Bending Strength of Curved Rods.

By

Tsuruzo Matsumura.

(Received June 29, 1925.)

ON THE ORDINARY THEORY.

The ordinary theory of bending strength of curved rods was established on the following base condition:-In Fig. I if $F F$ and $F^{\prime} F^{\prime}$ two

Fig. 1.
 cross-sections infinitely near to each other, then when the longitudinal stress σ causes the fibre element $A A^{\prime}$ to elongate or to shorten to the length $A A^{\prime \prime}$ the point $A^{\prime \prime}$ shall lie on a plane, which being the plane of the cross-section $F^{\prime} F^{\prime}$ in the deformed state.

If ω be the specific variation of angle between the two crosssections and ϵ_{0} the strain of the element $d s$ on the centre line, the expressions of σ, ω and ϵ_{v} as found
as the results of this theory are

$$
\begin{aligned}
& \sigma=\frac{P}{F}+\frac{M}{F r_{0}}+\frac{M}{F r_{0} x} \frac{z}{r_{0}+z}, \\
& \omega=\frac{\mathrm{I}}{E F}\left(P+\frac{M}{r_{1}}+\frac{M}{r_{0} x}\right), \\
& \epsilon_{0}=\frac{\mathrm{I}}{E F}\left(P+\frac{M}{r_{0}}\right),
\end{aligned}
$$

where
$E=$ modulus of elasticity,
$F=$ cross-sectional area,
$P=$ normal component of the resultant force acting at G^{\prime},
$M=$ resultant moment acting round the axis through G^{\prime} and perpendicular to the plane of centre line,

$$
x=\mathrm{a} \text { consiant }=-\frac{\mathbf{1}}{F} \int \frac{z}{r_{0}+z} d F
$$

This theory is known very early. It appears in Grashof's Elasticität und Festigkeit published in 1878 . Theory of curved rods given in the majority of text books on the strength of materials published thereafter is materially the same as that given in the work of Grashof. So it is likely that the theory has been regarded to be strict up to the present.

According to the present author, however, the theory is not free from some looseness and accordingly Equs. (1), (2) and (3) are not exact, especially when the rodius of curvature r_{0} decreases relatively to the height of cross-section.

The assertion here made will soon be recognized in tracing the following development of the author's theory.

THE AUTHOR'S THEORY.

Fig. 2.

In Fig. 2 let $G G^{\prime}$ be the centre line and $N N^{\prime}$ the neutral fibre or the fibre, which neither elongates nor shortens, being not identical with the fibre of no longitudinal stress.

First consider the case, where M acts alone. The values of σ, ω and ϵ_{v} concerning to M alone will in the following be distinguished by the suffix M.

The fibre element
$A A^{\prime}$ is subject at its ends to the longitudinal stresses σ_{n}, which including an angle between themselves form a resultant directed toward the centre of curvature. This resultant requires another force in counteraction for the retention of equilibrium, which latter must be the force consisting of the radial stresses σ^{\prime} and $\sigma^{\prime}+\frac{d \sigma^{\prime}}{d z} d z$ shown in Fig. 2, that is

$$
2 \sigma_{M}\left(b+\frac{d b}{2}\right) d z \sin \frac{d \varphi}{2}=\frac{d\left(b \sigma^{\prime} r\right)}{d z} d z d \varphi .
$$

Writing $\frac{d \varphi}{2}$ for $\sin \frac{d \varphi}{2}$ and neglecting $\frac{d b}{2}$ against b we get

$$
\begin{equation*}
b \sigma_{M}=\frac{d\left(b \sigma^{\prime} r\right)}{d z} \tag{4}
\end{equation*}
$$

By the condition that the cross-section $F^{\prime} F^{\prime}$ must remain as a plane after deformation we have

$$
\frac{1}{E}\left(\sigma_{M}-\frac{\sigma^{\prime}}{m}\right)\left(r+\frac{d r}{2}\right) d \varphi=\omega_{M} d \varphi\left(z-z_{n}\right)
$$

m being Poisson's constant and $\omega_{B} d \varphi$ the variation of $d \varphi$. The ordinary theory leaves the effect of the radial stress σ^{\prime} out of consideration.

Neglecting $\frac{d r}{2}$ against r we have

$$
\left.\begin{array}{cc}
\sigma_{M} r-\frac{\sigma^{\prime} r}{m}=E \omega_{M}\left(z-z_{n}\right) \tag{5}\\
\text { or } \quad b \sigma_{M} r-\frac{b \sigma^{\prime} r}{m}=E \omega_{M} b\left(z-z_{n}\right) .
\end{array}\right\}
$$

Differentiating

$$
\frac{d\left(b \sigma_{M} r\right)}{d z}-\frac{1}{m} \frac{d\left(b \sigma^{\prime} r\right)}{d z}=E \omega_{M}\left[\frac{d b}{d z}\left(z-z_{n}\right)+b\right],
$$

or inserting the value of (4)

$$
\begin{array}{ll}
& \frac{d\left(b \sigma_{M} r\right)}{d z}-\frac{\mathrm{I}}{m} b \sigma_{M}=E \omega_{M}\left[\frac{d b}{d z}\left(z-z_{n}\right)+b\right] \\
\text { or } & r \frac{d\left(b \sigma_{M}\right)}{d z}+\frac{m-1}{m} b \sigma_{M}-E \omega_{M}\left[\frac{d b}{d z}\left(z-z_{n}\right)+b\right]=0 . \tag{6}
\end{array}
$$

By solviag the differential equation (6) the expression of σ_{M} is obtained. As this equation contains b and $\frac{d b}{d z}$, the expression of σ_{M} will be of different types for different forms of cross-section.

In the following the rectangular, trapezoidal and circular sections will be considered in succession.
I. RECTANGLE.

In rectangle

$$
b=\text { const., } \frac{d b}{d z}=0
$$

Then from (6) as $\frac{d r}{d z}=\mathrm{I}$

$$
\frac{d \sigma_{M}}{d r}+\frac{m-\mathrm{I}}{m} \frac{\sigma_{M}}{r}-E \omega_{M} \frac{\mathrm{I}}{r}=0,
$$

and the solution is

$$
\begin{align*}
\sigma_{M} & =e^{-\int \frac{m-1}{m} \frac{d r}{r}}\left[\int \frac{E \omega_{M}}{r} e^{\int \frac{m-1}{m} \frac{d r}{r}}+C\right] \\
& =r^{-\frac{m-1}{m}}\left[\frac{m}{m-1} E \omega_{M} e^{\frac{m-1}{m}}+C\right] \\
& =\frac{m}{m-1} E \omega_{M}+\frac{C}{r^{\frac{m-1}{m}}} . \tag{7}
\end{align*}
$$

The constants $\omega_{M I}$ and C are found by putting the whole stress equal to zero and the whole moment of stress equal to M, i.e. by the condition

$$
\begin{aligned}
\mathrm{o} & =\int \sigma_{M} d F \\
M & =\int \sigma_{M} z d F
\end{aligned}
$$

Putting in these the value of (7) we get

$$
\begin{aligned}
& 0=\frac{m}{m-\mathrm{I}} E \omega_{\mathrm{M}} \int d F+C \int \frac{d F}{r^{\frac{m-1}{m}}}, \\
& M=\frac{m}{m-\mathrm{I}} E \omega_{\mathrm{M}} \int \approx d F+C \int \frac{z d F}{r^{\frac{m-1}{m}}},
\end{aligned}
$$

the integration being to be carried out for the whole cross-section. But $\int d F=F$ and $\int z d F=0$. Therefore with

$$
\begin{aligned}
\alpha & =\int \frac{d F}{r^{\frac{m-1}{m}}} \text { and } \beta=\int \frac{z d F}{r^{\frac{m-1}{m}}} \\
0 & =\frac{m}{m-1} E F \omega_{M}+C u \\
M & =C \beta
\end{aligned}
$$

whence

$$
\left.\begin{array}{rl}
C & =\frac{M}{\beta} \tag{8}\\
\omega_{M} & =-\frac{m-\mathbf{1}}{m} \frac{C \alpha}{E F}=-\frac{m-\mathbf{I}}{m} \frac{M}{E F} \frac{\alpha}{\beta}
\end{array}\right\}
$$

With these values (7) reduces to

$$
\begin{equation*}
\omega_{M}=\frac{M}{\beta}\left(-\frac{\alpha}{F}+\frac{\mathrm{I}}{r^{\frac{m-1}{m}}}\right) . \tag{9}
\end{equation*}
$$

This is the stress caused by M alone, to which the stress due to P, $\sigma_{P}=\frac{P}{F}$ is superposed. The resultant stress is

$$
\begin{equation*}
\sigma=\frac{P}{F}+\frac{M}{\beta}\left(-\frac{\alpha}{F}+\frac{\mathrm{I}}{r^{\frac{m-1}{m}}}\right) . \tag{9}
\end{equation*}
$$

Strictly speaking σ_{P} like σ_{M} accompanies the radial stress too and accordingly σ_{P} will not be uniform throughout the cross section. For the equilibrium of forces acting on the fibre element $A A^{\prime}$ Fig. 3 we have

$$
\begin{equation*}
b \sigma_{P}=\frac{d\left(b \sigma^{\prime} r\right)}{d z}+\frac{b}{F} \frac{d R}{d \varphi} f(z) \tag{io}
\end{equation*}
$$

$f(z)$ being the function, according which the shearing stress distributes,

Fig. 3.

Referring to Fig. 4 if there act no external force between G and G^{\prime}, the resultant forces acting at these points will be parallel and of equal magnitude. Hence

$$
\begin{aligned}
& P=Q \cos \varphi \\
& P+d P=Q \cos (\varphi+d \varphi) \\
& \quad=Q(\cos \varphi-\sin \varphi d \varphi) \\
& R=Q \sin \varphi \\
& R+d R=Q \sin (\varphi+d \varphi) \\
& \quad=Q(\sin \varphi+\cos \varphi d \varphi)
\end{aligned}
$$

The resultant of P and $P+d P$ neglecting $d P$, is

$$
2 P \sin \frac{d \varphi}{2}=P d \varphi=Q \cos \varphi d \varphi
$$

directed toward the centre of curvature, while the increase of R is

$$
d R=Q \cos \varphi d \varphi
$$

acting in the opposite direction.
Thus the resultant of σ_{P} in the two cross-sections is counterbalanced by the increase of shearing force and further

$$
\frac{d R}{d \varphi}=P
$$

Putting this in (IO)

$$
\begin{equation*}
b \sigma_{P}=-\frac{d\left(b \sigma^{\prime} r\right)}{d z}+\frac{b}{F} P f(z) \tag{II}
\end{equation*}
$$

The equation similar to (5^{\prime}) obtained from the condition of no distorsion of the cross-section $F^{\prime} F^{\prime}$ is

$$
\frac{d\left(b \sigma_{P} r\right)}{d z}-\frac{1}{m} \frac{d\left(b \sigma^{\prime} r\right)}{d z}=E \omega_{P}\left[\frac{d b}{d z}\left(z-s_{n}^{\prime}\right)+b\right] .
$$

where ω_{P} and \approx_{n} are of the same meanings as ω_{M} and z_{n} but concerning to P alone.

Introducing to this the value of $\frac{d\left(b \sigma^{\prime} r\right)}{d \xi}$ in (ii)

$$
\frac{d\left(b \sigma_{P} r\right)}{d z}-\frac{b}{m}\left[\sigma_{P}-\frac{P}{F} f(z)\right]=E \omega_{P}\left[\frac{d b}{d z}\left(z-z_{n}^{\prime}\right)+b\right] .
$$

The solution of this differential equation determines the distribution of σ_{P}. But if now, for the simplicity's sake, we assume $d R$ to distribute uniformly throughout the cross-section, then for the fibre element $A A^{\prime}$ $\sigma_{P}=\frac{P}{F}$ acting along the fibre at A and A^{\prime} will hold equilibrium with $\frac{d R}{F}$ acting across the fibre at A^{\prime}, so that the consideration of σ^{\prime} might be dispensed with.

The error of max. σ arising from the above assumption should be very small as σ_{P} is aimost always a small fraction less than one-tenth of $\max . \sigma_{M}$.

If σ_{P} is uniform

$$
r \omega_{P} d \varphi=\frac{P}{E F} r d \varphi \quad \text { or } \quad \omega_{P}=\frac{P}{E F}
$$

and

$$
\omega=\omega_{P}+\omega_{M}=\frac{\mathrm{I}}{E F}\left(P-\frac{m-\mathrm{I}}{m} \frac{\alpha}{\beta} M\right)
$$

in case P and M act simultaneously.
If r_{1} be the radius of the outer extreme fibre and r_{2} that of the inner extreme fibre, the value of α and β are

$$
\begin{align*}
\alpha & =\int \frac{d F}{r^{\frac{m-1}{m}}}=b \int_{r_{2}}^{r_{1}} \frac{d r}{r^{\frac{m-1}{m}}}=b m\left(r_{1}^{\frac{1}{m}}-r_{2}^{\frac{1}{m}}\right) \tag{12}\\
\beta & =\int \frac{z d F}{r^{\frac{m-1}{m}}}=b \int_{r_{2}}^{r_{1} z d d^{\frac{m-1}{m}}} \\
& =b m\left[z\left(r_{0}+z\right)^{\frac{1}{m}}-\frac{m}{m+1}\left(r_{0}+z\right)^{\frac{m+1}{m}}\right]_{-e}^{c} \\
& =b m\left[\left(r_{0}+z\right)^{\frac{1}{m}}\left(\frac{z}{m+1}-\frac{m}{m+1}-r_{0}\right)\right]_{-e}^{c}
\end{align*}
$$

$$
\begin{equation*}
=-b \frac{m}{m+1}\left[\left(m r_{0}-e\right) r_{1}^{\frac{1}{m}}-\left(m r_{0}+e\right) r_{2}^{\frac{1}{m}}\right] \tag{13}
\end{equation*}
$$

To find the distribution of σ^{\prime} caused by σ_{M} in dependence on r we have by (4)
whence

$$
\begin{aligned}
\sigma_{M} & =\frac{d\left(\sigma^{\prime} r\right)}{d z}=\frac{d\left(\sigma^{\prime} r\right)}{d r} \\
\sigma^{\prime} r & =\int \sigma_{M} d r+\text { const. }=\frac{M}{\beta}\left[\int\left(-\frac{\alpha}{F}+\frac{1}{r^{\frac{m-1}{m}}}\right) d r+K\right] \\
& =\frac{M}{\beta}\left(-\frac{\alpha}{F} r+m r^{\frac{1}{m}}+K\right)
\end{aligned}
$$

But for $r=r_{1} \quad \sigma^{\prime} r=0$. Therefore

$$
\mathrm{o}=-\frac{\alpha}{F} r_{1}+m r_{1} \frac{1}{m}+K \quad \text { or } \quad K=\frac{\|}{F} r_{1}-m r_{1}^{\frac{1}{m}}
$$

and accordingly

$$
\begin{equation*}
\sigma^{\prime} r=\frac{M}{\beta}\left[\frac{\mu}{F}\left(r_{1}-r\right)-m\left(r_{1}^{\frac{1}{m}}-r^{\frac{1}{m}}\right)\right] . \tag{14}
\end{equation*}
$$

For the inner extreme fibre

$$
\sigma^{\prime} r_{2}=\frac{M}{\beta}\left[\frac{\mu}{F}\left(r_{1}--r_{2}\right)-m\left(r_{1}^{\frac{1}{m}}-r_{2}^{-\frac{1}{m}}\right)\right],
$$

which with the value of $\%$ in (12) becomes zero, as must be the case.
The value of z_{n} is found from (5). Substitute therein (9) ${ }_{M}$ and (14) and put $z=0$ and $r=r_{0}$.

$$
\begin{gathered}
\frac{M}{\beta}\left(-\frac{\mu}{F}+\frac{1}{r^{m-1}}\right) r_{0}-\frac{1}{m} \frac{M}{\beta}\left[\frac{\alpha}{F}\left(r_{1}-r_{0}\right)-m\left(r_{1}^{\frac{1}{m}}-r_{0}^{\frac{1}{m}}\right)\right] \\
=-E \omega_{M} \sigma_{n}
\end{gathered}
$$

whence

$$
\begin{equation*}
\approx_{n}=-\frac{m}{m-I}\left[r_{0}+\frac{e}{m}-\frac{F}{u} r_{1}^{\frac{1}{m}}\right] \tag{15}
\end{equation*}
$$

Finally the strain of $G G^{\prime}$ on the centre line is

$$
\begin{align*}
\epsilon_{0,1} & =\frac{-\sigma_{n} \omega_{M} d \varphi}{r_{0} d \varphi}=-\frac{\omega_{M} \tilde{\sigma}_{n}}{r_{0}} \\
& =--\frac{M}{E F} \frac{\alpha}{\beta}\left[1+\frac{1}{m} \frac{e}{r_{0}}+\frac{F}{\mu, r_{0}} r_{1}^{\frac{1}{m}}\right] . \tag{16}
\end{align*}
$$

In case P and M act simultaneously

$$
\begin{equation*}
\epsilon_{0}=\epsilon_{0 P}+\epsilon_{0 M}=\frac{P}{E F}-\frac{M}{E F} \frac{\alpha}{\beta}\left[\mathrm{I}+\frac{\mathrm{I}}{m} \frac{e}{r_{0}}+\frac{F}{\alpha r_{0}} r_{1}^{\frac{1}{m}}\right] . \tag{16}
\end{equation*}
$$

2. TRAPEZOID.

In trapezoid

$$
\begin{aligned}
b & =b_{0}-\mu z \text { and } \frac{d b}{d z}=-\mu \\
\text { with } \mu & =\frac{b_{2}-b_{1}}{h} .
\end{aligned}
$$

We have by (6)

$$
\begin{aligned}
& \frac{d\left(b \sigma_{M}\right)}{d_{i}}-\frac{m-1}{m} \frac{b \sigma_{M}}{r} \\
& -E \omega_{M} \frac{-2 \mu ;+\mu_{n}+b_{n}}{r}=0,
\end{aligned}
$$

the solution of which is

$$
\begin{align*}
& b \sigma_{M}= E \omega_{M}\left(r_{0}+z\right)^{-\frac{m-1}{m}}\left\{\int\left[-2 \mu z+\mu z_{n}+b_{0}\right]\left(r_{0}+z\right)^{-\frac{1}{m}} d z+K\right\} \\
&=E \omega_{M}\left(r_{0}+z\right)^{-\frac{m-1}{m}}\left\{-2 \mu-\frac{m}{m-1}\left(r_{0}+z\right)^{\frac{m-1}{m}}\left(\frac{m-1}{2 m-1} z-\frac{m}{2 m-1} r_{0}\right)\right. \\
&\left.\quad+\left(\mu z_{n}+b_{0}\right) \frac{m}{m-1}\left(r_{0}+z\right)^{\frac{m-1}{m}}+K\right\} \\
&= E \omega_{M} \frac{m}{m-1} \mu\left\{A+z_{n}-2 \frac{m-1}{2 m-1} z+\frac{K^{\prime \prime}}{\left(r_{0}+z\right)^{\frac{m-1}{m}}}\right\}, \tag{17}
\end{align*}
$$

with

$$
\begin{equation*}
A=\frac{2 m}{2 m-1} r_{v}+\frac{b_{0}}{\mu} . \tag{18}
\end{equation*}
$$

By (4)

$$
b \sigma^{\prime} r=\int b \sigma_{M} d z+\text { const. }
$$

which with the value of $b \sigma_{M}$ in (17) becomes

$$
b \sigma^{\prime} r=E \omega_{M} \frac{m}{m-1} \mu\left\{\left(A+z_{n}\right)=-\frac{m-1}{2 m-1} z^{2}+K^{\prime} m\left(r_{0}+s\right)^{-\frac{1}{m}}+H\right\} .
$$

But for $z=e_{1}$ and $z=-e_{2} \quad b \sigma^{\prime} r=0$. These conditions determine K^{\prime} and H, viz.

$$
\begin{aligned}
& 0=\left(A+z_{n}\right) e_{1}-\frac{m-1}{2 m-1} e_{1}^{2}+K^{\prime} m r_{1} \frac{1}{m}+H \\
& 0=-\left(A+z_{n}^{\prime}\right) e_{2}-\frac{m-1}{2 m-1} e_{2}^{2}+K^{\prime} m r_{2}^{\frac{1}{m}}+H
\end{aligned}
$$

whence we get

$$
\left.\begin{array}{rl}
K^{\prime} \cdot n & =\frac{\frac{m-1}{2 m-1}\left(e_{1}-e_{2}\right)-\left(A+z_{n}^{\prime}\right)}{r_{1}^{\frac{1}{m}}-r_{2}^{\frac{1}{m}}} h, \\
H & =\frac{\left(A+z_{n}\right)\left(e_{1} r_{2}^{\frac{1}{m}}+c_{2} r_{1}^{\frac{1}{m}}\right)-\frac{m-1}{2 m-1}\left(e_{1}{ }^{2} r_{2}{ }^{\frac{1}{m}}-e_{2}{ }^{2} r_{1}^{\frac{1}{m}}\right)}{r_{1}^{\frac{1}{m}}-r_{2}^{\frac{1}{m}}} \tag{i9}
\end{array}\right\}
$$

To find z_{n} insert in (5) the values of $b \sigma_{M}$ and $b \sigma^{\prime} r$ found above and put $z=0, r=r_{0}$ and $b=b_{0}$.

$$
\begin{gathered}
E \omega_{M} \frac{m}{m-\mathrm{I}} \mu\left\{A+z_{n}+\frac{K^{\prime}}{r_{0} \frac{m-1}{m}}\right\} r_{0}-E \omega_{M} \frac{m}{m-1} \mu\left\{K^{\prime} r_{0}^{\frac{1}{m}}+\frac{H}{m}\right\} \\
=-E \omega_{M} b_{0} z_{n}
\end{gathered}
$$

or

$$
\frac{m}{m-\mathrm{I}} \mu\left[\left(A+z_{n}\right) r_{0}-\frac{H}{m}\right]=-b_{0} z_{n}
$$

Introducing to this the value of H in (19) and solving for z_{n}

$$
z_{n}=-\frac{A\left[m r_{0}\left(r_{1}^{\frac{1}{m}}-r_{2}^{\frac{1}{m}}\right)-\left(e_{1} r_{2}^{\frac{1}{m}}+c_{2} r_{1}^{\frac{1}{m}}\right)\right]+\frac{m-1}{2 m-1}\left(e_{1}^{2} r_{2}^{\frac{1}{m}}-e_{2}^{2} r_{1}^{\frac{1}{m}}\right)}{\left[(m-1) \frac{b_{0}}{\mu}+m r_{0}\right]\left(r_{1}^{\frac{1}{m}}-r_{2}^{\frac{1}{m}}\right)-\left(e_{1} r_{2}^{\frac{1}{m}}+\epsilon_{2} r_{1}^{\frac{1}{m}}\right)} \cdot(\text { (20) }
$$

Finally ω_{M} is found by the following condition.

$$
M=\int \sigma_{M} z d F=\int_{-e_{2}}^{e_{1}} b \sigma_{M} z d z
$$

Putting therein the value of $b \sigma_{M}$ in (17)

$$
M=E \omega_{M} \frac{m}{m-\mathrm{I}} \mu \int_{-e_{2}}^{e_{1}}\left[\left(A+z_{n}\right) z-2 \frac{m-\mathrm{I}}{2 m-\mathrm{I}} z^{2}+K^{\prime} \frac{z}{\left(r_{0}+z\right)^{\frac{m-1}{m}}}\right] d z
$$

$$
\begin{gathered}
=E \omega_{M} \frac{m}{m-\mathrm{I}} \mu\left\{\frac{\mathrm{I}}{2}\left(A+z_{n}\right) h\left(e_{1}-e_{2}\right)-\frac{2}{3} \frac{m-\mathrm{I}}{2 m-\mathrm{I}} h\left(e_{1}^{2}-e_{1} e_{2}+e_{2}{ }^{2}\right)\right. \\
+K^{\prime} \frac{m}{m+\mathrm{I}}\left[\varepsilon_{1} r_{1}^{\frac{1}{m}}+e_{2} r_{2}^{\frac{1}{m}}-m r_{11}\left(r_{1}^{\frac{1}{m}}-r_{2}^{\frac{1}{m}}\right)\right\}
\end{gathered}
$$

Substituting to this the value of K^{\prime} in (19) and solving for ω_{M}

$$
\begin{aligned}
\omega_{M f} & =\frac{m-\mathbf{I}}{m} \frac{M}{E \mu h} \div\left\{\left(A+z_{n}\right) \frac{e_{1}-e_{2}}{2}-\frac{2}{3} \frac{m-\mathrm{I}}{2 m-\mathrm{I}}\left(e_{1}^{2}-e_{1} e_{2}+e_{2}^{2}\right)\right. \\
& \left.+\frac{\mathrm{I}}{m+\mathbf{I}}\left[\frac{m-\mathrm{I}}{2 m-\mathrm{I}}\left(e_{1}-\epsilon_{2}\right)-\left(A+z_{n}\right)\right]\left[\frac{e_{1} r_{1}^{\frac{1}{m}}+e_{2} \frac{1}{2}_{m}^{m}}{r_{1}^{\frac{1}{m}}-r_{2} \frac{1}{m}}-m r_{0}\right]\right\} .(21)_{M}
\end{aligned}
$$

To recapitulate the expression of σ_{M} is

$$
\begin{equation*}
\sigma_{M}=\frac{m}{m-\mathrm{I}} \mu E \omega_{M} \frac{\mathrm{I}}{b}\left[A+\digamma_{n}-2 \frac{m-\mathrm{I}}{2 m-\mathrm{I}} \approx+\frac{K^{\prime}}{r^{\frac{m-1}{m}}}\right] \tag{22}
\end{equation*}
$$

with

$$
\begin{aligned}
& \frac{m}{m-\mathrm{I}} \mu E \omega_{M}=\frac{M}{h} \div\left\{\left(A+z_{n}\right) \frac{e_{1}-e_{2}}{2}-\frac{2}{3} \frac{m-\mathrm{I}}{2 m-\mathrm{I}}\left(e_{1}^{2}-c_{1} e_{2}+e_{2}^{2}\right)\right. \\
& \left.+\frac{\mathrm{I}}{m+\mathrm{I}}\left[\frac{m-\mathrm{I}}{2 m-\mathrm{I}}\left(e_{1}-e_{2}\right)-\left(A+z_{n}\right)\right]\left[\frac{e_{1} r_{1}^{\frac{1}{m}}+e_{2} r_{2}^{\frac{1}{m}}}{r_{1}^{\frac{1}{m}}-r_{2}^{\frac{1}{m}}}-m r_{1}\right]\right\}, \\
& K^{\prime}=\frac{\frac{m-\mathrm{I}}{2 m-\mathrm{I}}\left(e_{1}-e_{2}\right)-\left(A+z_{n}\right)}{r_{1}^{\frac{1}{m}}-r_{2} \frac{1}{m}} \frac{h}{m},
\end{aligned}
$$

where

$$
z_{n}=-\frac{A\left[m r_{0}\left(r_{1}^{\frac{1}{m}}-r_{2}^{\frac{1}{m}}\right)-\left(e_{1} r_{2}^{\frac{1}{m}}+e_{2} r_{1}^{\frac{1}{m}}\right)\right]+\frac{m-1}{2 m-1}\left(e_{1}^{2} r_{2}^{\frac{1}{m}}-e_{2}^{2} r_{1}^{\frac{1}{m i}}\right)}{\left[(m-1) \frac{b_{0}}{\mu}+m r_{0}\right]\left(r_{1}^{\frac{1}{m}}-r_{2}^{\frac{1}{m}}\right)-\left(e_{1} r_{2}^{\frac{1}{m_{i}}}-e_{2} r_{1}^{\frac{1}{m}}\right)}
$$

The strain of $G G^{\prime}$ on the centre line is

$$
\begin{equation*}
c_{0 M}=-\frac{\omega_{M} S_{n}}{r_{0}} . \tag{23}
\end{equation*}
$$

In case P and M act simultaneously

$$
\begin{align*}
& \sigma=\frac{P}{F}+\sigma_{M}, \tag{22}\\
& \omega=\frac{P}{E F}+\omega_{M}, \tag{21}
\end{align*}
$$

$$
\begin{equation*}
c_{0}=\frac{P}{E F}-\frac{\omega_{M} z_{n}}{r_{0}} . \tag{23}
\end{equation*}
$$

3. CIRCLE.

In circle

$$
b=2\left(e^{2}-2^{2}\right)^{\frac{1}{2}}
$$

and $\left.\frac{d b}{d s}=-2 s\left(e-s^{2}\right)\right)^{-\frac{1}{2}}$
The case of circle is perplexing. Inserting in (6) the above values of b and $\frac{d b}{d s}$ and solving as before we obtain the expression of $b \sigma_{M}$ of the following form:

$$
\begin{gathered}
b \sigma_{M}=2 E \omega_{M} r_{0}^{-1}\left(\mathrm{I}+\frac{z}{r_{0}}\right)^{-\frac{m-1}{m}}\left\{\left[a+a_{1} z+a_{2} s^{2}+\ldots . .\right] \sqrt{e^{2}-z^{2}}\right. \\
\left.+c \arcsin \frac{z}{e}+K r_{0}^{\frac{1}{m}}\right\} .
\end{gathered}
$$

For $z=e$ must $b \sigma_{M}=0$ and accordingly the constants c and K are expected to vanish. But the proof that $c=0$ is not easily attained. Hence we put as follows :

$$
\begin{equation*}
\sigma_{M}=E \omega_{M}\left(a+a_{1} \approx+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+\ldots \ldots \ldots\right), \tag{24}
\end{equation*}
$$

where a, a_{1}, a_{2} etc. are unknown constants to be determined later. (24) is no other than Maclaurin's series and evidently the greater number of terms is taken, the more accurate is the result. Here the terms up to the term of \approx^{4} will be taken.

By (4) we have

$$
\begin{aligned}
b \sigma^{\prime} r & =\int b \sigma_{M} d z+\text { const. } \\
& =2 E \omega_{M}\left[\int\left(a+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}\right)^{\sqrt{t^{2}-\sigma^{2}}} d z+K\right]
\end{aligned}
$$

But

$$
\begin{aligned}
& \int \sqrt{\overline{e^{2}-z^{2}}} d z=\frac{e^{2}}{2} \arcsin \frac{z}{e}+\frac{z}{2} \sqrt{\overline{e^{2}-z^{2}}} \\
& \int z \sqrt{e^{2}-z^{2}} d z=\left(-\frac{e^{2}}{3}+\frac{z^{2}}{3}\right) \sqrt{e^{2}-z^{2}}, \\
& \int z^{2} \sqrt{e^{2}-z^{2}} d z=\frac{e^{4}}{8} \arcsin \frac{z}{e}+\left(-\frac{e^{2}}{8} z+\frac{z^{3}}{4}\right) \sqrt{e^{2}-z^{2}}, \\
& \int z^{3} \sqrt{e^{2}-z^{2}} d z=\left(-\frac{2 e^{4}}{15}-\frac{e^{2}}{15} z^{2}+\frac{z^{4}}{5}\right) \sqrt{e^{3}-z^{2}}, \\
& \int z^{4} \sqrt{e^{2}-z^{2}} d z=\frac{e^{6}}{16} \arcsin \frac{z}{e}+\left(-\frac{e^{4}}{16} z-\frac{e^{2}}{24} z^{3}+\frac{z^{5}}{6}\right) \sqrt{e^{2}-z^{2}}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
b \sigma^{\prime} r=2 E \omega_{M}\left\{\left(\frac{e^{2}}{2} a\right.\right. & \left.+\frac{\epsilon^{4}}{8} a_{2}+\frac{e^{6}}{16} a_{4}\right) \arcsin \frac{z}{e} \\
& +\left[\left(-\frac{e^{2}}{3} a_{1}-\frac{2 c^{4}}{15} a_{3}\right)+\left(\frac{a}{2}-\frac{e^{2}}{8} a_{2}-\frac{e^{4}}{16} a_{4}\right) z\right. \\
& +\left(\frac{a_{1}}{3}-\frac{e^{2}}{15} a_{3}\right) z^{2}+\left(\frac{a_{2}}{4}-\frac{e^{2}}{24}\right) z^{3} \\
& \left.\left.+\frac{a_{3}}{5} z^{4}+\frac{a_{4}}{6} z^{5}\right] \sqrt{e^{2}-z^{2}}+K\right\}
\end{aligned}
$$

But for $z= \pm e$ must $\sigma^{\prime}=0$. Therefore

$$
\begin{align*}
& K=0, \\
& \frac{e^{2}}{2} a+\frac{e^{2}}{8} a_{2}+\frac{e^{6}}{16} a_{4}=0 \\
& 8 a+2 e^{2} a_{2}+e^{4} a_{4}=0 . \tag{a}
\end{align*}
$$

or
Then

$$
\begin{align*}
\sigma^{\prime} r= & -E \omega_{M}\left[\left(\frac{e^{2}}{3} a_{1}+\frac{2 e^{4}}{15} a_{3}\right)+\left(-\frac{a}{2}+\frac{e^{2}}{8} a_{2}+\frac{e^{4}}{16} a_{4}\right) z\right. \\
& \left.+\left(-\frac{a_{1}}{3}+\frac{e^{2}}{15} a_{3}\right) z^{0}+\left(-\frac{a_{2}}{4}+\frac{e^{2}}{24} a_{4}\right) z^{3}-\frac{a_{3}}{5} z^{4}\right], \tag{25}
\end{align*}
$$

taking up to the term of z^{4}.

By (24)

$$
\begin{array}{r}
\sigma_{M} r=E \omega_{M}\left(r_{0}+z\right)\left(a+a_{1} z+a_{2} z^{2}+a_{3} z^{2}+a_{4} z^{4}\right) \\
=E \omega_{M}\left[a r_{0}+\left(a_{1} r_{0}+a\right) z+\left(a_{2} r_{0}+a_{1}\right) z^{2}\right. \\
\left.\quad+\left(a_{3} r_{0}+a_{2}\right) z^{3}+\left(a_{4} r_{0}+a_{3}\right) z^{4}\right] \tag{26}
\end{array}
$$

taking up to the term of z^{4}.
Putting in (5) the above values of $\sigma^{\prime} r$ and $\sigma_{M} r$

$$
\begin{aligned}
\sigma_{M} r & -\frac{\sigma^{\prime} r}{m}-E \omega_{M}\left(z-z_{n}\right) \\
=E \omega_{M}\left\{a r_{0}\right. & +\left(a_{1} r_{0}+a\right) z+\left(a_{2} r_{0}+a_{1}\right) z^{2}+\left(a_{3} r_{0}+a_{2}\right) z^{3}+\left(a_{4} r_{0}+a_{3}\right) z^{4} \\
& +\frac{1}{m}\left[\left(\frac{e^{2}}{3} a_{1}+\frac{2 e^{4}}{15} a_{3}\right)+\left(-\frac{a}{2}+\frac{e^{2}}{8} a_{2}+\frac{e^{4}}{16} a_{4}\right) z\right. \\
& \left.\left.+\left(-\frac{a_{1}}{3}+\frac{e^{2}}{\mathrm{I} 5} a_{3}\right) z^{2}+\left(-\frac{a_{2}}{4}+\frac{e^{2}}{24} a_{4}\right) z^{8}-\frac{a_{3}}{5} z^{4}\right]\right\} \\
& -E \omega_{M}\left(z-z_{n}\right)=0 .
\end{aligned}
$$

As this equation must hold good for all values of z, the coefficients of z^{0}, z^{1}, z^{2} etc. have to vanish by themselves. That is

$$
\begin{align*}
& a r_{0}+\frac{\mathrm{I}}{m}\left(\frac{e^{2}}{3} a_{1}+\frac{2 e^{4}}{15} a_{3}\right)+z_{n}=0, \tag{b}\\
& a_{1} r_{0}+a+\frac{\mathrm{I}}{m}\left(-\frac{a}{2}+\frac{e^{2}}{8} a_{2}+\frac{e^{4}}{16} a_{4}\right)-1=0, \tag{c}\\
& a_{2} r_{0}+a_{1}+\frac{1}{m}\left(-\frac{a_{1}}{3}+\frac{e^{2}}{15} a_{3}\right)=0, \tag{d}\\
& a_{3} r_{0}+a_{2}+\frac{1}{m}\left(-\frac{a_{2}}{4}+\frac{e^{2}}{24} a_{4}\right)=0, \tag{e}\\
& a_{4} r_{0}+a_{3}-\frac{1}{m} \frac{a_{3}}{5}=0 . \tag{f}
\end{align*}
$$

A further condition remaining is

$$
M=\int_{-\epsilon}^{e} b \sigma_{M} z d z
$$

or with the values of b and σ_{M}

$$
M=2 E \omega_{M} \int_{-0}^{b}\left(a z+a_{1} z^{2}+a_{2} z^{3}+a_{3} z^{4}+a_{4} z^{5}\right) \sqrt{e^{2}-z^{2}} d z .
$$

But the integrals including the odd power of z are zero. Therefore

$$
M=2 E \omega_{M}\left(\frac{e^{4}}{8} a_{1}+\frac{e^{6}}{16} a_{3}\right)\left(\arcsin \frac{z}{e}\right)_{-6}
$$

or

$$
\begin{equation*}
2 \iota^{4} a_{1}+\iota^{6} a_{3}-\frac{8 M}{E \omega_{M} \pi}=0 \tag{g}
\end{equation*}
$$

From Equs. (a), (b), (c), (d), (e), (f) and (g) the unknown quantities are found as follows:

$$
\begin{aligned}
& a=\frac{1}{C}\left[\left(-180 m^{4}+60 m^{3}\right) r_{0}^{2} e^{2}+\left(-90 m^{4}+78 m^{3}-22 m^{2}+2 m\right) e^{4}\right], \\
& a_{1}=\frac{1}{C}\left[-720 m^{4} r_{0}^{3}+\left(78 m^{3}-18 m^{2}\right) r_{0} e^{2}\right], \\
& a_{2}=\frac{1}{C}\left[\left(720 m^{4}-240 m^{3}\right) r_{0}^{2}+\left(-30 m^{3}+16 m^{2}-2 m\right) c^{2}\right], \\
& a_{3}=\frac{1}{C}\left[\left(-720 m^{4}+420 m^{3}-60 m^{2}\right) r_{0}\right], \\
& a_{4}=\frac{1}{C}\left[720 m^{4}-564 m^{3}+144 m^{2}-12 m\right], \\
& z_{n}=-\frac{1}{C}\left[\left(-180 m^{4}-180 m^{3}\right) r_{0}^{3} e^{2}+\left(-90 m^{4}-18 m^{3}+60 m^{2}-12 m\right) r_{0} e^{4}\right], \\
& \omega_{M}=\frac{8 M}{E \pi}-\frac{C}{-1440 m^{4} r_{0}^{3} e^{4}+(-720} \frac{\left.m^{4}+576 m^{3}-96 m^{2}\right) r_{0} e^{6}}{},
\end{aligned}
$$

where

$$
\begin{aligned}
C=-720 m^{4} r_{0}^{1} & +\left(-180 m^{4}+318 m^{3}-78 m^{2}\right) r_{0}^{2} e^{2} \\
& +\left(-90 m^{4}+168 m^{3}-100 m^{2}+24 \mathrm{~m}-2\right) c^{4}
\end{aligned}
$$

These values are much simplified by putting $m=\frac{10}{3}$, with which and with $\frac{\mathrm{I}}{n}=\frac{e}{r_{0}}$ and $\zeta=\frac{z}{e}$

$$
\begin{align*}
& a=\frac{e^{4}}{C^{\prime}}\left(-162 n^{2}-69\right) \\
& a_{1}=\frac{e^{3}}{C^{\prime}}\left(-720 n^{3}+22\right), \\
& a_{2}=\frac{e^{2}}{C^{\prime}}\left(648 n^{2}-8\right) \tag{27}\\
& a_{5}=\frac{e}{C^{\prime}}(-599 n) \\
& a_{4}=\frac{563}{C^{\prime}} \tag{28}
\end{align*}
$$

$$
\begin{equation*}
\left.\omega_{M}=\frac{M}{E \pi e^{7}} \frac{C^{\prime}}{n\left(-180 n^{2}-68\right)}=\frac{M}{E \pi e^{7}} \frac{720 n^{4}+92 n^{2}+48}{n\left(180 n^{2}+68\right)} . \quad \text { (30) }\right)_{M} \tag{29}
\end{equation*}
$$

With these values the expression of σ_{M} reduces to

$$
\begin{aligned}
& \sigma_{M}=\frac{M}{\pi e^{3}} \frac{\mathrm{I}}{n\left(\mathrm{I} 8 \mathrm{n} n^{2}+68\right)}\left\{\left(\mathrm{I} 62 n^{2}+69\right)+\left(720 n^{3}-22\right) \zeta\right. \\
& \left.\left.\quad-\left(648 n^{2}-8\right) \zeta^{2}+599 n \zeta^{3}-563 \zeta^{4}\right\} . \quad \text { (31) }\right)_{M}
\end{aligned}
$$

For $\zeta=1$

$$
\left.\left(\sigma_{M}\right)_{1}=\frac{M}{F_{i}} \frac{\mathrm{I}}{n\left(\mathrm{I} 80 n^{2}+68\right)}\left[720 n^{3}-486 n^{2}+599 n-508\right]\right)
$$

. and for $\zeta=-1$

$$
\begin{equation*}
\left.\left(\sigma_{M}\right)_{2}=-\frac{M}{F e} \frac{\mathrm{I}}{n\left(180 n^{2}+68\right)}\left[720 n^{3}+486 n^{2}+599 n+464\right] .\right) \tag{32}
\end{equation*}
$$

Further the strain of $G G^{\prime}$ is

$$
\begin{equation*}
\epsilon_{0 M}=-\frac{\omega_{M} z_{n}}{r_{0}}=\frac{M}{E \pi e^{3} n} \frac{\left.234 n^{2}+9\right)}{180 n^{2}+68} . \tag{33}
\end{equation*}
$$

In case P and M act simultaneously

$$
\begin{equation*}
\quad \sigma=\frac{P}{F}+\sigma_{M} \tag{31}
\end{equation*}
$$

$$
\begin{align*}
(\sigma)_{1} & =\frac{P}{F}+\left(\sigma_{M}\right)_{1}, \\
(\sigma)_{2} & =\frac{P}{F}+\left(\sigma_{M}\right)_{2}, \tag{32}\\
\omega & =\frac{P}{E F}+\omega_{M} \tag{30}\\
c_{0} & =\frac{P}{E F}+\epsilon_{0 M} \tag{33}
\end{align*}
$$

A remark may here be necessary about the distribution of σ^{\prime}. In sections other than rectangle, especially in circle σ^{\prime} may possibly be not uniform along a chord parallel to the bending axis. Its value in the present investigation has to be taken as the mean for all points on the chord.

NUMERICAL RESULTS FROM THE ORDINARY AND THE AUTHOR'S THEORIES.

Taking a few examples the values of σ_{M} were calculated by the ordinary as well as by the author's formulas and the results were made to Tables 1 to 3 for the purpose of comparison.

Table i. Rectangle.

$\frac{e}{r_{0}}$	\underline{z}	$\sigma_{M} / \frac{M}{P_{e}}$		$\begin{gathered} \text { Error of } \\ \text { magnitude of max. } \\ \text { stress. } \% \end{gathered}$
		by ordinary fornula	by new formula	
$\frac{1}{6}$	1	2.689	2.731	-1.54
	$\frac{1}{2}$	1.525	1.521	
	-	0.167	0.127	
	$-\frac{1}{2}$	- 1.438	- I .447	
	- 1	-3.364	-3.303	+1.84
8	1	2.431	2.511	-3.19
	$\frac{1}{2}$	1.532	1. 535	
	-	0.333	0.285	
	-	-1.345	- I .377	
	-I	-3.863	-3.715	+3.98
$\frac{1}{2}$	1	2.190	2.293	-4.49
	$\frac{1}{2}$	1.514	1.520	
	-	0.500	0.429	
	$-\frac{1}{2}$	-1.190	- I .240	
	- 1	-4.57 ${ }^{\text {I }}$	$-4.28 \mathrm{I}$	+6.75

Table 2. Trapezoid ($h_{2}=2 h_{1}$).

$\frac{c_{2}}{r_{0}}$	a	$\sigma_{M} / \frac{M}{\mathrm{Fe}_{\underline{\prime}}}$		$\begin{gathered} \text { Error of } \\ - \text { magnitude of max. } \\ \text { stress. } \% \end{gathered}$
		$\begin{aligned} & \text { by ordinary } \\ & \text { formula } \end{aligned}$	by new formula	
$\frac{1}{6}$	e_{1}	2.713	2.800	-3.11
	$\frac{e_{1}}{2}$	1.560	1. 576	
	-	0.167	0.143	
	- $\frac{4}{2}$	- 1.176	- 1.202	
	$-_{2}$	-2.787	- 2.780	+0.25
$\frac{1}{3}$	${ }^{c_{1}}$	2.430	2.517	-3.46
	$\frac{e_{1}}{2}$	1.563	1.562	
	$\stackrel{\square}{\circ}$	0.333	0.287	
	- ${ }^{\frac{e_{2}}{2}}$	- 1.093	-1.117	
		-3.232	-3.112	-3.86
$\frac{1}{2}$	${ }^{1}$	2.176	2.291	-5.02
	${ }_{1}$	1.537	1.544	
		0.500	0.432	
	$-\frac{8}{2}$	0.952	- 1.004	
	-	3.857	-3.616	-6.66

Table 3. Circle.

$\frac{e}{r_{0}}$	$\frac{s}{e}$	$\sigma_{M} / \frac{M}{P r}$		$\begin{array}{\|c} \text { Error of } \\ \text { magnitude of max. } \\ \text { stress. \% } \end{array}$
		by ordinary formulia	by new formula	
$\frac{1}{6}$	I	3.547	3.591	- I .23
	2	1.987	1.991	
	\bigcirc	0.167	$0.15{ }^{\circ}$	
	- 2	- 1.984	- 1.989	
	- 1	-4.567	-4.507	+1.33
$\frac{7}{3}$	1	3.166	3.228	- I. 92
	$\frac{1}{2}$	1.951	1. 969	
	-	0.333	0.301	
	- $\frac{1}{2}$	-1.933	1.954	
	- 1	-5.332	5.147	+3.59

For circle the convergency of the expression of σ_{M} becomes slow as the value of $\frac{e}{r_{0}}$ increases. Taking in the expression the terms up to the term of z^{4} the result will not be sufficiently accurate for cases where $\frac{e}{r_{0}}$ is considerably greater than $\frac{\mathrm{I}}{3}$. Hence in the examples the case of $\frac{e}{r_{0}}=\frac{\mathrm{I}}{2}$ was omitted.

To show what like is the distribution of σ_{M} according to the author's theory in comparison with that according to the ordinary theory Figs. 5 to 7 were drawn. Fig. 5 is for rectangle and $\frac{e}{r_{0}}=\frac{1}{2}$, Fig. 6 for trapezoid and $\frac{e_{2}}{r_{0}}=\frac{\mathrm{I}}{2}$ and Fig. 7 for circle and $\frac{e}{r_{0}}=\frac{\mathrm{I}}{3}$.

In conclusion the author expresses his hearty thanks to Mr. K. Tabushi, who assisted him in undertaking a part of deduction of formulas as well as the numerical calculations.

Fig. 5.

Fig. 6.

Fig. 7.

