
On the Two-dimensional Flo.w around Slotted Wing Sections* 
By Busuke Hudimoto 

The jlow of the perfect jluid arou1td a circle a11d a circul,zr arc is 
i11vestigaled. Then they are transformed co1tfarmally into a slotted wing 
section and the lift and the mommt of the lift are calculated. 

The problems connected with the two-dimen
sional flow of the perfect fluid around slotted 
wing sections have been investigated by some 
authors. The first of them was Tchapliguine,1l who 
studied the two-dimensional flow around a wing 
section composed of a number of segments of one 
circular arc. The second was Lachmann,2l who 
treated the problem of the two-dimensional flow 
around the Joukowski section with an auxiliary 
aerofoil. As a result of his investigation the 
auxiliary aerofoil was replaced by a number of 
vortices placed on the skeleton line of the auxiliary 
aerofoil. The last one was Watanabe.3> He placed 
a sink and a source of the same strength on the 
surface of the Joukowski section, the points being 
the centres of the inlet and exit port of the slot. 

In the present paper, the au~hor deals with 
the two-dimensional flow around a circle and a 
circular arc and from them by the wellkno.wn 
conformal transformation a kind of slotted wing 
section was obtained. 

1. Conformal Transformation 

The aerofoil of the wing section considered 
here is obtained entirely by conformal transforma
tion. 

Consider in the z-plane Fig. I, a circle and a 
circular arc BB'. The axes of x and y are so 
chosen that the x-axis, i.e. the real axis, passes 
through the two intersections H and H' of the 
circle and the circle of the arc BB'. The r-axis, 
i.e. the imaginary axis, passes through the mid 
point of HH' and perpendicular to the x-axis. 
Then, z is expressed by 

z=x+iy 

Now the z-plane is transformed into the /
plane (Fig. 2.) by the following relation 

z+a f=log-
z-a 

( r) . 

where a= the length of OH=OH' (Fig. 1.) 

Then, the segments of the circular arc BB' 
are transformed into a straight line parallel to the 
real axis of the /-plane and the distance between 
them is equal to the angle between two straight 
lines connecting any point on the arc BB' and H 
and H' respectivly in the z-plane. The circle is 
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.,. 
transformed into two straight Jines also parallel to 
the real axis extending to infinity. The distance 
between them is equal to 11: and the outside region 
of the circle is transformed into a strip section 

Fig. I 

y 
z 

X 

between the above-mentioned two straight lines, 
and the points if and H' of the z-plane cor- , 
respond to infinity. 

Then if the f-plane is cut along the straight 
line CG or C'G' passing through the mid point of 
BB' and perpendicular to the real axis (see Fig. 
2. ), the /-plane i~ transformed into a rectangular 
region of the J-plane by the following relation ;4J 

H 

df _ KJ'(v) f(s)-f(µ) ( ) 
ds- f(v)-f(µ) f(s)-f(v) 

2 
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Fig. 3 
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where f is the elliptic function of Weierstrass, and 
f' is its derivative, 

and SFJJ for point H, 
s=-JJ H'. 

and s=µ B. 
Integrating the above relation, we get 

f=[((µ+JJ)-((µ-JJ)](s-µ) 

--log a(s+ JJ)a(µ-JJ) + constant (3) 
a(s-JJ)a(µ+JJ) ' 

where ( is the (-function of Weierstrass. 
Now, let the distance between the real axis 

and BB' in the /-plane be equal to 81, and the 
co-ordinates of B be p and 81, i.e. s=µ corres
donds to f=p+i81. 

Then the constant in eq. (3) is determined 
and 

/=[((µ +JJ)-((µ-JJ)](s-µ) 

-lo a(s+JJ)a(µ-JJ) +p+i81 
g a(s-JJ)a(µ+JJ) 

We denote the breadth of this rectangle by 
2llJ1 and the height by <u2/i. Now we cut off the 
/-plane along CG or C'G', and to prevent the 
discontinuity of the flow at this section, the func
tion f defined by eq. (4) must be a periodic function 
whose period is equal to 2llJ1• So it is necessary 
that µ and JJ satisfy the following condition, 

Cs) 

Now let the distance between the real axis 
of the /-plane and the straight line HDH' be 
equal to 82 , and the values ·of/ at the points C 
and G be equal to /4 and /4, then 

where ~2 =((w2). By the relation 

m 
7) 1 OJ2 - 1) 2 llJ1 = 2' 

we have, 

E J JJ7r . 
Jc-Jg=- z, 

llJ1 

(6) 

so 

(8) 

81 and 82 are determined when the circle and 
the circular arc are given, so JJ can be determined 
by eq. (8) . 

And let the length of Bb' in the /-plane be 
equal to 2!, and the values of / at the points B 
and A be/,, and /4, then, by eq. (4) 

E - E =}!Li_lJ_(w - )-lo a(llJ2+JJ)a(µ-JJ) (9) 
Ja Jb OJ1 2 µ ga(llJ2-JJ)a(µ+JJ) 

and this must be equal to !. Then, if µ=m+ <u2 

and if we put this into the above eq. (9) and 
introduce the t?-function, the relation between m, 
JJ and l is determined. 

iJ(m+JJ) 
!=log o 2llJ1 (w) 

80( m-JJ .) 
2<1J1 

And if the origin of the .f-plane P corresponds 
to the point s=s0 in the s-plane, then, 

O= 2 1JiJJ (s - )-loo-a(so+JJ)a(µ-JJ)+p+i81, 
llJ1 o µ o a(so-JJ)a(p+JJ) 

and from this relation, we have 

(). ( so+JJ) 
p=log 

1 2w1 -l+i( JJ1I' -81) (r r) 
{)l ( So-JJ ) llJ1 

2W1 

From eqs. (8), (10), and (11), v, p and s0 can 
be determined, though it is very tedious work in 
practice. 

Now returning to the z-plane, we transform 
the z-plane to the zcplane by 

(r 2) 

the amount of the translation being m and 
generally a complex number, and 8 is the angle 
of rotation. Then transform the z1-plane into the 
zrplane by 

This is the usual transformation applied when 
a circle is transformed into the Joukowski section 
and we get a Joukowski section with an auxiliary 
aerofoil in the zrplane. 

2. The Potential Flow of the Perfect Fluid. 

We consider now the steady irrotational flow 
of the perfect fluid. The flow in the rectangular 
regions is represented by using the elliptic func
tions. 

The parallel flow at infinity in the z-plane is 
represented by the flow due to a doublet placed 
on the origin of the .f-plane, and it is then 
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equivalent to the flow due to a doublet placed on 
the point s=s0• The circulation flow around the 
circle: and the circular arc in the z-plane is re
presented by the flow due to an irrotational 
vortex placed on the origin in the f-plane and so 
at the point s=s0 in the s-plane. 

· Now let W be a complex velocity potential 

of the flow, then d: is the conjugate complex of 

the actual velocity. The boundary condition to be 
fullfilled is that the normal component of the 
velocity on the sides CC' and GG' of the rectangle 

dW 
must vanish. And ds must be a periodic func-

tion with the period o{ 2w1• 

The velocity due to the doublet in a rectan
gular region is expressed by the &'-function and 
that of the vortex is expressed by the (-function. 
In the present problem, 

dW iI'r • ] --=- C(s-so)-C(s-so) ds 21r L 

where I' is the strength of the vortex and w. is 
that of the doublet and this is generally a com
plex number and we denote it by w.=u.-iv., and 
w. is its conjugate complex i.e. w,=u,+iv.. Also 
we denote the conjugate complex of s0 by the 
letter s0, and k is a real constant. It is easily 
verified that the above eq. ( 14) satisfies the boun
dary conditions. 

In eq. (14) I' and k are unknowns, and they 
are determined by two conditions. For these 
conditions we take the usual condition as in the 
case of a Joukowski section, namely, at the point 
corresponding to the trailing edge the velocity is 
equal to zero. In our case we have two points, 
one point corresponding to the trailing edge of 
the auxiliary aerofoil and this is the point B, and 
the other point is on the circle and we denote it 
by D. 

By equating the velocity at the points B and 
D to zero, we get the value of I' and k. 

Then, it is necessary to express the strength 
of the doublet w. by the velocity of the fluid at 
infinity in the z-plane. The parallel flow with 
the velocity w. in the z-plane is equivalent to 

in the neighbourhood of the origin, and this 1s 

equivalent to 

in the s-plane, where ( !s) is the value of ~'Is 
'./ s=s. 

at s=s0• Comparing this and 

we get 

'ZCl8 =2aw, ( ds) 
df S=s• 

The flow is determined by eqs. ( 14) and ( 1 5) 

3. Calculation of the Lift. 

The lift acting on the aerofoil 
by the well-known Blasius formula. 
be equal to Px2 + iPy2, then, 

Px2-iP.J,2= pi ·c/{(dW)2dz2 
2 ~ dz2 

is calculated 
Let the lift 

( r6.) 

where p is the density of the fluid. 
We evaluite the above integral' in the s-plane IO
stead of the z2-plane. 

cl{ (dW)2ds2= ~ (dW)2_:!!__ds 
~ dz2 ~ ds dz2 

Integration is performed aroucd the point s0 m the 
opposite direction. 

Now in the neighbourhood of s0 

f =A{r+c1(s-so)+cl~-so)2+ ... }, (17) 

where 
&''(11) f(so)-f(µ) 

A &'(11)-g;J(µ) f(so)-&'(11) ' 

Ci=f'(so){f(so)~g;J(µJ f(so)~f(11)}' 

. _ f"(s0){ I I } 
l

2
- -2 - f(so)-f(µ) f(so)-f(v) 

-c
1 

&''(so) ( 8) 
f(so)-&'( 11 ) • 

1 

Integrating this and by the condition that for 
S=So, f=O, 

/=A {<s-so)+ : 1 (s-so)2+ ...... } (19) 

By eq. (19) the expansion of ~s in the neigh-
uz2 

bohurhood of s0 can be expressed 

ds =- A_i
0
{(s-s0)2+b(s-s0)4+ ...... }, (20) 

dz2 21ze 

where 
2 2 + 2 2i9 

b=~-~+a 3roe A2 
4 3 12a2 

By eqs. (14) and (20) (dW)2 d:d: can be expanded 
ds ~2 

in the neighbourhood of s0 in the power series 
of (s-s0), and only the coefficient of the tern1 
(s-s0)-

1 contributes to the result of the integral. 
The coefficient is equal to 

iI'Aw, 
21rae-1,9 ' 
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so the integral is equal to 

velocity Wz2 in the z2-plane is 

I'Aw, 
ae-to . 

equal to 

and wA -•-=2zv,, 
a 

Now the 

so the value of the jntegral is equal to 2I'w,2• 

The relation between the circulation around 
the aerofoil I'1 and the circulation I' about the 

·point s0, i.e. around the infinitely distant point in 
the z-plane, is 

I'.J=-I'. 

So the integral is equal to - 2I'/Wz2 and the lift 
becomes 

The result is quite the same as in the ordinary 
Joukowski section; the lift acts perpendicularly 
to Wz2 and is equal to / pI'1wz2 !, and there is no 
resistance. 

4. Calculation of the Moment of the Lift. 

In the same way as the lift, the moment of 
the lift about the origin in the z2-plane can be 
calculated by the Blasius formula, 

(22) 

where lH means to take the real part of the 
integral. 

z2 dds can be expanded in the neighbourhood 
Z2 

of s0 in the following way, 

ds ( ) mA ( 2 c1 ( )2 Z2--=- s-so --- s-so) +- s-so 
dz2 2a 2 

{ 
I 2 2 a2 + ,3ro

2
e

218 
2} 3 - -c1 --c2+----c--,,----A (s-s0) 

2 3 6a2 

By eqs. (14) and (23) (ddW)
2

z2 ds can be ex-
s dz2 

panded in the power series of (s-s0), and the 
coefficient of the term (s-s2)-

1 is as follows, 

-w -c1 --c2+----A 2 { r 2 2 a2+ v·/e2i8 2} 
• 2 3 6a2 

zT' ( mA C1 ) T 2 
- -+-u1

8 ---- +---2wwfJ(s0 -so) 7r 2a 2 41r2 • • 

- iI' w,((s0 -so)+ 2kw, (24) 
7r 

Let this coefficient be denoted by M, then the in
tegral is equal to -21ri1W, and the moment We is 

im=-pn~(M), (25) 

~ meaning to take the imaginary part of M 

5._ Example. 

An example was calculated. Fig. 4 shows 

this section. The Joukowski section is the so
called Gottingen Nr. 580, tested in the Aero
dynamischen Versuchsanstalt zu Gottingen. The 
lift coefficients of the slotted and un-slotted 
sections are as follows ; 

c,=n · 2,346 sin (00 +4,853°) 

c, =7r. 2,2 IO sin ( Uo + 5,7 I 2°) 

defined as 
A 

Cz=----

__f!_ w2 F 
2 

where A=lift, 

r 
r,o 

Lw2 
2 

0 

-2,0 

-3,0 

'I 
I 
I 
I 

u0 =angle of incidence, 

p=air density, 

w=air velocity, 

F=area of the wing, 

Fig. 4 

slotted 

un-slotted 

slotted, 

un-slotted, 

In Fig. 4 the pressure distribution over the surface 
of the aerofoil at an incidence angle of about 16° 
is shown. At this angle the un-slotted aerofoil 
almost reaches the maximum lift coefficient and 
the negatiue pressure and the pressure gradient at 
the nose of the aerofoil are very great. By 
adding the auxiliary aerofoil the negative pressure 
and the pressure gradient at the nose are lessened 
considerably, and the flow condition at this angle 
is equivalent to the condition of the un-slotted 
section at a much lower incidence angle. 

6. · Another Conformal Transformation. 

In the preceding paragraphs, the author 
treated the case of a Joukowski section with an 
auxiliary aerofoil, but the calculation is very 
tedious, so he proposes another much easier trans
formation. 
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In the first place we consider two circles in 
the z-plane whose centres are on the x-axis, and 
so situated that the ratio of the length of the two 
straight lines joining any point on the circle and 
H and H', whose coordinates are (a, o) and 
(-a, o) respectively, is constant. (see Fig. 5) 

Now by the following relation the outside 
region of those two circles is transformed into a 
rectangular region. of the s-plane, 

z+a s=log-- (26) 
z-a 

Fig. 5 

y z 

.x 

The circle C1 in Fig. 5 is transformed into a 
vertical straight line passing through the point 
s=u. and the circle C2 is transformed into a ver
tical straight line passing through the points= -(1, 
the height of the rectangle being 27l' and sym-

metrical to the real exis of the s-plane. When 
the radii 'of these circles and the distances between 
these centres are given, a, a ·and (1 can be cal
culated by the following formulae which were 
deduced by Lagally.5l 

d ~ R2 R2 (fofJ= - 1 - 2 

2R1R2 

a= R;t2 ®in_/, ®in ,1.= 1;; ®in_/, 

Now returning to the z-plane we transform it to 
the z4-plane by the following relations. 

First step 

second stop 

third step 

fourth step 

Then, 

- _I_{ r/ei(O'-OJ + r/e-il O'+OJ} 
Z4 

Fig. 6 
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dz =e'<e'-eJ +~{rle'<e'-o>+ r?e-uv+01i} 
dz4 Z4 

---;- nr/e-1:r201+0> +...... (.33) 
Z4 

7. Flow of the Fluid and the Lift and 
Moment. 

The flow in the s-plane can be expressed as 
follows, 

dW T 
-= -.!___L[((s)-((s+ 2f1)] 

ds 21!' 

-2a[ w.f(s)-w.f(s+ 2,8)],+ik, (34) 

where w.=u.-iv., the conjugate velocity in the 
z-plane at infinity, and the magnitude of w. is 
equal to the velocity in the z4-plane, and 

Ij=circulation around the aerofoil, 

k =real constant. 

I'1 and k can be determined by the two con~ 

d.. . dW h . h" h 1t1ons, 1.e. --=O, at t e two pomts w 1c 
ds 

correspond to the trailing edges of the aerofoils. 
By eqs. (34) and (32), 

dW = ilf _1 _ ilj 2a(( 2{]) 
dz 2r. z 2:ll' z2 

- iff (-1 -4f(2P)) 
02 

- ... 
27!' 3 . za 

2 

+ + au. 
u. 3:r 4a2f( 2,B)u. 8tt1f' ( 2j9)u. 

z2 zs -

• aiv.i 4a2f(2/3)v.i 8a3g;>'(2/3)v.£ 
-v.i- 3:r ·- z2 zs 

2aki ---;r- (35) 

From eqs. (33) and (35) 

~W =Ao+ A1 +A;+ ........ . 
UZ4 Z4 Z4 

(36) 

where 
Ao=w.e!c 9'-9J, 

A - ir'1 
1- 27!' , 

A2={- iI'J 2a((2P)+ a2 w.-4a2f(2{i)w.-2aki 
27!' 3 

- ir'1 ( m + ne-i:e)} irn-01 J 
27!' 

From eq. (36), the coefficient of z41 in the ex
pansion of 

and the lift can be calculated by the Blasius 
formula and we get 

(37) 

Let the coefficient of z42 be kl, then the 
moment of the lift about the origin of the a-4-plane 
is 

where 

- ~ { u.p+u.r cos 8+u,s sin 8+v.q-v.r sin 8 

+v.s cos 8} + 2d(u.2-v.2) sin 2(81-8) 

-4u.v.r/ cos 2.(8-81)-2r/(u/-v.2) sin 28 

-4u.v.rl cos 28, 

m-p+iq, 

n=r+is. 

8. Example. 

In Fig. 7 an example of this transformation 
is shown, and Figs. 7 and 8 show its lift 
coefficient c., moment coefficient c,;. and the 

Fig. 7 
1,0 

I -- slotted 

o,8 

o,6 

I --- ,/oulrpw.slr, 
I 

\\ 
\1 

0,4 

\~ 

~ 
~ 1-----

0,2 

", 
\ 

-

°'o 

position of the centre of pressure cv as a function 
of the incidence angle. In Figs. 7 and 8 these 
values of the Juokowski section, approximately 
equal to the calculated slotted wing section, are 
plotted in dotted lines for comparison. In these 
figures, c. and cm are defined as follows, 

A 

_f!__ w 2 F 
2 

9Ro 
Cm=----

1!__ w 2Ft 
2 
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Fig. 8 
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IDlo is the moment about the point on the real 
axis of the z4-plane at a distance of 2r2 from the 
origin_, and t=4r2, and 

c _ IDlo c,,,. 
P At cos a0 - c. cos a0 

These calculated results agree with the experi
mental results where the incidence angle is fairly 
large. 
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