
The Lift on an Aerofoil with a Circular Arc Section placed 
near the Ground.* 

By Busuke Hudimoto 

The outside region of a segment of a circular arc and a straight 
line is transformed conformally into a rectangular region and then the 

_flow of the per.feet jlui,J and th, lift and its moment acting on the 
cirrular arc are expressed by using the elliptic functions. 

The theory of the effect of ground interference 
upon the aerofoil has been discssed by many 
authors. Betz/> Wieselsberger,2> Tani3> and Sasaki4J 
investigated the problems relating to the aerofoil 
with finite span, and the problems relating to the 
infinite span or the case of the two-dimensional 
flow were investigated by Sasaki,6J Rosenhead,6l 
Bonder,7l Tani8J an,d recently by Tomotika, Naga
miya and Takenouti,0> The cases discussed by all 
of these except Bonder were the effect of the in
terference of the ground,upon a flat plate placed 
near the ground ; Bonder treated the problem of 
an aerofoil with a nearly Joukowski section. 

The . effect of the ground upon aerofoils in 
general is probably not much different from that 
upon a flat plate, so the results of the calculations 
made by Tomotika, Nagamiya and Takenouti can 
be used very conveniently for practical calcula
tions. But in this paper from the standpoint of 
theoretical interest, the author deals with the case 
of an aerofoil with a circular arc section placed 
near the surface of the ground. 

1. Conformal Transformations. 

The conformal transformations used here are 
quite the same as in the author's previous pa.per 
on the slotted wing section. 

In Fig. I we consider the circular arc BB' 
and a straight lin:e, i.e. the surface of the ground. 
We denote this plane the z-plane and take this 
straight line as the x-axis or the real axis. We 
consider here only the case when the circle of 
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the arc BB' intersects the straight line or at least 
touches the straight line. The intersections are 
denoted H and H' in Fig. I. The origin O is 
taken at the mid-point of HH' and the direction 
of the imaginary axis y is so chosen that the arc 
BB' lies on the side of the negative values of 7. 

Let OH=OH'=a and by 

z+a f=log--
z-a 

(r) 

the z-plane is transformed into the /-plane. By 
this transformation the half plane on the negative 
side of y is transformed into a strip section 
parallel to the real axis of f and extending to 
both infinities in the f-plane, one side of this strip 
passing through the origin of the /-plane (see 
Fig. 2). The height of the strip is 1r and the 
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points H and H' correspond to infinity and the 
point of infinity of the z-plane corresponds to the 
origin of the f-plane. The arc BB' is transformed 
into a straight line parallel to the real axis. 

Then we cut off the /-plane by CG or C' G' 
passing through the mid-point of BB' and perpen
dicular to the real axis, and transform the f-plane 
into a rectangle in the s-plane by the relation,1°> 

df gJ'(v) KJ(s)-KJ(µ) 
ds KJ(v)-KJ(µ) KJ(s)-KJ(v) 

where KJ is the f-function of Weierstrass and KJ' is · 
its derivative and 

and 

S=IJ for 
s=-1,1 
s=µ 

point H, 
H' 
B. " 
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Integrating the above relation (2), we get 

/= { ((µ + v)-((µ-v) }(s-µ) 

I a(s+ v)a(µ-i,) + t - og--~~-- cons. 
a(s-v)a(µ+v) (3) 

where ( is the (-function af Weierstrass. 
Let the coordinat~s of the point B in the [-plane 
be (p, 0), then the integration constant is de-
tenriined and · · 

/= { ((µ + i,)-((µ-v)}(s-µ) 

-Io a(s+v)a(µ-v) + +iO 
g a(s-v)a(µ+v) j> (3') 

We denote the breadth of this rectangle by 

2w1 and the height by <1J
2 

, then w1 and w2 are 
z 

the half-periods of the above mentioned KJ and 
( functions. 

Now we cut off the region in the /-plane 
along the straight line CG or C' G', so f must be 
a periodic function with the peri~d 2w1, unless 
discontinuity occurs· along this straight line, and 
consequently µ and v must satisfy the following 
condition: 

where 
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The circular arc BB' is transformed into a 
straight line BB' in the f-plane and its distance 
from the real axis is equal to () which is the 
angle between two straight lines joining H and 
H' to any point on the circular arc BB' in the 
z-plane. 

Let the values off at the points C and G 
be denoted by fc and /4, then 

"ll . /" /" 2Yj1 )) 
Z•1=.1c-✓g=--- W2-2Yj2V, 

W1 

where 

then by the relation 

(s) 

And let the values of f at the points A and B 
be denoted by /4 and .f,,, and the length of BB' 
be equal to 2!, then 

l=/4-.f,, 

_ 2?1V ( ) 1 a(,tJ2 + v)n(µ-v) 
- -- <1J2 - µ - ocr ------=----=----'-------''-----____:.__ 

w1 "' n(<tJ2 -v)a(µ+ v) · 

Now if µ=Ill+ w2 and the &-function is introduced, 

&o( m+v) 
l=locr 2 w1 

" &o( m-v) 
2W1 

(6) 

The ongm P of the /-plane corresponds to a 
point of the s-plane on the real axis and we 
denote this point s=s0; then by eq. (3) 

2r,,v (so- )-Io a(so+v)n(p-i,) + .,,+ iO=o, 
W1 µ g n(s0 -v)n(µ+v) r 

or by using &he 8-function and by eq. ( 6) 

& ( so+v) 
.P=log 

1 

~ l 
&1(~). 

2W1 

(7) 

When the circular arc BB' in the z-plane is 
given, .P, l and () can be calculated ; then, by 
eqs. (5), (6) and (7) v, 11. and s0 are determined. 

2. Flow of the Perfect Fluid in the 
Rectangular Region. 

We consider the two-dimensional steady flow 
of the perfect fluid in the rectangular region in 
the s-plane. 

The parallel flow along the real axis in the 
z-plane is equivalent to the flow due to a doublet 
placed at s0 . Let the complex velocity potential of 
the flow be w;, then the conjugate complex of 

dW the velocity, i.e. ~-1
, can be expressed by the as 

KJ-function, 

dW 
ds 1 = -w,KJ(s-s0 ) (8) 

where w, is an unknown constant, and it is deter
mined in the following way. The parallel flow 
along the real axis with the velocity w. in the 
z-plane is equivalent to the flow due to a doublet 
placed at the origin in the f-plane and in the 
neighbourhood of the origin the conjugate com
plex of the velocity can be expressed in the 
following form : 

- 2;:· + ........ . 

When this flow is transformed into the s-plane, 
it is expresst'd in the neighbourhood of the point 
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s0 in the following form, 

2aw0 ( ds) - )2 dif + ......... . 
(S-So s=•• 

where (
ds). ds 
df •=•;s the value of df at s=s0• 

Comparing this and eq. (8), w 8 is determined and 

w,=2aw. ( ;; ),=,. 
The other type of the flow is the flow 

circulating around the circular arc. If this complex 
velocity potential is denoted by w;, the conjugate 

complex of the velocity, i.e. d-:J;, can be ex

pressed in the following form : 

dWz =k, (10) 
ds 

where k is a real constant. 

Combining eqs. (8) and (10) the conjugate com

plex of the velocity dd~ is expresse'tl by 

dW = dU'i + dWz 
ds ds ds 

= -w,f(s-so)+k (11) 

The value of k is determined by the condition 
that at the point corresponding to the trailing 
edge of the circular arc, in our case at the point 

B', d1: must vanish. Let s=A at the point B', 

then 
k=w,f(A-so), 

or this is equivalent to 

. k=w,f( - µ-so)
and 

d:: = -w, { f(s-so)-f(A-so)} (12) 

. dW Integrating ----;J;- around the circular arc, the 

circulation I' around this circular arc is deter
mined: 

Fig. 4 

, Jo dW l= -d. ds=2w;r;1+2w,<tJ1f(A-so) 
OI S 

In Fig. 4 the stream lines of the flow in the s 

and z-planes are shown in free-hand writing. The 
direction of the velocity at the trailing edge 
coincides with the direction of the tangent to the 
circular arc at the trailing edge. This is easily 
verified and so is not described here. 

An example was calculated and in Fig. 5, 
the circular arc and the plane wall, i.e. the surface 

0,5 

Fig. 5 
aerofoil ,,,,-- -direction of Wz 

~ 

of the ground, are shown, the ratio of the length 
of the chord to the height of the leading edge 
from the surface of the ground being o.88 5 and 
the ratio of the camber to the chord being o. 11 S 
and the angle of incidence is 17° 2,28'. The 
velocity over the ground surface, denoted in this 
figure wu, is shown, with the velocity at infinity, 
i.e. w., taken as unity. In Fig. 6 the velocity 
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with interference 
free Jtream 

----------
_.,,,. 

-direction of w• 

I 
/ 

over the circular arc, denoted in this figure w1 , is 
shown, with the velocity w. taken as unity and 
the velocity when the same circular arc is placed 
in the free stream at the same incidence angle 1s 
shown by the dotted line for comparison. 
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3. The Lift acting on the Aerofoil. 

The lift acting on the aerofoil calculated by 
Blasius' formula. Let the components of the force 
in the directions of the x-axis and the y-axis be 
denoted by P,. and P

11 
respectively, then 

. pi #(dW)2 

P.,-tP =- -- dz 
" 2 dz 

the integration being performed in the counter
clockwise direction in the z-plane. Instead of in 
the z-plane, the integration may be performed in 
the s-plane or more conveniently in the Z-plane, 
where the relation between s and Z being as 
follows: 

hence 

J(dW)2dz=J(dW)2 
ds df ds 

dz. ds df dz 

= _ <t11 J(dW)2 
ds df dZ . (i6) 

11r ds df dz Z 

The paths and the directions of the integration 
are shown in Fig. 7. 

and 

and 

Now 

( ~U:Y =w.2{f2(s-so)-2k1f(s-s0)+k/}, 

Fig. 7 
z 

s 

where k1 =f(-<-so), 

ds _f(1,1)-f(µ) f(s)-gJ(v) 
df - f'(1.,) f(s)-f(µ) 

df - (ef- 1)2 
dz - - 2acf-

a(µ+ 1,1)a(s-1,1) 
a(µ-v)a(s+ v) 

z 

Inserting these values into the integral of eq. 
(16), we separate the integrand into three parts, 

2Y}1 \I 
8 

the first that multiplied by e~ , the second, that 

_2°1)1\1 
8 

multiplied by e ~ , and the last, that not multi-
plied by any of them. The first part i.e. that 

~ 
multiplied by e ..,, •, is an elliptic function of the 
second kind and is expressed by the sum of the 
function 

A(t)= _ a(t-zv) 
a(t)a(2v) 

and expanded as follows ; 

a1A(s-s0) + a2A'(s-s0 ) + a3 A 11(s-so) + (J4A"'(s-so) 

+a5A(s+ µ)+a6A(s-µ), 

where a,, a2, ...... are constants and A', A", ..... . 
are the derivatives of the function A. After some 
calculation the coefficients a1, a2 , ...... can be deter
mined and the necessary coefficients a1 , a5 and u6 

are as follows; 

ai=- f(i,)-f(µ) f(so)-f(v) x 
. 2af'(1,1) f(so)-f(µ) 

{co( ~2 + c~2 - 2;2 -2k1) 
-(c3-ZC1c2+ c/.:... 2k1c1) }, 

a = {f(v)-g;>(µ)}
2
{v.i(µ-s )-k }2eP/' ~~ 

s zaf'(v)g;>'(µ) o- o i ' 

f(:.i)-f(µ) a2(µ)a3(µ+v) e-4
:•,• µ,+p+io a6 ~-~-=--~~~--- x 

2af'(i.1) a2(v)a(2µ)a(µ-1,1) 

=O 

where 

{f(µ+ So)- k1 }2 

_ f'(1,1) f(so)-f(p.) 
Co - -=-~~~ -=---,-'-c- ' 

f(1,1)-f(µ) f(so)-f(1,1) 

C1=f'(so){ I - I g;> }, 
f(so)-· f(µ) f(so)- (v) 

_ f" (So) / I I } 
c2

- -2-lf(sol-f(µ) f(so)-f(y) 

C2f'(so) 
f(so)-f(v) 

c1f'(so) 
f(s0)-SJ(v) ' 

f(so)~f(i,)} 

The second part i.e. multiplied by e -~ • is 
· also an elliptic function of the second kind and, 

in the same way, it can be expressed by the sum 
of the function 

B(t)- a(t+ zi,) e-2::•, 
- <1(t)a(211) ' 

and expanded as follows ; 

/31 B(s--so) + /12B'(s-so) + /1aB"(s-so) + {14B"'(s-.<o) 

+ {158(s+ µ)+/1sB(s-µ), 
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where 

f1i= - g;>(11)-gJ(µ) gJ(so)-f(i,) X 
2agJ'(1,1) &J(so)-f(µ) 

{ ( 
c/ Ci 2c. ) -co -+---- -2k1 

'6 2 3 
-(c3 -2C1c2 + c/-2kic1) }, 

r.i = {gJ(1,1)-gJ(µ)}
2
{tr.1(µ-s )-k }2e-Pe -•:~ 

/-'5 2agJ'(i, )gJ'(µ) o- o 1 , 

/3
6
=f(1,1)-gJ(µ) a2(µ)a(µ+1,1)a'(µ-1,1) /::~ µ.-p-•9 x 

2af'(1,1) a2(1,1)a(2µ) 

=O 

The third part is an elliptic function of the 
first kind and it can be expressed by the sum of 
_the g;>, f', f" and (-functions and we express it 

rif"(s-so) + r2&J'(s-so) + r3&J(s-so) + r4((s-:-so) 

+r5((s-µ) + r6((s+ µ)+r7, 

The coefficients ri, r2 , •••••• are determined and are 
as follows; 

_ f(1,1)--'f(µ) &J(so)-gJ(1,1) 
ri- 6af'(1,1) g'J(so)-gJ(µ)' 

-c f(1,1)-gJ(µ) f(so)-gJ(1,1) 
r2

-
1 2af'(J.1) g;J(so)-f(µ)' 

r = - f(v)-gJ(µ) gJ(so)-gJ(v) (2k +c -c 2) 
3 ag;J'(v) gJ(so)-f(µ) i 2 , ' 

_ g'J(v)-gJ(µ) g'J(s0)-gJ(1,1) 
r4

- agJ'(1,1) f(so)-f(µ) X 

{ 2kic1-(c3- 2c1c2 +c/) }, 

r·= -{ "'1(µ-so)-k }d g;J(µ)-g;J(1,1)}
2 

D ()- 1 ag;J'(1,1)f'(µ) ) 

-{v.i( + ) k }2{f(µ)-g;J(li)}2 r6- o- µ So - i ag'J'(1,1)f'(µ) , 

-{v.i( )' k }28'J(1,1)-g'J(µ) v.itt( )+ v.i,( ) r7- o- So - J ag'J'(li) -r10- So r20- So 

-r3f(so) +r4((so)+ r5((µ). 

The integration of the first and second parts, i.e. 
the parts of the elliptic functions of the second 
kind, are performed in the Z-plane11

l and the 
results are as follows ; 

7r {gJ(µ-so)-k1 }2 {g;J(µ)-gJ(li)}~ x 
sin J.17r . 2ag'J'(v)g'J'(p) 

OJi (eP-e-P), (172) 

-2~itf(J.i)-g'J(µ) gJ(so)-gJ(1,1) X 

2ag'J'(1,1) f(so)-g;J(p) 

(c3 -2,.-,c2 +c/-2k1c1) (173) 

The evaluation of the integral containing g;>, g;J', f" 
and (-functions is easily performed in the s-plane 

and the results are as follows ; 

&J(1,1)-g'J(p) f(so)-f(1,1) 
- agJ'(1,1) KJ(so)-f(µ) 

{ 2r;1(<1J1-so)(cs-2C1C2 +c/-2k1c1) 

-2r;i(c2-c/+2ki)}, (181) 

- {g;J(p)-gJ(1,1)}
2 

{gJ(µ-so)-k1}2 X 
agJ' ( Ii )g;J' (µ) 

{ 2"f/1(m1~m)+m{ 2((m) + rt:)t:\J}, (182) 

+ 2mi(r1-ro((µ)) (l83) 

+ 21ri f(1,1)-f(µ) f(so)-f(1,1) x 
2af'(1,1) f(so)-f(µ) 

(cs - 2C1C2 + c/- 2k1c1) ( l 84) 

where 

Then the air force is 

P,,-iPy= .o;.2 £{(17i)+ (172)+(173) 

+ ( 181) + ( I 82) + ( 183) + ( 184)}. ( r9) 

Now (173)+(184)=0, i.e. the imaginary parts of 
the terms in the bracket of the above equation 
cancel out each other, hence 

P,,=O, 

Py=- pw.2 {(17i)+(172) 
2 

+(18,)+(182)+(183)}, (20) 

so there acts no resistance, as was expected be-
forehand. · 

In the case of the example in paragraph 2, 
the ratio of the lift coefficient with ground inter
ference, c., to that in the free stream, c,0 , is 

Cz 8 -=O. 25. 
Cz0 

4. The Moment of the Lift. 

The moment of the lift about the origin of 
the z-plane can be calculated by Blasius' formula. 
Let the moment be IDc then 

where ffi means to take the real part of the 
integral. 

Now (dW)2 (dW)2 
ds df 

dz zdz= -----;J;- df dz zds, 

and by eq. (1) 

hence 

z ds df = __ 1 f(v)-f(µ) &J(s)--'f(1,)(ef-e-f) 
df dz 2 f 1(1,1) f(s)-f(µ) · 

So the integral of eq. ( 21) is the same as thnt 
of the lift and moreover the part containing the 
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elliptic function of the first kind disappears. 
Consequently 

We=- paw.2 M (22) 
2 

where 

M=-71: ctg JJ7r f(v)-f(µ) f(so)-f(v) x 
w1 af'(v) f(so)-f(µ) 

(c3-2c1c2 + c/-2k1c1) 

__ 11:_{f(µ-so)-k1}2 x 
• JJ7r 

Sill-

~ {f(1,1)-f(µ)}2 (eJ'+e-P) 
2af'(v)f'(µ) · 

When s0=w1 i.t:. when the incidence angle of the 
aerofoil is zero, 

and f(µ-so)-k1=0, 

and· accordingly illc=o. That means that the lift 
acts along the y-axis, as was expected from the 
symmetry of the flow about this axis. 

5. Special Cases. 

(i) When the circle of the circular arc BB' 
touches the surface of the ground we transform 
the z-plane into the ./-plane by the relation 

/=-•-. 
z 

(ii) In the case of a flat plate we take the 

origin of the z-plane at the intersection of two 
straight lines, one that of the ground surface, the 
other that of the flat plate, and we transform the 
z-plane into the ./-plane by the relation 

/=logz. 

6. Summary .. 

In this paper the author treats . the problem 
of· the effect of ground interference upon an 
aerofoil with a circular arc section, when the circle 
of this aerofoil intersects or touches the surface of 
the ground. By the conformai transformation the 
region ou_tside the circular arc and the straight 
line is transformed into a rectangle. Then the 
velocity of the flow of the perfect fluid is deter
mined and hence the lift and the moment of the 
lift acting on the aerofoil are calculated by Blasius' 
formulas. 

In conclusion, the author expresses his cordial 
thanks to Prof. Nisihara for his kind advice and 
encouragement throughout this investigation. 
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