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INTRODUCTION. 

The general methods of investigating transient phenomena in a trans

mission line terminated · by impedances at both ends, have been studied 

persistently by many authorities, yet with unsuccessful results, though some 

special cases have been dealt with successfully, and many brilliant results 

have been obtained. For instance, surge propagation phenomena along an 

infinitely long line with four distributed constants, resistance R, inductance 

L, leakance G, and electrostatic capacity C per unit length of the line, 

have been discussed 1 by several authors. But when the terminal condition 

of the line come into play, or which is the same thing, when the line is 

of finite length, we are at a loss how to solve the question generally. 

When the dissipation constants of the line, R and G, are zero, what is 

called "D'Alumbert's method", by means of which He) obtained many 

important results, is convenient. But this method is only effective when 

reflected waves are excluded. And in the case of L and G being neglect

ed, the results already obtained for heat conduction phenomena are directly 

applicable. Wagner3 proposes a method of discussing the tran5ient pheno

mena in a line of finite length, with impedances at its terminals, and finds 

the solutions in infinite series, but his method is not general, and only a 

1. The so-called Riemann's method is usually applied. \Ve find this method in Riemann
Weber's "Die Partiellen Differentialgleichungen Ed. 2 ", or in Goursat's "Cours d'Analyse 
mathematique Tome 3 ". 

2. -~~D; iltlll~l/J2t.Jltffi'. 
3. K. W. Wagner, Electromagnetische Ausgleichsvorgange in Freileitungen und Kabeln, or 

J. Biermanns, Arch. f. Elek. 1916, p. 211. 
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few cases are dealt with thereby. Though Heaviside's expansion theorem 

proves itself more general, yet it is also inconvenient in the study of these 

kinds of phenomena, and numerical calculation of results often becomes 

impossible. Indeed, when the constants R, L, G and C as well as the 

terminal conditions of the line are taken int<J consideration, we shall find 

it so difficult and so complicated to treat transient phenomena therein that 

there is hardly any other method of solution than that proposed by 

Heaviside, known as " Operational Calculus."1 But this method is too 

difficult for us to comprehend. 

In course of an analytical study of Heaviside's operational calculus, 

the author tried to understand the mathematical meaning of the calculus 

and to modify its original form as given by Heaviside so as to make it 

more convenient for practical use. For this purpose, the author investigated 

transient phenomena in a finitely long. transmission line terminated by 1m

·pedances, taking four constants R, L, G and C into consideration and 

obtained some results which seem more generally applicable than those 

derived from any of the other methods mentioned above. The author has 

succeeded in solving some problems left untouched by Heaviside. He 

wishes to add that the present paper serves to a certain extent, to give 

the analytical explanation of the operational calculus, and at the same 

time, that the present results may serve to solve other physical problems 

such as the conduction of heat, the propagation of sound and of electroma

gnetic waves in space etc. also. 

The present paper deals with transient phenomena in a line with the 

e.m.f. Ee-Pot applied at one terminal since t=o, assuming that the initial 

potential and current distributions are zero along the whole circuit. 

1. FUND AMENT AL FORMULAS. 

The author's results are as follows:-

The potential 11 and the current i at the instant t and at the point x on 

the transmission line shown in jig. I, due to the e.mj EE-tot applied since 

r. 0. Heaviside, Electromagnetic Theory Vol. 2 & 3. 
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t=o, at which time tlze current and potential in tlze circuit were identically 

zero, are given by the foll<nving formulas :- Fig. I 

V=O for t<x/g, 

for 2(m+ r)l-x > t> 2ml+x , 
g g 

----t---
~ __, V . : 

2:.~~~Mk 
for 2(m+ r)l+x > t> 2(m+ 1)1-x 

g g 
..................... (1) 

i=O for t<x/g, 

for 2(m+ 1)1-x > t> 2ml+x, 
g g 

for 2(m + 1)1+ x > t> 2(m+ 1)l-x 
g g 

wlzere 

E f I!; -q(2111l+x)+ft m 

V2m = z1r:j p + Po Ji/ dp, 
(K) 

..................... (2) 
. - E f e-q(z,,,t+x)+Jt m 

Z2,,,.---. ( ) Id dp, 21r:1 p+ !J0 z 
J (K) ' 

. _ E f e-q{2(m+1)l-x}+Jt m 

t2m+1-~ (p+p)z /i/d dp, 
r_; (It") 0 

wltere tlze path of integration K is any closed curve wlziclz contains all the 

singular points of each integrand, and the symbol (K) means that the integra

tion s/zould be done along tlzis curve in a positive sense, and 
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1lt=O, I, 2, 3, ......... , 

!=the total !engt!t of tlte line, 

g=(LC)-½' 

e=the base of natural logaritltm, 

f=(:o-Z1) (z-Z2) /{(z+Z1) (z+Z2)}, 

h=z/(z+Z1), 

./2 =(z-Z2)/(z + Z2), 

z z. _ concentrated ge netali:::ed 
•

1
• 

2
- impedances1 at both ends, 

Z= ✓(Lp+R)!(Cp+ G), 

q= ✓(Lp+R)(Cp+G), 

..................... (3) 

wltere R, L, G and Care distributed constants of the line, resistance, inductance, 

leakage and capacity per unit lengtlt respectively, and the determination of the 

radical sign is taken so as to be positive · when the argument of p ts :::ero. 

2. PROOF OF THE ABOVE FORMULAS. 

vVe suppose that the current flows in the positive direction of x, and 

that the line is energized by the e.m.f. Es-fol applied at .r=o through the 

<;oncentrated impedance Z1 since t=O, the other terminal being closed by 

another impedance Z2, as is indicated in fig. I. The differential equa

tions of the current i and the potential v are 

1. Let v2 and i2 l>c the potential and current at a terminal of a transmission line, and 
assume that the current flows from the line into the impedance which connects the line and the 
earth, then we shall have the following differential equation. 

z(-<!__) io=Vo. 
dt - -

Replace the differential operator __'!.___ by the letter ;,, and we call Z (P) the generalized terminal 
dt 

impedance of the line. 
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We shall solve these fundamental equations under the initial conditions 

v=O 

at t= o, 
} ................................. ... (5) 

everywhere in the circuit. 

The solutions are found by substituting the contour integrals 

·u= -
1 -.-f V/1' dp, 

27:_J 
(KJ 

in equations (4) where V and / are certain functions of p to be 

determined by the initial and the terminal conditions of the line, and the 

path of integration (K) is a closed curve in the p-plane which encloses all 

the poles of these functions V and I. 

Then by condition (5), the equations for V and / will be 

- dV =(L"+R)I. 
· dx · r ' 

- !~ =(Cp+ G) V. 

Hence we obtain 

V=A cosh qx + B sinh qx, 

l=- - 1-(Asinqx+Bcoshqx), 
z 

l ··· .................. (8) 

where A and B are integration constants to be determined by the terminal 

conditions of the line, and 

q = ✓(Lp-rR) (Cp+ G), 

z= V(Lp+R)/(Cp+ G), 
} ············ ·················(9) 

and the determination ()/ the radical sign is taken so t!tat } 
......... (IO) 

it is positive when the argument of p is zero. 

At the terminals the following relations hold, 
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or by equation (5), the substitution of (6) in (11) gives the following1
: 

Vx=O + Z1 (p) fx=O = _E __ ' } 
P+Po ........................... (12) 

Vx=l = Z2 (p) fx=t· 

From (8) and (12), we obtain 

A=------"--->--.d=---"---"---, 
P+Po 

E sinh ql+ (Z2/z) cosh ql } 

E cosh ql+ (Z2/z) sinh ql 
P+Po .J ' 

B=-

where 

Z1=Z1 (p), Z2=Z2 (p), 

L1=(1 +Z1 Z2/z2
) sinh ql+(Z1/z+Z2/z) cosh qt 

=(I +Z1/z) (1 +Z2/z)eq1-(1-Z1/z) (1-Z2/z)e-q1
• 

Substituting ( I 3) in (8), we get 

E V=---
P+Po 

sinh q (!-x+ (Z2/z) cosh q (!-x) 
L1 

cosh q (!-x)+ (Z2/z) sinh q (!-x) 
L1 

As the path of integration of equations 

(6), we take a circle ABDEA shown in fig . 

. 2 of sufficiently large radius with its origin 

at P=o. The larger the radius of the circle, 

the more poles of V and I are contained in 

the domain bounded by this circle. Ac

cordingly we shall consider the case where 

1. T.J.I' A. Bromwich, Proc. London Math. Soc;. 

Series 2 Vol. 15 (1916) pp. 406-448. 

............ (13) 

} . . .(15) 

Fig. 2. 

i 
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its radius tends to infinity. Hereafter we divide the path ABDEA into 

two parts, namely EAB and EDE, and discuss the values of i V/1 dp and 

)le1'1 dp taken along each of these paths, where BE is a straight line 

distant h from the imaginary axis, and It is any positive finite quantity 

independent of p. 

Now the functions V and /, given by (15), reduce to the following 

forms: 

where 

/=(I -Zi/z) (I -Z2/z) I {er +Z1/z) (r + Zef z) },} 

.,_ /(+Z/·) .................. (17) 
J1 ·- I -1 Z , 

./2=(I-Z2/z)/(r -Zefz). 

We suppose that the generalized terminal impedances 2 1 and Z2 consist 

of concentrated eiectrical constants. In such a case, they are rational 

functions of jJ, and for a sufficiently large value of Ip I, they can be ex

pressed by the form : 

Z(Z1 or Z~)=b1P+b0 +b_1p-1 +b_2p-2 + ............ , ......... (18) 

and since z= -v'(Lp+R)/(Cp+ G), we have, when IP I tends to infinity, 

(i) if b1 ==I= o, 

(1-Z/z)/(1 +Z/z)=- r +o (-}). 

(ii) if b1 = o and b0 ==I= O, 

where it is easily understood, from the properties of the generalized con

centrated impedance, that b0, in this case, is a certain positive quantity, 

and accordingly we have 

(r-Z/z)/(1 +Z/z) <r, 
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as \ jJ \ approaches to infinity. 

(iii) If b1= o and b0= o, then we have 

(r -Z/z)/(r +Z/z)= r +o (; ). 

Hence in general, we have 

(r -Z1/z)/(r +Z1/z)=a1+0 ( T ), 
(1 -Z2/z)/(1 +Zdz)=a2+0 (; ), 

where 

o < \ a1 I< r, 

unless b1 = o and b0 = J ~ simultaneously. 

Next, we shall consider the common denominator of equations (16) 

1.e. ( e2
qz - /), along the arc EDE when the radius of the c:rcle Ip\ tends 

to infinity. 

We assume that \ p \ increases discontinuously owing to the rule 

IP\= 
1
..)LC n;, ............................................. (21) 

where n is a certain integer suitably chosen, and approaches to infinity to 

give \ jJ \ an infinite value. Accordingly, we can write the value of jJ cor

responding to the point P (see fig. 2), as follows, 

p= , I !!..!!_ e(~ +6)J_ ................................. (22) 
!-v'LC 2 

On the other hand, for sufficiently large \ jJ \, we have from (9), 

lq=l✓ LC {P+ p+o (; )}, ................................. (23) 

where 

('= + ( 1-+ ~). ............................................ (24) 
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Hence from (22) and (23), we obtain 

lq=X+o1 (; )+j{ "
2
1r cos 8+02 (; )}, ............... (25) 

where 

r 1/11: • --
A= - - sm o+ pl ✓ LC. .................................... (26) 

2 

And for sufficiently large value of Ip I, we have on the arc EDE, 

XL l✓ LC (h+p) . ................................................ (27) 

And from (17) and (19), we obtain 

f=a1 a2+ o. (; ), ................................................ (28) 

where 

o < I a1 a2 I < r, . . . . . . . . . . . . . . . . . . . . . . . . .......................... ( 29) 

unless b1 = o and b0= j ~ simultaneously. 

Consequently, the relations (25) and (28) give the following: 

Since ex is finite along the arc BDE, when Ip I tends to infinity, as is 

evident from (27), we may neglect, for sufficiently large IP I or n, the terms 

involving 0 1 (; ), Oii (; ) and 0 3 (; ) in the above expression. Therefore 

we have 

= j ai ai-2a1 a2 e2Xcos(n1rcos 0) + e4x. . .............. (30) 

We choose iJ indicated in fig. 2, so that 

iJ=n-i . ......................... · ................................... (31) 

And for a sufficiently large value of 11, 

iJ0= 2/✓ LC h/(n1r) . ............................................... (32) 
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Hence, for sufficiently large n, 

0o < a. . .............................................................. (33) 

Therefore, if P be any point on the arc BF, then 

And consequently it follows that 

or 
nr.ffl L 1r _1 -- -n :r, 

2 - 2 

Accordingly on th arc BF, 

lim cos (n1r cos lJ)=cos (n1r). . ................................... (34) 
n➔ oo 

Therefore, Oil tlte arc BF, when n tends .to infinity, we can keep } 

the sign of - 2a1 a2 e'x cos (1m cos lJ) always positive by taking n odd 

or even according as the product a1 a2 is positive or negative. 

Hence on the arc BF, the relation 

lin I e2
q

1-/I > I a1 a21······ ....................................... (36) 
n➔ oo 

(35) 

1s always possible, provided n or Ip I tends to infinity in the above 

mentioned manner. Then it comes about that, unless b1 = o and b0 = j 2: 
simultaneously, I e2

q
1-/I is always larger than a finite quantity not equal 

to zero. (See (29).) On the arc Bf,~ the following relations_ hold, as Ip I 
or n tends to infinity : 

········· .................. (37) 

I r-Z2/z eq" I< I a2 I eVwch+Pl". 
t +Z2/z -

And from (18), for sufficiently large IP I or 11, 

./2= 1/(r +Z1/z) 

~I/( CtP + C2), ............................................. " .... (38) 
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where C1 and C2 are certain finite quantities that are independent } ( ) 
... 39 

of p, and never equal to zero simultaneously. 

Hence if n be chosen so that it may satisfy the condition given by (35), we 

have the following relations from equations (16), (19), (36), (37) and {38). 

Therefore no matter whether Ci is zero or not, it follows that 

!~!If Ve?'dp/ =0 ................................................. (40) 
BF 

Just in the same way as above developed, we can prove that 

lim If v,1,tdp I =0, ................................................. (41) 
IPI_..,, 

F'JiJ 

where OF' subtends the same angle a with the imaginary axis downwards, 

and n is also so chosen that it may satisfy the condition of (35). 

Next at the points F and F', ( see fig. 2 ), 

=exp [ ......... (42) 

and since the absolute values of e7", ef"' etc. on the arc FDF' are smaller 

than or equal to those at the points F and F' when It tends to infinity, 

we can deduce the following relation from equations (42), 

I J I ~ I 
/J I I eqC2Hl I + I ./2 I I e',,. I 

lim Ver dp ~ lim E p + p I I 32ql - f I 1./2 I I, fpt I dp 
n➔ "' FDF' n➔a, FDL-t 0 
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since 2!-x > x. The double sign of the demominator is taken so that it 

is plus or minus according as C1 is zero or not. Therefore we have 

!im \ J.V .. ptdp=o . ................................................... (43) 
n➔ co FD}'I 

Equation (43) holds for alt 11alues of x and t including } 

tlte case where x and t are simultaneously equal to zero 

1f Ci=!== o, and excluding the same case if c; = o. 

Hence under the restriction of (44), we have 

......... (44) 

!im I J Vi.1"dp \=o. . .......... : . .' .................................. (45) 
n➔ro FIJJ('1 

Consequently, by (40), (41) and (45), we have 

!im f V ept dp = o. . .. . . . ............... ·: ............ _ ............... ( 46) 
"➔"' BFDF'B . 

• 
By a process similar to that above developed, we can also prove that 

!tin Ji e:''"dp=o. . ................................................ .. (47) 
n➔ "' BF'DF'R 

Therefore the equations (6) are reduced to the following forms: 

v= 2~j !~! J::~dp, } ....................................... (48) 

i = - 1 
-. !im J1ept dp, 

21lJ n➔"' FJAB 

where n is chosen in the manner stated in (35). 

Substituting (15) in (48), we get finally, 

......... (49) 
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On the other hand, we have 

limlfl=la1a2!b.1 ............................................. (50) 
n➔co 

from (28), and 

lim I e-291 I~ e-2(h+r,JV.Lct < 1 .................................... (51) 
n-.co 

everywhere on the arc EAB. Hence the expansion of (I-/ e-291)-
1 m 

ascending powers of Je- 291, i.e. 

I+ je-2ql+ j2e-4gl + ........ . .. ............................ (52) 

converges uniformly on the arc EAB when 11 approaches to infinity. 

Replace the common factor (1-f.-2q1
)-

1 of v and i in equations (49) 

by the above power series, then it is possible to integrate the results term 

by term. Thus we obtain 

The general terms that appear in equations (53) are 

and 

where 

From (23) 

or lim J v:,.2 dp for v, 
n➔ co EAR 

,.JV,,,,.d.£. 
or !~~ --;:-- p 1or i, 

EAB 

............... (53)a 

Vo = _lib_ ,I'm ,-(211t+ll-a:) q+,,t ................................. ( 54) 
'"

2 p+ Po .1 ' 

1n=0, l, 2, 3, ......... · ..... · 
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lim q=,.; LC(p+ p). 
n·-,.c:o 

Hence along the arc EAB, we have, in the limiting case where n tends 

to infinity, 

-(2m!+.r)q+pt=p(t-2m!-t-xV LC)-p(2m!+x)v LC, I 
... (s s) 

-(2m!-.r)q+pt=p{t-(2m+ 1!-x)v LC }-p(2m!-.x)v LC, 

and f, ./2, ./2 and z approach to a1 a2, ( Ci p + CJ-1, a2 and j t respectively 

as n increases without limit. (See (29), (38), (19) and (9). ) 

Therefore we can easily prove that 

,. J Vm1 d itm -- (j}=O, 
n➔co Z 

. JiJAIJ 

for t-2m!+xv LC<o ............... (56) 

and 

l . J V.,,.2 d tm -,,,- 'jJ=O, 
n➔ c:o ~ 

EAR 

,vhere 
1n=O, I, 2, 3, .................... . 

The line integrals) Vm1 dp and)( Vm1/z) dp when t-(2m!+x)v LC> o, 

and those )V,,.2 dpand )(V.,,dz)dp when t-{2(m+1)t-x}vLC> o, as n 

tends to infinity, approach to z~ro when the path is along EAB. Hence 

if we denote these integrals by the symbol ) we have, in this case, 

!im f = !im f + !im f = !im f . .. ................ ( 5 8) 
n➔ c:o J EAB n➔ co J EAB n,-,. co J BDB n,-,.co J ABDEA 

On the other hand, the singular points of v:,1, V,,.2, V,,.1/ z and V,,,d z 

are of finite number, and exist in the finite domain, and moreover, these 

functions Vmi etc. are holomorphic functions of p in the_ exterior domain 

of any closed curve including these singular points, since they consist of 

q=v(Lp+R)(Cp+G), z=v(Lp+R)/(Cp+G) and rational functions off. 
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Hence we can replace the path ABDEA (n- co) of (58) by any closed 

curve K involving all the singular points of V,,,.1 etc .. 

Therefore we are led finally to the following results : 

where 

for t-(2ml+x)/g<o, 

= f (V,,,1) dp for t-(2ml+x)/g> o, 
JcxJ 

for t-{ 2 (m+ 1) l-x}/g<o, 

=[ (V.n2)dp for t-{2(m+1)t-x}/g>o, 
JcxJ 

11t=O, I, 2, 3, ............ , 

...... (59) 

..................... ·········· .. (60) 

Combining (53) with (59), we see that equations (1) and (2) hold. 

From (1) 

V=O 

i=o for t <x/g. 

Hence we know that the potential and current become zero at t=o along 

the whole line except at the point x=o, when Ci=o. This coincides with 

the actual initial conditions of the line. On the other hand it is evident 

from the process of deduction that results (1) and (2) satisfy our funda

mental equations (4) and (11). Therefore the formulas (1) and (2) are 

what we require. 

3. SOME FEATURES OF PHENOMENA DIRECTLY ESTIMATED 

FROM THE FUND AMENT AL FORMULAS. 

Before proceeding further, it will be interesting to discuss the brief 

features of the propagation phenomena in the light of the fundamental 

equations ( 1) and ( 2) for the potential and current. 

Substituting o, r, 2 etc. in m of the equations (I), we get 
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v.=o for t<x/g, ............................... '. .... (61) 

v=v0 tor (2!-x)/g> t>x/g, ..................... (62-) 

v=v0 +v1 for (2!+ x)/g> t> (2!-x)/g, ............ (63) 

v=v0 +v1 +v2 for (4,f-x)/g>t>(2l+x)/g ............ (64) 

etc. 

We observe, first, from (61) and (62), that we have a true finite 

velocity of propagations g=(LC)-½. No matter what the form of the 

impressed e.m.f. is at the beginning of the line (x=o), its effect does not 

reach the point x in the line until the time t=x/g has elapsed. Consequently 

g=x/t is the velocity with which the wave is propagaled. This is the 

strict consequence of the distributed inductance and capacity of the line, 

and the volocity depends upon these constants only, since g=(Lcr½. 

The second term v1 in equation (63) is the reflected wave of 110 from 

the other terminal (x=l) due to the terminal irregularity which exists 

there, since t=(2l-x)/g is the time reqnired for an effect applied at the 

beginning of the line (x=o) to reach the point x after having been reflected 

at x=!. And similarly it follows that the third term v2 in equation (64) 

is the reflected wave from the sending terminal, etc .. 

Hereafter we shall call v0 the original potential wave and T1 and 112 

the first and second reflected potential waves, and so on ; and similarly 

with with the current waves. 

If the line is infinitely long, we can always keep the relation (2!-x/g)> t, 

however great t may be. Hence the potential at the point x is given by 

equations (61) and (62) solely, which are potential equations for a semi

infinitely long transmission line. 

Similar conclusions may be derived for the current wave from equa

tions (1 ). 

4. THE FIRST METHOD OF EVALUATING,,, AND i GIVEN 

BY (r) AND (2). 

The forms of potential and current given by (I) and (2) are not con

venient for practical use as they stand, since they consist . of contour 
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integrals taken in .a complex plane. It is necessary to express them by 

some known functions. 

The general terms in the expressions of v and i are, by (2 ), 

· E J 1:,Pte-qx --. + p fmJ; (/z) dp, ...................................... (65) 
21r; p 0 

(K! 

and 

E J Epte:-q:, 
--. ( ) f"' J; (/z) dp, ................................... (66) 
2 1r; p+ Po ::: 

(HJ 

where x stands for (2ml+x) and 2(m+ r)l-x of (2), and 

(/2)=./2 or 1. . ..................................................... (67) 

Since f. J; and /z, being given by equations (3), may be converted into 

(:::-Z1 )
2 (z-Zz)2/[(.s 2 -Z/) (:.:2-Z/)], (z-Z1)/(z2 -Zl) and (z-Z2)2/(z2-Z/) 

respectively, and Z1 , Z2 and :::2 are rational functions of p, all the functions 

f. J; and h may be written in the form of T(p)+zU(p), where T(p) and 

U(p) are certain rational functions of p. Moreover if we assume that lim 
✓T /pl➔"' 

(Z1 or Z2) ==!= C' then the functions T(p) and U(p) must be of the form 
s n 

a0 + ~ ~ ( a,). l' wr.ere p,'s are the poles of T and U. And con
•=1 ).=l p + p, 

I 
sequently the function P + Po / 11,fi (/4) may be expressed by 

~ ...(~ ak, _r_ ~ ~ b,). 
...::.J ...::.J (p+p )' + ~ ...::.J ...::.J (p+p )).• 
k=O T=l k "' •=0 ).=l a 

Hence to express v and i of ( r) and ( 2) by certain special functions, [ J !pt €-qx 
it is enough to evaluate two contour integrals zrrj (P+Pol dp and 

(KJ I f e;Pt e-q;, 
vrj .. z(p+po)" dp for n=I, 2, 3, ............ . 

(K) 

We shall evaluate these contour integrals in the present section. 

In the computation of the contour integrals, we assume that 

r) t/ze determination of the radical sign is plus ·when the argument of p is 

:::ero, and 2) the pat!t of integration contains all the singular points of t/ze 

integrand. 

We shall, first, consider the following integrals: 
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I J e-9
z+Pt ( G + Cp )½ Ti= 21tj p+G/C R+Lp dp, ............................ (68) 

(K) 

where R, C, G and L are all positive quantities and 

Putting 

and 

we have 

q= ✓(R+Lp)(G+ Cp) . .......................................... (69) 

P' =P+ p, · .... · · .. · ..... · ....... · · .. · ..... · .. · ........ · .............. (70) 

. ,o=+( 1 + ~ ), ............................................. (71) 

Lp + R = L (p' ±a), 

Cp+G=C(p'+a), 

q= ✓LC ✓(p'+a)(p'-o-), .................................... (72) 

o-=-1-(!i__,..., G )> o. 
2 L C 

Then the integral 7;_ becomes 

Again introducing a new variable ( such that 

q= ✓ LC(p' -(), ... ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ... (74) 

we obtain by the aid of (72) 

p' (l+o-2 ~-, ......................................................... (75) 
2( 

q 
o-2-(- -½ -~, where g=(LC) , ............................. (76) 
2g( 

dp' = (-~( dt; . ................................................... (77) 

Putting 

(=rei8, ......................................... ,. ..................... (78) 

P'=X+jY, ......................................................... (79) 
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we have 

p'=+{(r+ :
2

)cos8+j(r- :
2

)sin8}, .............. (80) 

. ✓ LC { ( dl ) . ( a
2 

) • } . q= 
2 

- r-r cos8-; r+r sm8 , ......... (81) 

and 

X=+(r+ ~) cos 8, } ...................................... (82) 

Y =+(r- ~ ) sin 8. 

From (78) we see that, for a constant value of r, C deseribes a system of 

concentric cireles with centre at the origin. The corresponding images 111 

the p'-plane may be obtained by eliminating () from the equations (82). 

The result is 

4X2 4Y2 

(r+ ~y + (r-~Y =I. ................................. (83) 

This equation represent a system of confocal ellipses with ± a as the common 

foci. In the special case where ( describes a circle of radius a, viz., when 

(12 r~-=0, 
r 

the image in the p' -plane becomes a segment between the common foci. 

Therefore as long as 

Fig. 3. 

~-plane 

i 

Fig. 4. 

//-plane 
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r=pa, ............................................................... (84) 

the points p' = ±a are fully in the interior of the elliptic path, the image 

in the p' -plane of the circle of radius r described by (. Here we remark 

that the points p' =±.a are the singular points of the integrand of equation 

When the argument of p is zero, p' must be positive, for by (70) we 

have p'=p+p, and p"2_o. In order that p' may. be positive, (} must be 

equJl to 2mr:, by (So), where n is any integer. Hence we obtain 8=211rr 

when the argument of p is zero. On the other hand, by assumption 1 ), q 

must be positive when the argument of p is zero. Therefore q must be 

also positive when 8=2nrr. Accordingly substitute 8=211rr in (81), then 

the value of q obtained thereby should be positive. Thus we have the 

following relation :-

or 

r<a . .................................................................. (85) 

Since condition (84) is satisfied by (85), we may say that relation (85) 

1s the necessary and sufficient condition for r in order to satisfy assumstion 

r) as well as our requirement that the points ± a should be contained in 

the domain bounded by the ellipse given by (83). Hence if the ellipse 

shown by (83) be taken as the path of integration of I;_ in equation (73), 

r must be taken smaller than a, or in other words, if p' be transformed 

into (, the path of integration of I;_, taken in the (-plane, should be a 

circle having a radius smaller than a. 

It follows from equation (80) that, if ( describes a circle with radius r 

m the negative sense, then p' describes an elliptic path in the positive 

sense so long as relation (8 5) is satisfied. Hence the integral obtained by 

substituting (75), (76) and (78) in equation (73) should be integrated m 

the negative sense along any circular path K.,, with radius smaller than a. 

Hence we have 
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where (K._ - ) denotes that the integration should be done in the negative 

sense along the closed path K._. 

Putting 

we have finally 

I'i =✓ -f e-rt~I-.Jco;,iu exp(u+ f-x2/;r a2), .................. (87) 
211:; it 4it 

because t, x and g are all positive quantities. And since 

co+) 
~I-. [ du exp(it+ f-x2/;r a2)=io(av'f-x2/g1'), ~ ........... (88) 
2'iTJ J it 4u 

where / 0 is Bessel function of the first kind and of order zero with im

aginary argument, we have 

Ti= 2~Jj /;q;;tc ({!f;t,p 
(KJ .... ""' ..................... (89) 

=✓ ~ e.-pt f 0(av't2-:~~/g1'). 

Next we shall consider the following integral : 

.. , .............................. (90) 

I. In general we have (Whittaker and Watson: Modern Analysis p. 355,) 

f
CO+J • 

J,, (z)=-1-. (._!_z)n t-n-lcxp (t- ---3::...._) dt. 
2~ 2 ~ 

Putting n=o and z=J1, we obtain 

1 f C0::? ( a2 . J0(a)=-. t e p t+ -) dt. 
2'Ttj 4t 
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By a slight change we have 

f e-,,,,+pt ( G + Cp )½ 
7;= 71 +(G/C-Po) (p+p~)(p+ G/C) R+Lp dp. 

(K) 

............ (91) 

Since the integrand of equation (89) is a continuous function of p and t 

along the path of integration (K), we may integrate both its sides with 

respect to t after multiplying them by i;P•'. Thus we have 

I J . e-q,:+(P+Pol t ( G + Cp )½ 
21rj cxfP+Po)(p+G/C) R+Lp dp 

I J e-qx+Cv+Po) ,:Jg ( G + Cp )½ 
- zrrj (P+Po)(P+G/C) R+Lp dp 

(~ . 

=✓ ff e(po-p), l 0(av't2-x2/g2)dt, ........................... (92) 
,:Jg 

or 

I f e-qx+pt ( G+ Cp)k 
21rj <xf P+Po)(P+ G/C) R+Lp dp 

= ✓ f i;-rotJ' e(po-plt 10 (av't2 -x2/g2) dt+ e-p.(t-cr.fg) I;, ......... (93) 
,:jg 

where 

, r f e-qx+J>xfu ( G + Cp )½ ' 
T:i= 21rj (P+Po)(p+G/C) R+Lp dp. 

(0) 

· ..... · ..... · .. · .. · ..... (94) 

Evidently in the finite exterior domain of the path ( K), the integrand of 

T; is holomorphic-; hence the value of T; remains unchanged when the 

path is replaced by a circle of infinitely increasing radius with its centre 

at the origin. Denoting such a circular path by Kk, we have 
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On the other hand, for a sufficiently great value of IP I, we have, by 

assumption I), 

+ / _ -(RC+ GL)-RG/p x 
-qx px g- ✓{r+R/(Lp)}{r+G/(Cp)}+1 ¥LC. 

Hence 

lim (-q:c+px/g)=- RC; G~ x . .............................. (96) 
'pi➔ eo 2 LC 

Therefore we have 

J
2" ✓-I _Rn+GL C 

21rJ T;J~lim -IPI e 2/w"'. y·dO=o, 
lpJ➔ eo 0 

or 

T;=o . .................................................................. (97) 

Substituting (97) in (93), we get 

=✓ f e-P•' f(p.-p)t Io(a"v'r-:t:2/g2) dt. . .......................... (98) 
:i:/a 

It follows from (91) and (98) that 

Since the integrand on the left hand side of equation (98) and its derivatives 

are continuous with respect to x and p on the path of integration (K), 

and the term on the right hand side is also continuous with respect to x, 

we may differentiate bo~h sides with respect to x. Such differentiation 

gives the following :-
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where 11 is Bessel function of the first kind and of unity order with 

imaginary argument. 

Equation (99) may be written as follows: 

1 J c-q,:+pt ( G + Cp )} 
72= wj P+Po R+Lp dp 

(Ji) 

=✓;, e-PtJ0 (a✓l-x2/g')+({f-p0)j f fp,(,-tl-p,lo(a ✓r 2 -x"/g'.)d,. 
"' g 

Since the integrand on the left hand side of the above equation and its 

derivatives with respect to Po are continuous functions of Po and p along its 

path of integration, and the terms on the right hand side are also con

tinuous in regard to Po, we differentiate both sides (n-- I) times with respect 

to Po, and we obtain the following result : 

1 J e-q:i:+pt ( G + Cp )½ 
Ti= 21rj (P+Pot R+Lp dp 

(KJ 

= (n~ 1) ! { (~-Po)✓ f CP•t r (t-,y-i e(p.-p)c fo(a✓ , 2 -x"/g2)d~ 
xfg 

for n > 2. 

+ j f (n- I) e-p.t r (t-,y-2 e<p.-p)c f0 (a ✓ r2-x2
/ g 2)d, }· .. (IOI) 

:,Jg 

The integrand on the left hand side and its derivatives on the path of 

integration, and the terms on the right hand side are continuous functions 

of p and p0• Hence, differentiating both sides (n- I) times with respect to 

Po we get, 
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The results obtained above may be summarized as follows : -

for n::?, 2, 

and 

+ (n- I )j(t-r?-2 eCvo-rl< l0 (a ✓ r-x2/.!/)dr} 
x/g 

.......... , . , , . ( I 04) 

for n > I, where we assume that o ! = r. 
The formulas (ro3) and (ro4) are what are required and will convert 

v and i given by ( 1) and ( 2) into elementary functions and integrals in

volving them. The forms of 7;, T3 , T.i and Tr, are easily computable with 

the aid of a planimeter or integraph, or by numerical integration, since 

l 0(x), J1(x) and e"' are all tabulated with respect to x, although it is im

possible to express these integrals by finite terms of elementary functions. 

5. THE SECOND METHOD OF EVALUATING 

v AND i GIVEN BY (r) AND (2). 

In the preceding section we referred to the contour integrals and to 

their evaluation, be means of which v and i in (r) and (2) can be brought to 

elementary known functions. But sometimes the above results of integration 
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-become practically inconvenient. For instance if Po be a real negative 

quantity, then the factor e-P0
' takes a great value, while e1JJo-pJtJ0(a ✓f-x2/g2) 

retains a small magnitude, for suitably ~hosen t and x. Hence some errors 

cannot be avoided in the numerical calculation of Jt glJJo-pJt /0 (a ✓t2 -x2/ g2), 
x/o 

and the amount of the errors will be magnified when multiplied by e;~Pot. 

In such a case another evaluation of v and i is necessary. In the present 

section we shall show another meth-d of evaluating v and i by an infinite 

series of In functions. 

As discussed in the preceding section, the terms v,,,. and im, which 

compose v and i, are generally formed of 

76 = e-P'.J H (p, z) e-,zx+pt dp, .................................... (105) 
27Tj 

(K) 

where H is a rational funtion of -p and :::. 

Transform p to p' by relation (70), then we have 

To= :~-f H{(p' -p),J ~(:; ~: )½} dp', ...... ............... (ro6) 
(K) 

where we assume that 

a=-r ( R __ £) > o. 
2 L C 

The further transformation of p' to another new variable (, by relation (74), 

gives (75), (76) and (77). Substituting (75), (76) and (77) in (ro6), we get 

the following : 

exp [ +{ (t+ ; )c + (t- ; ) ~2 

} ] d(, .................. (107) 

where the path of integration K-; is, as discussed in the preceding section, 

a circle with radius smaller than a and the center at the origin, and the 

integration should be done in the negative sense along this circle. The 

smaller the radius of the circle r compared with a, the greater are the 

axes of the ellipse shown by (83), which is the path of integration on the 
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p'-plane of equation ( I oS). Hence taking r sufficiently small, the singular 

points of the integrand in equation ( I06) are fully included in the elliptic 

path. Therefore we may take, as the path of integration K, in (ro7), a 

circle of infinitesimal radius with cenfre at the origin. Thus we get from 

( 107) the following : 

exp[ +{(t+; )c+(t-;) f }]d( ............. (ro8) 

Here H, a rational function of (, should have the form of 

where P1 , I{ and P3 are polynomials of (, and the degree of P2 with 

respect to ( is lower than that of P 3• 

Assume that P;(()=r +a,,._1(+ ········· +aoC, then we can expand 

Ps~() in an ascending power series of (an-i(+ ··· ··· •·· +a0 C), which con-· 

verges uniformly on the circular path of integration of ( I08), since it is 

always possible, as previously disscussed, to choose the radius of the circle 

r so as to keep the relation of i an-i ( + · · · • · · • • • + a0C I < 1. Therefore 

-
1
-. is expansible in the ascending power of ( on the above path. 

F..i(() 
Or resolving into partial fractions, we get 

where (n is the n-ple root of Ps(()=o, and Am,. is a constant independent 

of (. Also in this case, the expansion of (( ~(Y, in the ascending power 

of t on the path of integration of ( I08), t,, p~ssible. Hence in the above 

two cases, JI may be expanded finally on the path of integration of ( ro8) 

in the following power series :-

00 

H= ~ gnC· ...................................................... (r Ir) 
n==m 

Substituting this II in (ro8), we know that our question is reduced to a 
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single problem, namely, how to calculate the contour integral 

which, by transforming t; to u by the relation u=(t+x/g)t;/2, can easily 

be evaluated as follows : 

as t, g and x are positive quantities and In=Ln

Hence we know the following rule :-

...... (113) 

(A) To e,Jaluate the contour integral of tlze form (ro5), transform p to 

( by the relations (70) and (74), tllen we get (108). Expand Hof (ro8) in 

the ascending power of(, and substitute the result in (ro8), then the integrand 

of (rnS) becomes a power series oft; wlticlt is integrated immediately term by 

term by the relation ( r I 3). Titus tlte required integral shown by ( IOS) is 

evaluated in a series of ln functions. 

The above is the same as the following, but the latter 1s sometimes 

more convenient than the former. 

Transform ( in ( c 08) to at;, then we get 

exp[: {(t+ ;)r:+(t-;)f}Jd( ....... (rL~) 

Also in this case, H is expansible in the ascending power of t; on the path 

of integration of the above integral. Hence the question is reduced to the 

calculation of 

(O+J 

7s=~1 .J c;n-1 exp [~{(t+~),+(p-~)-1 
}] d(, ............ (115) 

27CJ 2 g g t; . 

I. Ste foot note ( 1) in the preceding section. 
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which 1s calculated as follows : 

n 

-r=(t-x/g)_2_I ( ,..;2_ 2/,,-2) 
1 8 / ±n a t .x o . t-¥x g 

.... , ... , , , , , , .. , .. , .... ( I I 6) 

Hence we get another rule for the integral of (w5). 

(B) Transform p to C by the relation p=_!!_(c+-1-)-p, then tlte 
2 C 

integral of(105) is tranifonned to (114). Expand JI of (114) in tlte as-

cending power {If(, then tlte integrand of ( I 14) except the exponential function 

becomes a power scrits of C, whiclt is integrated immediately term by term by 

(r r6), and thus we get the evalution of tlte required i1tt(gral (105). 

Rules (A) and (B) and the contour integrals calculated in the preceding 

section may play important roles in the investigation of electrical transient 

phenomena in a transmission line circuit, which shall be minutely discussed 

in the following sections, and these two rules must be interesting from the 

mathematical point of view, because they propose a method of expanding 

certain functions in series of In functions. 

6. POTENTIAL AND CURRENT AT THE POINT x FOR THE 

INTERVAL (21-x)/g> t> o DUE TO THE E.M.F. EcP0
' 

AT x=o, WHEN THE IMPEDANCE Z1 IS ZERO. 

An e.m.f. is directly applied to the line at the terminal x=o, then we 

have Z1 =o and h.= I. Hence by (r) and (2), the current and potential at 

the point x, due to the e.m.f. _E;-P0
', are given by the following equations: 

v=O for t <x/g, 

··· ...... (I 17) 
i=o for t<x/g, 

Substituting ( 103) and ( 104) in the above equations, we obtain the 

required solutions in known functions. Thus we have 
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for 

for t<x/g·, 

f (p.-pl,J0(a-v' r2 -x2/ g2)dr for 
x/q 

2!-x >t> ~. 
g g 

.... (118) 

2!-x >t> ~-
g g 

Putting jl0=0 in (Ir 8), we get the potential and the current due to the 

direct e.m.f. E, and their values are 

v=o for t<x/g, 

for t<x/g, ... (119) 

=E✓ f $-pt l0(a ✓t2-x2/g2)+E ~j f f-P"fo(a-v'r2-x2/g2)dr 
X/!J 

c 2/-z t> X 1or---> ~. 
g g 

These results coincide with those already obtained by J.R. Carson and 

the present author. We know from the above equations that the potential 

and the current at the point x increase discontinuously from null to Ee-px/g 

and Ej f crx/v. respectively just after the propagating waves have reached 

the point x. 

Next we shall consider the case where the applied e.m.f. has the 

damped oscillatory form of 

e=Eo$-a.t sin (a1t+ 1 ). , .... , .. , .. , , .. , .. , .... , .. , .. , .. , .. , .. , .. , .. , , .. ( I 20) 

In this case we may write 



Analytical Investigation of Electrical Transient Phenomena etc. 221 

Hence the potential and the current at the point x, due to this e.m.f. are 

obtained as follows. Substitute E=E0sJ? ond p0 =a-jaJ in v and i of(1r8), 

then the imaginary parts of the results give the required solutions. Thus 

we obtain 

v=o for t<x/g, 

=imaginary part of [ E
0 

sJI' e-<a-Jw)(t-.,Jg)-px/v 

i=o for t<x/g, 

=imaginary part of [ E0 ej? j f e-Pt l0(a ✓t2-x2/g2) 

+ Eo sj? ( ~ - a+ jw )✓ f e-<a-,u)t f (a-jw)'t-p't lo( a✓ ,2 - %2 I g2)d,] 
z/g 

= Eoj f sin <pe-?t 10( a✓ t2-x2 
/ g 2

) 

+ Eoj f J:,~~Cl-•H•{( ~ -a) sin (w. t-,+<p) 

+ w cos (<u. t-,+ <p) }10 (a✓ r2-x2
/ g 2)d, for 2l-x >t> ~-

g g 

(I 2 I J 

The potential and the current at the point x just after the propagating 

waves have reached that point, are got by putting z=x/g in the above 

formulas corresponding to (2!-x)/g> t> x/g. Hence we have 

Vt=xtg+o=Eo sin <pc.-P"10 , } 

i,=xtu+o=Eo sin <pe-pzfuj f. 
The transient value of the e.m.f. at the beginning instant of application 1s 
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by (120), 

From ( 1-22) and ( 1 23) we see that the fronts of the potential and the 

current waves due to any damped oscillatory e.m.f., are uniquely determined 

by the transient magnitude of the e.m.( at the beginning instant of applica

tion, and are quite independent of the damping constant as well as of the 

frequency of the applied e.m.f., and they propagate along the transmission 

line, being damped by the factor cP"19• 

Next, the potential and the current at the point ..r due to the 

sinusoidal e.m.f. 

are given by substituting u.=o in (121), namely, 

i=o for t<x/g ( I 2 5) 

=t."oj f sin<pCP'fo(n-.//2-..rt/lfJ+Eoj ff-pt{ ~sin((/J.t-,+So) 
x/g 

-1- (l)COS((l).t- ,+ <p) }1o(o ✓ , 2 -..r2
/ f!)d, for 2l-x > t>~. 

g . g 

We shall discuss the mode of the current wave more precisely. 

Neglectiug, for the sake of simplicity, the line leakage, we get from the 

above 

i=o for t<x/g, 

=E0j f sincpe-u./0 (AVt2--x2/g2
) 

+l!.~(l)j f f-"·cos(<u.t-,+<p)l0(1.-./,2-x2/g2)d, 
rclg 

............ (126) 

for 2t-x -> t> ~. 
g g 
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where 

R A= 2L. . ........................................................... (127) 

When the applied e.m.f. is 

e=E0 sin(l)t, ......................................................... (128) 

then, putting <p=o in (126), we obtain 

i=o for t <x/g, 

=Eo(I)✓ f J\-A, cos {a>(t-,)}/0 (A ✓,2-x2/g2)d, 
x/g 

for 2/-x > t> __:::___, 
g· g 

and when the applied e.m.f. 1s 

e=E0 cos (I)/, 

the substitution of <p=_!!__ in (126) gives 
2 

i=o for t<x/g, 

. , , , . , . , . , , , ... ( l 29) 

=Eoj i' s-A'/0 (A ✓t2 -x2/g2)-E.~(I)✓ if-A, sin(l)(t-,)Io(k./,2-x2/g2Jd, (l
3

l) 
x/g 

The full lines of fig. 5 show the current at x = 200 kilometers for 

several values of <p, due to the sinusoidal e.m.f. e=sin((l)t+<p)k.v. and the 

chain line shows the same current due to the direct e.m.f. of l k.v.. These 

are computed, by equations (126), (129) and (131), for the line with the 

constants 

R= 10!2/km., L=2,5 mh./km, C=o,005 µ//km., G=o, ...... (132) 

the frequency of the applied e.m.f. being 28 5 cycles r:er second. 

Next put Po= -j(I), E=E0sJP and t= co in the i formula of (1 r8) cor

responding to (2/-x)/g>t>x/g, then the imaginary part of the result 

thus obtained represents the steady value of the current at the point x of 
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Fig. 
Current induced at x=zoo k.m. due to e=sin (wt+ip) k.v. 

- - - : Current induced at x=zoo k.m. due to e= I k.v. ,.., 
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~] LJ 
a semi-infinitely long transmission line due to the sinusoidal e.m.f. e=Eo 

sin ( ltJt+ cp ). 

(io)t=«>=imaginary part or[ E0e.1'P( ~ + jltJ)✓ f ei"'tf-(i••+r*J0(a-v' r2-x2/g'2)d'Z'"] 
x/g 

The last part of the above equation may be written as follows : 

Jc.1Cwt+,ol =I cos (01t+ <p0) + ff sin ( (l)t+ 'Po),

Hence we get 

Cio)1=«>=/sin (ltJt+ 'Po), ... •·· ...... , ........... •·· ................. (133) 

where cp0 depends upon ltJ, cp, L, C, R, G and x, and 1 is given by 



Analytical Investigation of Electrical Transient Phenomena etc. 225 

When the direct e.m.f. E 0 is applied, we obtain the current at x by putting 

(1)=0 in the above formula. Thus we have 

I -E {G -xVRG ( ) 
d.c. - OA/ R € • • • • • · • • · • • • • • • · • • • • • • • • • • · • • · • • • • · • • · • • • · • • • • l 3 5 

If the line leakage is neglected, 

l0=o=E0 vc;;; i. exp [-xJ-1 
{ C(t)v L 2(1)2 +.J?l-LC(t)2

}],} 

(L2ol+R2
)• 

2 ...... (136) 

[ f,1.c.]G=O =0. 

Substituting the numerical values given by ( 132) in ( l 36), we get 

j .............................. (IJ7) 

From fig. 5 we know the following :-

The current at the point x= 200 k.m. remains null, until the time 

t=x/g has elapsed, which is spent by the effect sent from x=o till it 

reaches the i:oint considered. At t=x / g, except the case <p =0, currents 

increase suddenly to the values shown in the figure, and vary continuously 

thereafter. Fig. 5 is plotted, assuming that the direct e.m.f. and the 

amplitude of the sinusoidal e.m.f. are each l k.v.. The figure shows that 

the direct e.m.f. induces the greatest current for a short duration after the 

wave reaches the point under consideration. But if we neglect the line 

leakage, the current due to the direct e.m.f. dies away as time passes on, 

and it converges to zero in its stationary state. 

We shall consider the case where the sinusoidal e.m.f. e=sin ((t)t+<p) 

k.v. of a frequency of 285 cycles is applied. 

The figure shows that the wave front of the current becomes greatest when 
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cp=11:/2, i.e., when the e.m.f. is applied to the line at its maximum value. 

From the curves corresponding to cp=11:/4, sii=3r./4 etc., we know that the 

_wave fronts of the generated currents depend only upon the transient value 

of the e.m f. at the first instant of application. Also we know that the 

-nearer <f approaches to zero from 11:/2, the more diminished is the rate at 

which the induced currents near the wave fronts die away, and when cp~o, 

the current even increases from the value of the front for a short time. 

This is because the nearer cp approaches to zero from 11:/2, the longer the 

increasing state of the applied e.m.f. continues. 

Thus the transient value of the current due to a sinusoidal e.m.f. 

takes various forms, in proportion to the transient value of the e m.f. at 

the beginning of application. But as time passes on, currents in such forms 

converge ultimately to a single oscillating value with amplitude of o.30i 

amperes as seen from (137). 

7. REFLECTION OF INCOMING WAVES BY CRITICAL 

RESISTANCE. 

When the dissipation constants of the line, R and G are null, the 

incoming electric waves are completely absorbed in a resistance which 

terminates the line to the earth with the magnitude ✓ L/ C, and thus re

flected waves are completely rejected. The analytical verification of this 

fact has already been accomplished by many authorities, and the terminal 

resistance with the above mentioned magnitude is called the critical 

resistance. This theory is often applied to many experiments in order to 

exclude reflected waves. But we must notice that it is true only when 

the dissipation constants of the line are omitted, and nothing is known 

about the case where these constants are taken into account. Nowadays, 

many experiments on transmission lines are pursued, however, under the 

assumption that the incoming waves may be completely excluded by the 

critical resistance, even when the line resistance reaches some amount. 

But I cannot agree with this assumption. The nature of the critical 

resistance should be more minutely investigated theoretically. 

In the electric circuit, whose receiving end is terminated by the 
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resistance R 0 as shown in fig. 6, the first reflected potential wave at the 

point x produced by the terminal resistance due to the e.m.f. Ee-P•' applied 

at x=o since t=O is given by 

V 1=--. ----.fi/4dp for t>(2l-x)/g, ............ (138) 
I J i:,-q(2l-•l+pt 

211:; P ..... Po 
(K) 

where, if we neglect the line leakage for the sake of simplicity, 

z= ✓(Lp+R)/(Cp), 

q = ✓(Lp+ R) Cp, 

Fig. 6 

/i=J, 

z-R0 h=----, 
z+R0 

............... (139) 

Putting :x=l in (138), we get the first reflected potential wave at the point 

B, which is given by 

for t>l/g . ............... (qo) 

Putting, further, l=o in (140), we get the first reflected potential wave at 

B, when the incoming potential wave at the same point takes the form of 

Ee-pot for t>o. 

E f eP' z-R0 
Vi=- 2rrj P+Po ::+Ro dp 

(A) 

for t> o ................... (141) 

When the incoming potential wave is rectangular, we get the re'flected 

potential wave at B, by putting jJ0 =0 in the above equation. 

for t> o ................... (142) 

A) Reflected potential wave due to incoming rectangular potential 

wave. 

For the sake of brevity, we assume that the form of the incoming 

potential wave is rectangular, then the reflected potential wave at B is 

given by ( I42 ). Next we shall consider the case where R0 possesses thG 

critical value, i.e. 
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Ro= ✓ ~ .......................................................... · ..... (143) 

Putting (139) and (143) in (142), we get 

E f { jY 1 ( Cp )½ 2L jY( Cp )½ 2L 1 } = 2rrj CK~ C p Lp+R +R- C Lp+R. -1?-p eP'dp. (l44) 

On the other hand, by ( 103), we have 

where 

R J.= zL . ............................................................... (127) 

And we know that 

l f ept 
wj pdjJ=l, 

(K) 

z~j f eptdjJ=O . .............................. ( 146) 
(K) 

Differentiating both sides of ( 145) with respect to t, we obtain finally, 

½ ✓-
2~jf e,,t( L.Jf R) dp= f J.e-u { -/o(J.t)+/1().t)} .......... (147) 

(Kl 

Hence substituting (145), (146) and (147) in (144), we get 

v1 =.E[e-u{/0 (J.t)+/1 ().t)}-1]. .................................... (148) 

From (148) we get the following conclusions, when the form of the 

incoming potential wave is rectangular. 

I) The reflected potential wave produced by the· critical resistance is 

determined solely by the ratio J.=R/(2L), and is independent of the 

electrostatic capacity C of the line. 

2) The critical resistance flattens the front of the reflected potential 

wave instantly, and discontinuity in the front is completely rejected, even 
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when the incoming potential wave takes the rectangular form; because, for 

sufficiently small t, we may write 

).t 
'2'1 ~ -. • .. • .. · .. · · · • · • · .. • · • .. · · · • • · · · .. · · • • · • • .. • .... • • .. · • : . .. ( I 39) 

2 

Thus we know that the critical resistance is effective for flattening the 

front of the reflected wave. 

0 

-o. 2f 

-o. ~-
,TC 

-o. ,e. 

-o, le 

-e. 

Fig. 7. 
Reflected potential wave produced by critical resistance when rectangular 

potential wave E comes in 

1 2, r;J 
Tlme 'T mi~i -4tc. 
4 " 
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i-........ 

\ ~ 
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r-,,,,,;i--. 

~ ' 
--. ,. __ 

I "'--

\ ·~ ....,, 
~=16. ..._ M 

\ "~ - ........... 
A. =2 xi o""1'---....... 1-""--\A 1=td r-----..t-.i_ - ta•• 

" ~ --r---r--r .. ----.. ... 
~= E. (e-tlrJAtHfltJ}-~ 

zJ, 
I 

3) Fig. 7 is plotted from equation (148), which shows that the re

flected potential wave increases with time, when the ratio ).=R/(2L) 

becomes great .. Hence when R/ L is large, the value of the reflected wave 

is not so small that it may be possibly neglected, even just after the 

reflection takes place. Hence we cannot assert generally that an experi

ment pursued under the assumption that the critical resistance may be 

effective for the rejection of reflected waves, can really show the actual 

phenomena without errors. 

4) In the stationary condition, the reflected wave tc1-kes the form 
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him ·v1 =E [him e-u {10(J.t) + I; (J.t)} - 1] 
t➔ oo t➔ oo 

=-E. . ............................................ .. : ...... (150) 

Hence we know that the reflected potential wave approaches to the same 

magnitude as the incoming wave but with different sign, as time goes on. 

B) Reflected potential wave due to the incoming potential wave. 

In this case, the reflected potential wave is given by (141), i.e., 

......... (151) 

2L J L ( Cp )~ 2L _ R-2Lpo _1 -}d 
+ R C Lp + R R R p + Po 'P 

for t> o. 

But from ( w3) we have 

and evidently 

l f ept 21rj P+Po dp=e-Pot_ ................................................ (153) 
(Kl 

Substituting (146), (152) and (153) in (151), we have finally 

V1=-E{-e-MJ1 (J.t)+ Po-;A e-MJ0 (J.t) 

+ (2A-:o)Po cvotf ~(po->-ltfo().t)dt+ ).~Po cpot} 

for t> o. 

............ (154) 

In the special case where the incoming potential wave has the form of 

E0 sin (wt+ <p) for t 2 o, we shall get the first reflected potential wave by 
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taking the imaginary part of the result obtained by the substitution of 

E=E0eiP and p0= -joJ in the above equation. Hence we have 

v1 =imaginary part of E0i.j;,{e-J-t.I;(,lt)+ }<tJt,l e-MJ0(,lt) 

+ ( 2 ,l + ~w )jttJ e-Potf :cp.-'J-)t 1
0

( ,lt)dt 

0 

l + jctJ J , } _ ( ) l ew , .................. 155 

or 

Vi= Eo{sin cpe-M 11 (,lt)+ <tJ cos <pi ,l sin 'P o.-M ] 0(J.t) 

+ : f
1

0
[2). cos (wt--r+ cp)-w sin (wt--r+ cp) ]e-J-~ J0 (J.-r)dr 

J ...... ( I 56) 

w cos (<tJt+ ip)i i. sin (wt+ <p)} 

for t> o. 

Putting t=o in the above equation, we get 

(vi)t=o=O. .. ............................................................. ( I 57) 

Therefore we know that the front of the reflected wave is immediately 

flattened by the critical resistance, even when the front of the incoming 

potential wave is discontinuous. 

C) Rejlt!cted potential wm:e due to incoming potential wave of extra 

high /requenc.y. 

The reflected wave is also given by ( 1 56). But this formula is some

what inconvenient for numerical calculation when <tJ/,l becomes large. We 

shall transform it into an easily calculable form. 

By integration by parts, we have 

J:e<Po-J-)t 10(,lt)dt= Po1_). {e<vo-J-)t 10 (,V)- I -J.f:cv.-J-)t fr(,lt)dt} . ......... (158) 

Putting this relation in (154), we have finally 

<'1 = E{e-M f1(J.t)--,l- cM fo(J.t)+-).- e-pot 
Po-A Po-). 

for t> o. 

+ (2,l-po)Po e-p•tf'e<v.-J-)t f1(J.t)dt} 
(Po-l) 

0 

.................. (159) 

This is the first reflected potential wave corresponding to the original 
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wave Ee-Pot (t > o). And the wave produced by the first reflection when 

E~ sin ( wt+ <p) (t~o) come in, is given by the imaginary part of the nesult 

obtained by the substitution of E=E0._j'P and Po= -jw in the above equa

tion. Thus we have 

V1= Eo{sin <pe-u l 1(At)+ ).(). sinl+~:~ cos <p) /.->-1 J0 (At) 

A[A sin (wt+<p)-w cos (wt+<p)] 
i..2+a>2 

+ ;.2 ; ai JJ;.w sin (wt-.+ So)+ (al+ 2J.?) cos (wt-.+ <p)}->-t ./;(Ar )d.-} 

for t> o. 

(16o) 

When A/I Po I and J.t are negligibly small compared with unity, we have 

from (159), 

v1 ~--;._ (1-c,,.,) E 
2po 

because, in this case, we have 

for t> o, ..................... (161) 

= - _;._{(Pot- l) + e-Pt1}. 
2po 

Equation ( l 61) corresponds to the case where the incoming potential wave 

takes the form of E0e-M. Therefore to get the first reflected potential 

wave when E0 sin (wt+<p)(t > o) comes in, put E= E0 ei'P and Po= -jw in 

( l 6 I), then its imaginary part gives the required solution, i.e., 

for t> o ............. (162) 

When the incoming wave has infinitely high frequency, we get the 

reflected potential wave by putting tJJ= co in (160), i.e., 

lim zi1 = E 0{sin 'P c>-t 11 ( At) 
•u➔ oo 

+ lim 2 <tJ .2 f 1[A<osin ( w.t-r+ So )+(w2 + 2,t)cos ( w.t-.-+<p )}->--. J;(A.)d,} 
w~o, (I} +it 

0 
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= E0{sin <pe-M l 1(J.t) 

-lim [);<uA.
2

cos(ltl.t-r+<p)e-ufi(A.t)+ .2 ltlA. .. J~os(ltl.t-,+<p) dd- (e->-•f1(A.r))d, 
••➔"' ll + (J) A + (ti ' 

0 • . 

)2 9 

+ 21l + w- • -MJ, (A.t) u 2 SIU <pe o 
ll + (ti 

2 A.
2 + ltl2 

( d ( -u , () )) A. ( + )) + (J.2 2) cos <p ~ e .1 0 11t -- cos ltlt <p ltl +w ~ 2 

(1)2+ 2 ;.2 Jt _ d2 ( ) ]} - w(A.2 +w2) ~os(ltlt-,+<p) d,2 e->-•J1(h) dr 

= E0{ + sin <pe-u L (..l.t)-sin <p e-u Ii (..l.t) }, 

or 

lim v1 =o ............................................................. ( 163) 
w➔ co 

From the above results, we get the following conclusions :-

1) The higher the frequency of the incoming wave, the smaller the 

magnitude of the reflected wave becomes, and the absorption of the incoming 

wave by the critical resistance is completely realized for a wave of extra 

high frequency. From (162) we see that the magnitude of the reflected 

potential wave decreases in proportion as the· frequency of the incoming 

wave increases. Thus we know that the higher the frequency of the 

incoming wave, the smaller the magnitude of the reflected wave produced 

by the critical resistance becomes. 

2) Fig. 8 is the graph of (162), which shows that the reflected wave 

near its wave front has the greatest magnitude when <p=O, and the smallest 

when <p=1r:/2, and its magnitudi decreases as 'P approaches to r.:/2 from 

zero. The front of the incoming wave is l.!.'o sin <p, which increases as <p 

varies from zero to 1r:/2. Hence we know that, when a sinusoidal poten

tial wave of certain amplitude comes in, the smaller its wave front is, the 

greater the magnitude of the reflected wave produced by the critical 

resistance near the wave front. 

3) From ( 160), it is known that the reflected potential wave is 

uniquely determined by the ratio A=R/(2L) as well as the frequency and 
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Fig. 8. 
Reflected potential wave produced by critical resistance when sinusoidal 

potential wave of high frequency .E0 sin (o,t+:p) comes in 

~... ., li,~Jb a><j(UJ - . 

t i-----t--'-----'---t-~~ 

the phase angle of the incoming wave, and it is independent of the capacity 

of the line. 

D) Relation belweeu the frequency of the incoming wave and the steady 

reflected potential wave. 
Next we shall consider the steady value of the first reflected potential 

wave. Putting t= co in ( I 54), we obtain its steady value due to the e.m.f. 

Ee-Po', and it is given by 

(vi)t=oo = -E{ (2J.~po)Po c-Po'f ?po-,.)t fo(At)dt+ ).~ Po €-pot}, ... .,. ( I 64) 

if the real part of Po .2. o. 

Now we have 

Joo -(Jm+ntJ (l )d. _ j ( fl · · I] ) ( 6•) e O "' t- - _ /- cos - + J sm - , . . . . . . .. . . . . . . . . . . . . . I , w-vu 2 2 
0 

where 



Analytical Investigation of Electric a! Transient Phenomena etc. 2 3 5 

The steady reflecteJ potential wave due to the incoming potential 

wave E0 sin (wt+~) (t > o) is given by the imaginary part of the result 

obtained by the substitution of E=E0 :.N and Po= -Jr.u in (164), and it is 

calculated with the aid of (165) as follows. 

{( 
w✓u . {}) . (w w ✓u 8 )' } ( ) =-E0 1--A-sm 2 smwt+ y--A-cos 2 cos wt .... 167 

And its amplitude is given by 

2 

✓+(✓ I + ( r.~ y + I) + I . .. ......................... ( I 68) 

This formula shows that the amplitude of the steady first reflected potential 

wave is uniquely determined by the ratio R/(r.uL), and it increases from. 

zero to E0 as R/(wL) varies from zere to infinity. 

8. REFLECTION OF INCOMING WAVES BY 

TERMINAL CONDENSER. 

We shall show an example of the second method described in section 

5, which will bring v and i, given by (r) and r2), into real known 

functions. 

\Ve assume that the receiving end of the 

transmission line is terminated by a condenser 

of capacity C,, and that the direct e.m.f. E is 

directly applied at the beginning of the line. 

Then the first reflected potential and current 

waves at x and t are, by (1) and (2), 
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where 

- z-(C,p)-1 
and /;.- .,, (C. )-1 ................... (170) ~+ ,p 

Assuming that no line leakage exists, we get 

z=( R~f P)~ ................................................... (171) 

Apply rule (B) of section 5, and change p to C, then by ( 171) ./2 1s 

tranformed to 

where 

,/2 = I - I + :;;:f _ (2 ' ............................................. ( I 7 2) 

R J.=
zL' 

1n=-
1-J c . .................................... (173) 

C.J. L 

Hence by ( I I 4 ), v1 and z; are reduced to the following forms : 

for t> y/g, 
... · .. · .. · .. (174) 

for t> J'/ g. 

Let the roots of ( 2 
·- 2m~ - I =o be ( 1 and ( 2 , then we have 

} .. ··············· ....................... ...... (r75) 

Since 
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where 

the integrals of ( 17 4) are transformed to the following :-

By rule (B), expand - 1
-, 

1-( 
power of (, and we get 

for t> y/g, 
... (176) 

for t>;1/g. 

and m the ascending 

.. (177) 

for t> y/g-. 
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Since ( 1 ( 2 = - I, the above v1 and i1 are, after termwise integration with 

the aid of (II 6), reduced to the following forms :-

vi= -Ee-M[.foPf v(t)} +( 2- ! )~r;I,.{).fy(t)} 
-n=l 

"' "' 
+4A(1 ~( -?Gr;I,.{Afy(t)} +4B(2~(- )"(fr;I,.{).f(t)}] 

for t> y/g, ...... (178) 

i1=h) ~ e->-f Io{J.fy(t)}+ ✓ 2;n {~(-/(fr;In{).~y(t)} 
m + l n:l 

where 

l 

-(t-y/1;)~- d 1::()- ✓ 2 2/ 2 ( ) r v - / an , v t - t -y g . . . . . . . .. . . . . . . . . . . . . . r 79 t+y g 

10 , .!1 , 12 , 13 , 14 and 15 are computed and tabulated for small values of the 

argument, and In ge1~erally decreases for small arguments as n increases, 

and has a simple asymtotic expansion for large arguments. It is therefore 

a simple matter to compute and to express in graphs, a representative set 

of curves which show the current and potential waves for various values. of 

L, C, G. R, C, and y. But when I (1 r I is great as compared with unity, 
"' 

the series ~(-t(rr;I,,{).fy(t)}, whic~ is involved in v1 and i1 formulas, 
n=I 

will converge slowly, and its numerical calculation will become troublesome. 

Hence we need some device which will render the calculation of such a 

series easier. For this purpose we proceed as follows :-

v,..,r e know the following relation 

Put u=JCrv and ~=;=f;v (t), then we get finally 
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+ao 

=lo {J.fy(t)} +~(-)"(Cr;+ C"r;t)l,.{J.~y(t)}, 
n=l 

since J,.(x)=Ln(x). Therefore we have the following result:-

+ao 

-lo { i.; y(t) }-~(- /C"r;nI,.{ i.fu(t) }. . ..... (180) 
n=I 

+ao 

If \ (ry I > I, the series ~( - t C"r;" I,. { i.f y(t)} will converge rapidly, and 
n=l 

will be easily calculable. Hence if we use the term on the right hand side 
00 

of the equation ( 180) for the calculation of ~ ( - Y Cr; 1,. { ).fY (t)}, the 
"ll=1 

numerical computation will be done easily when \C'rv\ > I. We shall take 

an example. 

If the incoming potential wave at the receiving end takes the form of 

E (t > o), and if the condition of the circuit is assumed to be the same as 

above discussed, we shall get the corresponding first reflected potential 

wave at the receiving krminal by putting x=l=o in the 111 formula of 

(178). Thus we have 
+oo ,fc,, 

Z'1 = ~Ee-M{fo(i.t)+ ( 2- 1;l ):e1,.(J.t)+4A(1~(-tc; ln(J.t) 
...... (181) 

+ 48(2 ~( _: l(;' 1,.(i.t)} for t> o. 
n=J 

We take, for instance, a loaded submarine cable 200 n.m. long, with 

the constants 

R=3 Q/n.m., C=o,4µ//11.111., L=o,05oh./n.m. and G=o. 

In this case ( 1 and ( 2 are 

(1=2,724, (2=-0,368. 
00 

Therfore the series ~(±)"(; In(i.t) converges rapidly, while the senes 
ao n~ 

~(- )"(f I,.(i.t) converges so slowly for suitably chosen t that we shall 
n=:l 
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find it laborious to execute its numerical computation. Putting ( 180) 111 

( I 8 I), we get finally, 

+oo +oo 

V1=.E~-).t{-c I -4B(2)fo(At)-( 2- :, }~ln(At)-4A(, ~(- )"(2 ln(At) 
n~l n=l (IS2) 

+ 4B(2 ~(~liAt)-4B(2 E exp{- ((,
2
+ 1 

)
2 

J.t} for t> o. 
n:.I (1 

since we have, from ( 17 5), ( 1 ( 2 = - 1. 

This last result is convenient for numerical calculation. Now the 

cable in the present case is very long, and therefore all the reflected 

potential waves except ,'1 are so little influential upon the receiving end 

compared with i•0 for a transient short interval that we may represent the 

condenser potential v by the sum of the original and the first reflected 

components, excluding the effects of other reflected waves. Thus we have, 

for small values of t greater than zero, 

............... (183) 

Fig. IO gives a representative curve illustrating the form of the condenser 

potential in response to the above described constants as well as the 

incoming potential wave E. 

Fig. IO. 

Condenser potential due to rectangular· incoming potential "ave E. 

E --
,/ ----V 

0 1 2. ., 4 s 
A-t;,.,».,.,>""> ---'►► 

Next we shall consider the current at the condenser terminal due to 

the direct e.m.f. Eat x=o. Put x=l in the i1 formula of (178), then we 

get the first reflected current wave at the receiving end, and in the case 

of line leakage being neglected, the original current wave at the same end 
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1s given by (119), i.e., 

For just the same reason as stated above, if the cable is very long, the 

current of the condenser terminal is given, for a short interval, by i= i0 + i1• 

Hence the required value of the current is 

Fig. I 1. 

Received current at condenser terminal due to direct e.m.f. E applied 
at the beginning of the line. 

/ 
,, 

/ 
...... __,. 

/ V 

/ 
V 

r 
a.a, Q.So o. 31 a.aa. o.-'3 

T.;,,.,e. i.,., .4CC. Nm .,. 

for small values of t greater than l/ g. 

In this case we have I (1 rz I < r for a comparatively _long duration ; 

therefore we had better use the above expression of i itself than change its 

form with the aid of ( 1 So). Fig. 1 r is the graph of the received current 

due to the direct e.m.f. E applied at the beginning of the cable which 

possesses the above mentioned constants. From the curve we see that the 

current is zero until t=l/g at which time it jumps to the value 2EvC/L 

e-J-l/g suddenly. It then begins to increase. 

In conclusion, I wish to express my sincere gratitude to Prof. Risaburo 

Torikai and Prof. Toshizo Matsumoto of the Kyoto Imperial University, 

under whose guidance I have completed this paper. 


