On the Two-dimensional Flow around Slotted Wing Sections*

By Busuke Hudimoto

The floww of the perfect fluid arvound a circle and a circular arc is
investigated. Then they are transformed conformally into a sltted wing
section and the lift and the moment of the lift are calculated.

The problems connected with the two-dimen-
sional flow of the perfect fluid around slotted
wing sections have been investigated by some
authors. The first of them was Tchapliguine,” who
studied the two-dimensional flow around a wing
section composed of a number of segments of one
circular arc. The second was ILachmann? who
treated the problem of the two-dimensional flow
around the Joukowski section with an auxiliary
aerofoil. As a résult of his investigation the
auxiliary aerofoil was replaced by a number of
vortices placed on the skeleton line of the auxiliary
aerofoil. The last one was Watanabe.” He placed
a sink and a source of the same strength on the
surface of the Joukowski section, the points being
the centres of the inlet and exit port of the slot.

In the present paper, the author deals -with
the two-dimensional flow around a circle and a
circular arc and from them by the wellknown
conformal transformation a kind of slotted wing
. section was obtained.

1. Conformal Transformation

The aerofoil of the wing section considered
here is obtained entirely by conformal transforma-
tion. '

Consider in the z-plane Fig. 1, a circle and a
circular arc BB’. The axes of » and y are so
chosen that the z-axis, i.e. the real axis, passes
through the two intersections A and A’ of the
circle and the circle of the arc BB. The p-axis,
i.e. the imaginary axis, passes through the mid
point of AAH' and perpendicular to the x-axis.
Then, z is expressed by

s=x-+iy

Now the z-plane is transformed into the /-
plane (Fig. 2.) by the following relation

z+a

f:]og';__7 (l) :

where a= the length of OA=0H" (Fig. 1.)

Then, the segments of the circular arc BA’'
are transformed into a straight line parallel to the
real axis of the fplane and the distance between
them is equal to the angle between two. straight
lines connecting any point on the arc BA and A
and A’ respectivly in the z-plane. The circle is
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transformed into two straight lines also parallel to
the real axis extending to infinity. The distance
between them is equal to 7 and the outside region -
of the circle is transformed into a strip section

Fig. 1
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between the above-mentioned two straight lines,
and the points /7 and A’ of the z-plane cor-.
respond to infinity.

Then if the f~plane is cut along the straight
line CG or C'G’ passing through the mid point of
BB’ and perpendicular to the real axis (see Fig.
2.), the f-plane is transformed into a rectangular
region of the s-plane by the following relation :*

L/ A QN O LD (2)
ds  PE)—P(r) £6)—PE)
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where § is the elliptic function of Weierstrass, and
§’ is its derivative,

and S=V for point A,
S=—y H.
and s=p B.

Integrating the above relation, we get

S=[l(e+v)—L(r—~»))s—p)
g a(s+V)a(pu—v)
lo ga(s_v)o_(#_’_ )+constant

where ¢ is the ¢-function of Weierstrass.

Now, let the distance between the real axis
and BB in the f-plane be equal to #, and the
co-ordinates of B be p and 0,, i.e. s=pg corres-
donds to f=p+0,.

Then the constant in eq. (3) is determined

(3)

and
I=[Le+v)—Lp—»)](s—p)

a(s+v)o(pu—v) .
a(s—u)a(p+u)+p+201 (4)

We denote the breadth of this rectangle by
2w, and the height by wy/i. Now we cut off the
J-plane along CG or ('G’, and to prevent the
discontinuity of the flow at this section, the func-
tion f defined by eq. (4) must be a periodic function
whose period is equal to 2w,.. So it is necessary
that g and v satisfy the following condition,

Lp+v)~g(p—v)=21Y
w;

n={(w).

Now let the distance between the real axis
of the f-plane and the straight line HADH' be
equal to 0, and the values of f at the points C
and G be equal to f, and f,, then

—log

(5)

where

Je —/= Wy — 2V7),, (6)
where 7,=={(w,). By the relation
py — nz.
7102 — o0y -—T,
we have,
v
ﬁ*ﬁ=71 2 (7)
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and this must be exual to #{7+6,—6,),

SO
u=w]<l+‘01;02)- (8)

#, and 0, are determined when the circle and
the circular arc are given, so v can be determined
by eq. (8).

And let the length of BA’ in the f-plane be
equal to 2/, and the values of f at the points B
and 4 be f; and £, then, by eq. (4)

N (s +V)a(p—v)
Jomfo= © o(w,—v)o(p+v) ©)
and this must be equal to Z Then, if y=m+ w,
and if we put this into the above eq. (9) and
introduce the @-function, the relation between #,

v and / is determined.

(")

) (m—u

2w,; .

1Y (0, — pr)—1
1

l=log ———— (10)

And if the origin of the fplane P corresponds
to the point s=s, in the s-plane, then,

_2ny o a(sotv)e(p—v) .
o——w1 (%o log O e y)g(/1+y)+p+lﬂl’
and from this relation, we have .
( 50+v
pelog N 20 ) 4, ( ~6) (1)
(S )
2@

From egs. (8), (10), and (11), v, # and s, can
be determined, though it is very tedious work in
practice.

Now returning to the z-plane, we transform
the s-plane to the z,-plane by

10 (12)
the amount of the translation being . and
generally a complex number, and # is the angle

of rotation. Then transform the z-plane into the
z,-plane by

a=(z+m)e”

7 (13)

o

<1

Zy=2y+

This is the usual transformation applied when
a circle is transformed into the Joukowski section
and we get a Joukowski section with an auxiliary
aerofoil in the z,-plane.

2. The Potential Flow of the Perfect Fluid.

We consider now the steady irrotational flow
of the perfect fluid. The flow in the rectangular
regions is represented by using the elliptic func-
tions.

The parallel flow at infinity in the z-plane is
represented by the flow due to a doublet placed
on the origin of the jfplane, and it is then
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equivalent to the flow due to a doublet placed on
the point s=s, The circulation flow around the
circle and the circular arc in the z-plane is re-
presented by the flow due to an irrotational
vortex placed on the origin in the f~plane and so
at the point s=s, in the s-plane.

Now let W be. a complex velocity potential

of the flow, then [!(ZTV is the conjugate complex of

the actual velocity. The boundary condition to be
fullfilled is that the normal component of the
velocity on the sides CC” and GG’ of the rectangle
And aw

ds
tion with the period of 2w, .
_ The velocity due to the doublet in a rectan-
gular region is expressed by the f-function and
that of the vortex is expressed by the ¢-function.
In the present problem,

LZ,I:V i rC(S ) C(J‘— 50)]

2wl

— [w,@(s— so)+w,P(s— }0)] I-r- ko (14)

where [I” is the strength of the vortex and v, is
that of the doublet and this is generally a com-
plex number and we denote it by w,=#,—7iv,, and
w, is its conjugate complex i.e. W,=u,+iv,. Also
we  denote the conjugate complex of s, by the
letter §, and # is a real constant. It is easily
verified that the above eq. (14) satisfies the boun-
dary conditions.

In eq. (14) I" and £ are unknowns, and they
are determined by two conditions. For these
conditions we take the usual condition as in the
case of a Joukowski section, namely, at the point
corresponding to the trailing edge the velocity is
equal to zero. In our case we have two points,
one point corresponding to the trailing edge of
the auxiliary aerofoil and this is the point B, and
the otber point is on the circle and we denote it
by D.

‘ By equating the velocity at the points B and
D to zero, we get the value of I" and 4.

Then, it is necessary to express the strength
of the doublet ), by the velocity of the fluid at
infinity in the z-plane. The parallel flow with
the velocity 7o, in the z-plane is equivalent to

must vanish. must be a periodic func-

2aw,
f2

in the neighbourhobd of the origin, and this is
_2aw, (a’:
(5—50)2

df Js=s,
in the s-plane, where <ﬁ>
bl d/

S=5,

equivalent to

is the value of ——

ﬂ’f

at s=s,. Comparing this and
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. LUSK‘)(S—SO):=3°~ ol W’
we get
maen (), w

The flow is determined by egs. (14) and (15)

3. Calculation of the Lit.

The lift acting on the aerofoil is calculated
by the well-known Blasius formula. Let the lift
be equal to Px2+z'Pyg, then, .

& By

where p is the den51ty of the fluid.
We evaluate the above integral in the s-plane in-
stead of the z,-plane.

95:( >d2“¢(dt7 dz’z

Integration is performed around the point s, in the
opposite direction.

Now in the neighbourhood' of 5,
ar_
ds

Proy—iPy,= (16.)

dgo

{l+ cl(s—so)+c9(.‘s—so)“’+ ..}, (17)

where
I (O M JOS N 00

PE)—P() Ps0)—P)

€1——g"(50){@(30 —P() KD(so)I—K"(V)} '
= p’/(so){
2

1 _ 1 }
Pl -0 Pls)—P)

K"’(So)
18
- o=-o8 ®
Integrating this and by the condition that for
S=50., f=O,
f=A{(s-—so)+%(s—so)2+ ...... } (19)
By eq. (19) the expansion of 52 in the neigh-
2
bohurhood of s, can be expressed
A
;ﬁ'_j Z(ze_w{(s—c.,) (5= 5) e } (20)
<2
where é:i—.&{.w,{l?
3 12&®
W\ ds

can be expanded

By egs. (14) and (20) (dT 7

in the neighbourhood of s, in the power series
of (s—s,), and only the coefficient of the term
(s—s0)™" contributes to the result of the integral.
The coefficient is equal to

irFAw,

2mae™® '
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so the integral is equal to PA_Zf;". Now the
v ae
velocity @, in the z,-plane is equal to
we, =", and M:zwz,

so the value of the jntegral is equal to 2/%e,.

The relation between the circulation around
the aerofoil I'; and the circulation [7 about the
‘point so, i.e. around the infinitely distant point in
the z-plane, is

ry=-rI

So the integral is equal to —2[w:, and the lift
becomes

Prey—iPyy=—plyawngi (21)

The result is quite the same as in the ordinary
Joukowski section; the lift acts perpendicularly
to @z, and is equal to | pljws, |, and there is no
resistance.

4. Calculation of the Moment of the Lift.

In the same way as the lift, the moment of
the lift about the origin in the z,-plane can be
calculated by the Blasius formula,

M= —% R gs) (‘Zf)zzgdzg (22)

where R means to take the real part of the
integral.

2’2‘-——

52/2'2
of s in the following way,
ds __ '
dz,

can be expanded in the neighbourhood

— e (23)

: dW\*  ds

By egs. (14) and (23) ( ) “

panded in the power series of (s—s), and the
coefficient of the term (s—s5,)~" is as follows,

2 2,20
1 2 a’+ 372
—w, {— o=+ -—3—720——‘42}
2 3 6a* .

+ i W, ( mA -—ﬂ)-{-
T 2a 2

can be ex-

Vs — .
pream 2w f(so—50)

71; Wl (So—50)+ 2420,

(24)

Let this coefficient be denoted by M, then the in-
tegral is equal to —2m/}, and the moment IN is

M= —pa§ (M), (25)
[0

& meaning to take the imaginary part of M.

5. Example.

An exanmiple was calculated. Fig. 4 shows

this section. The Joukowski section is the so-
called Géttingen Nr. 580, tested in the - Aero-
dynamischen Versuchsanstalt zu Gottingen. The
lift coefficients of the slotted and un-slotted
sections are as follows ;

slotted,
un-slotted,

¢, =7+ 2,346 sin (¢ + 4,853°)
¢, =7 2,210sin (a,+ 5,712°)

defined as
A
o=
L wrF
2
where  A4==lift,
vy=angle of incidence,
p=air density,
w=air velocity,
F=area of the wing,
Fig. 4
1,0

-1,0

-2.0 // slotted
F/ —-——- un-slotted
|
-30 bt
|
!
|
]
—4,0 ).t—

In Fig. 4 the pressure distribution over the surface
of the aerofoil at an incidence angle of about 16°
is shown. At this angle the un-slotted aerofoil
almost reaches the maximum lift coefficient and
the negatiue pressure and the pressure gradient at
the nose of the aerofoil are very great. By
adding the auxiliary aerofoil the negative pressure
and the pressure gradient at the nose are lessened
considerably, and the flow condition at this angle
is equivalent to the condition of the un-slotted
section at a much lower incidence angle.

6. Another Conformal Transformation.

In the preceding paragraphs, the author
treated the case of a Joukowski section with an
auxiliary aerofoil, but the calculation is very
tedious, so he proposes another much easier trans-
formation.
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In the first place we consider two circles in
the z-plane whose centres are on the x-axis, and
so situated that the ratio of the length of the two
straight lines joining any point on the circle and
H and HAH’, whose coordinates are (a,0) and
(—a, 0) respectively, is constant. (see Fig. s5)

Now by the following relation the outside
region of those two circles is transformed into a
rectangular region. of the s-plane,

z+a

metrical to the real exis of the s-plane. When
the radii ‘of these circles and the distances between
these centres are given, @, @ and B can be cal-
culated by the following formulae which were
deduced by lagally.®

—_ d2"—R12_R22
Cof /= 2RR,

a=—]%&"~ SinJ, Gin a=% SinJ,

s=log (26)
, —a &in f="2. @in/ (27)
Fig. 5 . .
Now returning to the z-plane we transform it to
1 %4 z the z,-plane by the following relations.
First step &, =268 — me'®, (28)
second stop 22___21-+r71' , (29)
1
third step 2g=20¢" " — 107, (30)
fourth step  zy=z5+ 2 - (31)
53
Then,
z=(m~+ne"®)+ 2, ®' ="
The circle ¢ in Fig. 5 is transformed into a . . ,
vertical straight line passing through the point —7{7’226“9'_‘”4'7'{8—“'H” !
s=« and the circle (, is transformed into a ver- !
tical straight line passing through the point s=—3, + LR L (32)
the height of the rectangle being 27 and sym- %
Fig. 6
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dz - I
=00 - {rfe“ 01=0) 4 4, 2,=40+0") }
2’4

&7}

2 -

- par 2o 120+0)
24

7. Fléw of the Fluid and the Lift and
Moment.

The flow in the s-plane can be expressed as
follows,

D =~ [~ t(s+28)]

—2a[w.P(s)~w.P(s+2B)) + ik, (34)

where w,=u,—7v,, the conjugate velocity in the
z-plane at infinity, and the magnitude of =, is
equal to the velocity in the z,-plane, and

I'y=circulation around the aerofoil,
% =real constant.

I'y and % can be determined by the two con-
a;z,—I;V=o, at the two points which

correspond to the trailing edges of the aerofoils.
By cgs. (34) and (32),

ditions, i.e.

aw _ i, 1 _ il 2af(2B)
dz ~ 2r z 2w #
[,
z—L(——48’9( ﬂ))——
Y ) R 2 A )
o3 2 Pa
i i PP 8 (2B)vii_
=34 2 2
2aki
; A : ~(35)
From egs. (33) and (35)
aw _ .Ag '
2z, Ao+ Zs 24 + ... (36)
where
Ay=w, et %=
A= il ’
2m

A2={_%zag(zp)+gw,—wa(zﬂ)a,—zm

_ Z'I} (m_l_”e—is)} ei(B—D’)

+’ZU (72 i(01—9)+rl2e-¢(8+9’))

From eq. (36), the coefficient of z;*
pansion of

aw

(dzq)
and the lift can be calculated by the Blasius
formula and we get

in the ex-

il _ il
—L 200, "0 = Sy, |
2 T

P_" 95’ (d w )2,124 = —pilws,

Let the coefficient of 2z;* be A, then the
moment of the lift about the origin of the 2,-plane
is

(37)

M=pn I (M) (38)

(M= —2u, —if— al(2p) ———;; &, — qauk

—%{u,p+u,r cos B+u,ssin 0+v,g—v,rsind

+ 7,5 cos 0} + 27—, sin 2(0' —0)
— 4u,p 7y cos 2(0—0)— 2 (u,t —v,.2) sin 20
—qu, v, cos 20,

m=p+ig,
v =7+ is.

where

8. Example.

In Fig. 7 an example of this transformation
is shown, and Figs. 7 and 8 show its lift
coefficient ¢,, moment coefficient ¢, and the

Fig. 7

slotted
—— e Joukowsh:

\
\\
\
0,6 \

0,2

-10°

/’\

position of the centre of pressure ¢, as a function
of the incidence angle. In Figs. 7 and 8 these
values of the Juokowski section, approximately
equal to the calculated slotted wing section, are
plotted in dotted lines for comparison. In these
figures, ¢, and ¢, are defined as follows,

A
€= ,
L wF
2
Cm = My
L wrFr
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. Fig. 8

0,5’

-1,0

-2,0

slotted

——— e Jovkowshki

-20°

-10°

00

_0'5
%

My is the moment about the point on the real
axis of the z,plane at a distance of 27, from the
origin, and 7/=4r,, and

9}20 Cm

Atcosa, c¢,cosa,

Cp=

These calculated results agree with the experi-

mental results where the incidence angle is fairly
large.
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