equs. (1), (2) and (3) are not exact, 

especially when the rodius of curvature r0 decreases relatively to the 

height of cross-section. 

The assertion here made will soon be recognized in tracing the 

following development of the author's theory. 

THE AUTHOR'S THEORY. 

I 

--r~--=-~ --, 

In Fig. 2 let GG' 

be the centre line and NN' 

the neutral fibre or the fibre, 

which neither elongates nor 

shortens, being not identical 

with the fibre of no longi

tudinal stress. 

First consider the 

case, where M acts alone. 

The values of n, w and f 0 

concerning to M alone will 

in the following be distin

guished by the suffix M. 

The fibre element 
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AA' is subject at its ends to the longitudinal stresses aAt> which including 

an angle between themselves form a resultant directed toward the centre 

of curvature. This resultant requires another force in counteraction for 

the retention of equilibrium, which latter must be the force consisting of 

the radial stresses a' and a'+ du' dz shown in Fig. 2, that is 
dz 

( 
db ) d<p d(ba' r) 

2 uM b + -
2

- dz sin -
2

- = dz dz d!f, 

Writing dtp for sin dtp and neglecting db 
2 2 2 

against b we get 

By the condition that the cross-section F' F' must remain as a 

plane after deformation we have 

m being Poisson's constant and wAt dtp the variation of d<p. The ordinary 

theory leaves the effect of the radial stress a' out of consideration. 

or 

Neglecting dr against r we have 
2 

Differentiating 

(5) 

I 

m 
d (b f1

1 r) [ db J dz = E wA, df: (z-z,.)+b , (5') 

or inserting the value of (4) 

or 
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By solving th~ differential equation (6) the expression of a:81 is 

b . d A 1· . · ' d db h · o tame . s t 11s equation contains o an --, t e express10n of a111 will 
dz 

be of different types for different forms of cross-section. 

ln the following the rectangular, trapezoidal and circular sections 

will be considered in succession. 

I 

--,t-
i e, 

- -~(L - - --r 

r. RECTANGLE. 

In rectangle 

b = const., db 
--=O. 
dz 

Then from (6) as dr = 
dz 

I e 
I -- .1 dnM + m- I a11, --E W111 _1_ = o, 

dr m r r -

and the solution is 

Ew11, 

r 
r m-1 dr 

e -m-7+c] 

m-1 m-1 

= r ----;;;-[_!!!__ E (I) .Jt e----;;-+ C ] 
m-l 

m C = --- E lll_,11+---... --~1. 
nt-1 r,,. 

(7) 

The constants w111 and C are found by putting the whole stress 

equal to zero and the whole moment of stress equal to M, i. e. by the 

condition 

o = J n111 dF, 

111= fn111 zdF. 

Putting in these the v;iluc of (7) we get 
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o = __!!!__ E w.,1fdF +· cJ __ d_F_~ 
1n- I m- 1 ' y-;;. 

M = _____!!!___ E W.11 f::: dF + cf zdF 
1n-1 m-1' 

r~ 

the integration being to be carried out for the whole cross-section. But 

f dF = F and J z dF = o. Therefore with 

a= f--dF_m_-~1 and (1 = f-c_d----=::,-----_-.-1 
r m r m 

whence 

m 
O=--

m- I 

M=CP, 

M 
C=-p ' 

m-1 
m 

Ca 
EF 

With these values (7) reduces to 

m-I 
m 

I -7!!2). 
r m 

M 
EF 

a l (&). 

This is the stress caused by Malone, to which the stress due to P, 
p 

Gp = F is superposed. The resultant stress is 

I -7!!2). (9) 
r m 

Strictly speaking Gp like GM accompanies the radial stress too and 

accordingly Gp will not be uniform throughout the cross section. For the 

equilibrium of forces acting on the fibre element AA' Fig. 3 we have 

(10) 

((::) being the function, according which the shearing stress distributes. 
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Fig. 3. 

6'+ ~d.'Z 
d~ 

Fig. 4. 
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Referring to Fig. 4 if there act 

no external force between G and G', 

the resultant forces acting at these 

points will be parallel and of equal 

magnitude. Hence 

P = Qcos <p, 

P+dP = Q cos (<p+d'f') 

= Q (cos <p-sin <p d<p), 

R = Qsin<p, 

R+dR = Q sin (<p+d<p) 

= Q(sin<p+cos<pd<p). 

The resultant of P and P+ dP 

neglecting dP, is 

2 P sin d<p = P d<p = Q cos <p d<p 
2 

directe_d toward the centre of curvature, 

while the increase of R is 

d R = Q cos <p d<p 

acting in the opposite direction. 

Thus the resultant of <Tp in the 

two cross-sections is counterbalanced by 

the increase of shearing force and 

further 

dR 
--=P. 

d<p 

Putting this in (IO) 

d(b n' r) b 
b <Tp = --+- Pf (s). 

dz F 
(11) 

The equation similar to (51
) obtained from the condition of no 

distorsion of the cross-section F' F' is 

d(bnpr) I 

dz 111 
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where aJp and ::I,. are of the same meanings as wM and ,:;71 but concerning 

to Palone. 

Introducing to this the value of d(bG1 r) 

dz 
m (II) 

The solution of this differential equation determines the distribution 

of Gp. But if now, for the simplicity's sake, we assume dR to distribute 

uniformly throughout the cross-section, then for the fibre element AA' 

Gp= ~ acting along the fibre at A and A' will hold equilibrium with 

dR acting across the fibre at A', so that the consideration of a' might 
F 

be dispensed with. 

The error of max. G arising from the above assumption should be 

very small as Gp is almost always a small fraction less than one-tenth of 

max. G,,1• 

If Gp 1s uniform 

p 
r wpd<p = EF r d<p or 

p 
Wp = ---

EF 

I m-1 a 
w = wp+<tJ,11 = -- (P---- --M) 

EF m fJ 
and 

in case P and M act simultaneously. 

If r 1 be the radius of the outer extreme fibre and r2 that of the 

inner extreme fibre, the value of a and fJ are 

/1 = f 

= bm (r0 +z) m ---- ----r0 [ 
_I ( ,:; 1ll )] ,, 

m+ I m+ I -e 



1suruzo Matszmmra. 

To find the distribution of a' caused by a.Jr in dependence on r we 

have by (4) 

_ d(<r' r) _ d(a' r) 
<1.Jt - d::: - dr ' 

whence 

= -- --r+mr m +K . M( <l -
1

) 

J1 F 

1 
--•~.::!_}tr+K] 

r "' 

But for r = r1 a' r = o. Therefore 

and accordingly 

a i 
o = -- r1 +mr1"' + K 

F 

l 

or K = ....!!_ r1 - 111r1"' 
F 

a'r= ; [; (t1-r)-m(r1+-r+)J- (14) 

For the inner extreme fibre 

a' r2 = ; [ } (r1--r2)-m (r1+ -r2+) J. 
which with the value of u. in ( I 2) becomes zero, as must be the case. 

The value of z,. is found from (5). Substitute therein (9)M and (14) 

and put ::: = o and r = r 0• 

= - h. w,v .c·,., 

whence m [ e F _1
] ---- ro+----- r1 m • 

m- I 11t <l 

Finally the strain of G G' on the centre line is 

= -~ __'!___ [x +--1- _e_+ !:___ r1+J. (16),,, 
EF f3 m Yo 11.ru 
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In case P and M act simultaneously 

P • M a [ 1 e F +] 
£0 = fop+fo.11 = ----- -- I+- -+-rt , 

EF EF /1 m r 0 aro 
(16) 

---6 :z 

2. TRAPEZOID. 

with 

In trapezoid 

db 
b = b0 -µ::: and -- = -p. 

d::: 

We have by (6) 

d(b a,11) m- I 

d::: 1/l 

E 
-2 µ-::+µ.s·,.+b 0 

- CIJ,11 ---~--- = o, 
r 

the solution of which is 

9 

= E C1J111 (ro+ :;) "' -2 µ--- (ro+.-::) '" ----- :::----ro , - "6-1 { 1/l m-1 ( m- l Ill ) 

m-I 21/l-l 21/l-l 

with 

1/l _m.::.:1_ } 
+(p.o·,.+b0)--{ro+.-::) ,,, +K 

1ll - l 

= l!. CIJM--fl A+:::,.-2 ---· ~ 1ll { 1/l- I 

1/l- I 2 m-1 

A = _2_11t_ ro + ~o_. 
2 m-I µ 

b a' r = f b a111 d:::+ const., 

which with the value of b a111 in ( 17) becomes 

( I 7) 

( r8) 

b a' r = E co111 _!_!!___, fl {(A+.-::,.):::- m-
1 

- :::2 + K' m (r0 +.o)+ + H }· 
111-1 21/t-( 
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But for z = e1 and z = -e2 b a' r = o. These conditions determine K' and 

H, viz. 

whence we get 

o =-(A+:::,.)e2 - m-I 
2 m-I 

l 

e/+K' mr1 ---,,.--- +H, 

l 

c/+R' m r 2----,,. +fl, 

1/l- I 

2m-1 
K' m = ----~1----i.----It, 

(19) 

To find :Y,. insert in (5) the values of b a At and b a' r found above 

and put ::: = o, r = r0 and b = b0 • 

or 

Introducing to this the value of H in ( 19) and solving for z,. 

Finally wM is found by the following condition. 

]Ill= f ".vzdF= f1 

brTM:::d-::. 

Putting therein the value of b aM in (17) 
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Substituting to this the value of K' in ( 19) and solving for w1,1 

To recapitulate the expression of aM is 

m I [ m-1 K' ] 
<TM= ---µEw.11- A+.::-,.-2---::-+ m-l 

m-1 b 2111-1 r ui 

(22).11 

with 

where 

z,. = 

The strain of GG' on the centre line is 

ro 

In case P and M act simultaneously 

(22) 

p 
W = --+011,f, 

EF 
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3. CIRCLE. 

In circle 

db · 2 -} and -- = -2:;(e -::; ). 2 

d-:: 

The case of circle is perplexing. 

Inserting in (6) the above values of b 
db and -- and solving as before we 
d-:: 

obtain the expression of b 11M of the 

following form : 

N 1} + c arcsin 7 + K r0 m . 

For z = e must b 11M = o and accordingly the constants c and K are 

expected to vanish. But the proof that c = o is not easily attained. 

Hence we put as follows : 

where a, a1, a2 etc. are unknown constants to be determined later. (24) 

is no other than Maclaurin's series and evidently the greater number of 

terms is taken, the more accurate is the result. Here the terms up to the 

term of .:;A will be taken. 

Hy (4) we have 

b a' r = f b 11111 dz+const. 

= 2 lc.'W.11 [ Jca+ ll1 .-::+ ll2 .-::
2+ ll3 .c-3+a4 ::;.4)Vi:2-.:-2dz+R-"J. 

Hut 
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J -· e2 z ~ -
✓e2-.-rdz = - arcsin -+-·"-✓e2-z2, 

2 e 2 

J~s . ,. ..2 ,,:t, d - ( 2e4 e2 _2 + z4 ) . /~ "'"'e -.., .?: - ------ z - -ve -z 
15 15 5 ' 

Therefore 

( a1 e2 )-2 (t½ e
2

) 3 + --- as z-+ --- z 
3 I 5 4 24 

+ ~ z4 + ~ z5
] ✓ e2-z2 + K} 5 6 . 

But for z = ±e must 0
1 = o. Therefore 

K=o, 

or 

Then 

takin~ up to the term of ::-4. 

13 

(a) 
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aM r = E wM (ro+,c-) (a+a1 z+a2 ~+as 2 3 +a4 ,c-4) 

= E WM [a r0+ (a1 ro+ a) z+(a2 rv+ a1) z2 

+ (as Yo +a2) ,c-3 + (a4 r0 + as) z4J. 
taking up to the term of z4. 

Putting in (5) the above values of a' r and aM r 

-E w.v (z-z,.) = o. 

(26) 

As this equation must hold good for all values of z, the coefficients 

of z0
, z1, z2 etc. have to vanish by themselves. That is 

(b) 

(c) 

(d) 

(e) 

(f) 

A further condition remaining is 
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or with the values of b and aM 

M = 2 E WM r (a z+a1 z2+a:iz3+as z1 + a4 z5
) ✓e~-z2 dz. 

-· 
But the integrals including the odd power of ::: are zero. Therefore 

( e4 e
6 

)( • z ) • M= 2EwM -a1+-a3 arcsm-
8 16 e -• 

or (g) 

From Equs. (a), (b), (c), (d), (e), (/) and (g) the unknown 

quantities are found as follows : 

where 

a= ~ [c- 180 m4 +6o m3
) ,{ e2+(-90 m4+ 78 11i3-;-22 m2+ 2 m) e4J 

8 iv/ C 
OJM= -- ------------------, 

E 7C -1440 m 4 r~ e4 + ( - 720 m4 + 576 m3-96 m2
) ro e6 

These values are much simplified by putting m = ~. with which 
3 

and with - 1
- = _e_ and ( = _!!__ 

n ro e 
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as= _e_ (-599 1t), 
C' 

M C' 
ETC e7 1l (- 180 ,r-68) 

M 
Er.:e3 

720,/+921/+48 
1l ( I 80 1/ + 68) 

(27) 

(28) 

(30),11 

\Vith these values the expression of nM reduces to 

(IM= ~ n (180 ~+68) {<162 1r+69)+(720 n
3
-22) C 

-(648 1z2- 8) (2+ 599 1l (';- 563 t}- (31),11 

For ( = r 

(nM)l = M l [720 n3-486 n2 + 599 n- sos] 
Fe n (180 n2+ 68) 

. and for ( = - 1 

Further the strain of G G' is 

In case P and M act simultaneously 

p 
n=-+nAf, 

F 

234 ,t2+9) 
180 nt+68 
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. p 
(a)i = -F- + (aM)1, 

p 
(at= F +(aA1)2, I 

p 
(I) = --- + W11, 

.EF , 

p 
Co= --+coM· 

EF 
(33) 

A remark may here be necessary about the distribution of al. In 

sections other than rectangle, especially in circle a' may possibly be not 

uniform along a chord parallel to the bending axis. Its value in the 

present investigation has to be taken as the mean for all points on the 

chord. 

NUMERICAL RESULTS FROM THE ORDINARY AND 
THE AUTHOR'S THEORIES. 

Taking a few examples the values of aM were calculated by the 

ordinary as well as by the author's formulas and the results were made to 

Tables I to 3 for the purpose of comparison. 

TABLE 1. Rectangle. 

aM/....!!_ Error of e z Fe 

- - by ordinary 
magnitude of max. 

ro e 
by new formula stress. % formula 

I 2.689 2.731 -1.54 

½ 1.525 1.521 
l. 0 0.167 0.127 6 

-½ -1.438 - 1.447 
·-1 -3.364 -3.303 +1.84 

I 2-431 2.5I1 -3.19 

·~· 1.532 1.535 
l. 0 0.333 0.285 :I 

-~ -1.345 -1.377 
-I -3.863 -3.715 +3-98 

I 2.190 2.293 -4-49 

½ 1.514 1.520 
l. 0 0.500 0.429 2 

-½ - 1.190 -1.240 
-I -4.571 -4.281 +6.75 
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I ,lf 111,1 ---
Error of 

e2 
Fe! 

-- 0 magnitude of ma~. 
ro by ordinary stress. % 

formula by new formula 

--- ---

e1 2.713 2.800 -3.11 
~l 1.560 1.576 
2 

l 0 0.167 0.143 6 

l'? -1.176 - I.202 - --
2 

-c2 -2.787 - 2.780 +0.25 

CJ 2.430 2.517 -3-49 
e1 

1.563 1.562 -2 
?1 0 0.333 0.287 

e2 -1.o93 -1.117 --
2 

-e2 -3.232 -3.112 -3.86 

l'l 2.176 

I 

2.291 -5.02 
r1 

1.537 1.544 -
2 

l. 0 0.500 0.432 2 

02 0.952 -1.004 ---

" -e2 3.857 -3.616 -6.66 

TABLE 3. Circle. 

I 

! 
I },f 11},f -- Error of e C 

F, 

- -- 1nagnitude of n1ax. 
rn I e 

by ordinary stress. % 

I 
fonnuh by new fonnula 

I 3.547 3.591 - r.23 

½ 1.987 1.991 
}_ 

0.167 6 0 0,150 

-~ - 1.984 -- 1.989 

-I -4.567 -4.5o7 +1.3J 

I I 3.166 3.228 - 1.92 
1 1.951 1.969 "2" 

¼ 0 0.333 0.301 

-½ -1.933 1.954 
-I -5-332 5.147 +3-59 
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For circle the convergency of the expression of aM becomes slow as 

the value of _e_ increases. Taking in the expression the terms up to the 
ro 

term of z4 the result will not be sufficiently accurate for cases where _e_ 
I ~ 

is considerably greater than --. Hence in the examples the case of 

_e_ = - 1
- was omitted. 

3 

r 0 2 

To show what like is the distribution of aM according to the author's 

theory in comparison with that according to the oi·dinary theory Figs. 5 

to 7 were drawn. e I Fig. 5 is for rectangle and - = -, Fig. 6 for 
. ~ 2 

trapezoid and ~ = - 1
- and Fig. 7 for circle and _e_ = - 1

-. 
~ 2 ~ 3 

In conclusion the author expresses his hearty thanks to Mr. K. Tabushi, 

who assisted him in undertaking a part of deduction of formulas as well as 

the numerical calculations. 

Fig. 5. 

Rec.,t~OA, S~, 
t:I 1 

~ 
-- - - - Cr """di.-"/ ~ I 

~ "1-U,J ~ 

-;z. 0 
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J 

Fig. 7. 

r: u1. S t· e 1 Vl'U' CV!, .f.,C, (,()'n • "1:D: 3. 
1 2 

- -- -- J;'f ,~ u.,,,,"1 
1;, 'l{W/' t.ol[r 

I 

\ 

~ 
\, 

·"'-,, 


