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Mathematical Theories of Bourdon Pressure Tubes and 
Bending of Curved Pipes. 

By Masasuke Tueda. 

First Report : Mathematical Analysis. 

llfalhemalically .•lncf so/11/ions for the lheorks of Bourdon pnsmre tubes a11d 
bendi11g of curved pipes are obtained sim,11,meously in t>rder lo give a theoretical 
standard lo the various approximate tkeorin relating lo the same proMems. The first 
reporl contains only the mathematical analJ1s1"s of the pn,b!em; the examples t>f nu
merical calculations and applications lo various modified f"rms of cr<1ss-section wilt be 
given i,, further reports. 

I. Introduction. 

Up to now, there have been published several 
papers treating either the theory of bending of curved 
circular pipesm or the theory of Bourdon pressure 
tubes ;'2' all of which, however, so far as the 
author is aware, only afford more or less appro
ximate solutions to each problem independently. 
There seems to exist no theoretical standard to 
verify the accuracy of those approximate theories. 
The present paper gives a mathematically more 
accurate solution of the problems common both to 
the bending of curved pipes and of Bourdon pres
sure tubes, by means of an application of Prof. 
Meissner's method of solving the differential 
equations.'31 

In: order to apply Meissner's method of solu
tion to the case of constant wall thickness, the 
shape of the cross-section must be assumed to be 
built up of circular arcs, unless the Poisson's ratio 
( r /m) be neglected. In every previous theory 
of Bourdon pressure tubes it has been assumed as 
an ellipse, but the cross-section of any a_ctual 
Bourdon tube far more resembles the shape built 
up of two pairs of circular arcs than an ellipse. 
Because of this fact, the following also may be 
assumed: 
(i) The center-line of the pipe forms a part of a 
circular arc in a plane, which shall be called here 
"the plane of symmetry." 
(ii) The cross-sectional form of the middle surface 
of the pipe wall is constant along the center-line, 
and is built up of a circle or of two pairs of 
circular arcs symmetrical with respect to two axes 
in and perpendicular to the plane of symmetry. 
(iii) The thickness of the wall of the pii:e 1s 
constant. 

(iv) The external force applied is either the· in
ternal pressure p or the uniform bending moment 
Min the plane of symmetry, both of which, of 
course, may be applied simultaneously. In the 
present case, if we consider the free end of the 
pipe to be closed, the internal pressure p never 
exhibits the action of the bending moment. 
( v) The material of the pipe is homogeneous 
and isotropic, and Hook's law is necessarily 
applicable. 

II. Notations of Position and Displacement. 

The surface of the curved pipe to be treated 

Fig. 1. 
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here forms a part of a surface of revolution, and 
the position of the " axis of rotation " of the 
surface is assumed here to be fixed. 
In Fig. 1, let 

¢' be an angle in the plane of 
symmetry measured around the 
axis of rotation ; that is the angle 
of rotation, 

z be the perpendicular distance from 
a point to the original undeform
ed middle surface of the wall, and 

'P be an angle between the normal 
of the same surface and the axis 
of rotation ; 

where z for points inside the middle 
surface, and the direction of the inward 
drawn normal are assumed to be positive. 
Then the surfaces ¢'=constant (a meridian 
plane), z=constant (z=O being the ori
ginal undeformed middle surface of the 
wall) and · 'f=constant (generally a conical 
surface) intersect each other at right angles, and 
¢, z and 'P constitute an orthogonal curvilinear 
co-ordinate system, which we now employ to 
represent the position of a point in the wall. 

Further, the following general notations may 
be used: (see Fig. 1.) 
R1 • ••••• The first principal radius of curvature of the 

original undeformed middle surface of the wall 
in a meridian section, which is assumed to 
be a positive constant. 

R2 ...... The second principal radius of curvature of 
the same surface, that is the length of a 
normal of the original undeformed middle 
surface between the axis of rotation and the 
surface ; R2 is a function of 'P alone. 

r .... .. The radius of rotation of a point on the same 
surface, that is the perpendicular distance 
from that point to the axis of rotation. 
r, which is also a function of <p alone, is 
assumed always to be positive. 

1·0· ••••• The radius of the center-line of the pipe 
before deformation, that is a positive constant. 

a ...•.. The radius of rotation of the center of cur
vature of the radius Ri, which is a positive 
or negative constant. a=r0 for circular cross
sections. 

2h ...... The constant thickness of the wall. 

f>.=R1-Z, } 

1·.=r-::: • sin 'P· 

Then we have 

r=R1 sin 'P-f-a=R2 sin 'P, 

r.=p. sin sc+a=(R2-z) sin 'I'· } 
These general notations stand for the pro

perties of each circular arc which constructs the 

cross•section, and, if necessary, we make the dis
tinction as shown in Fig. 2. 

In the theory of curved pipes the change of 
the curvature of the center-line of the pipe cannot 

Fig. 2 

m,Jdle s" e ti., wall 

be considered very small, even when the deforma
tion of the cross-sectio:i be confined to the very 
small amount usual in the mathematical theory of 
elasticity. But, in the present case, it will easily 
be seen that the centre-line of the pipe, after 
deformation, still keeps the shape of a circular 
arc. Owing to this fact, it is convenient to con
sider the displacement in separate two parts : the 
first part contains the change of tJ, and r 0 into 
,f,+CIJ and 1·0+'1 keeping the shape of the cross
section unaltered ; and the second part contains 
only the deformation of the cross-section relative 
to two . axes of symmetry. The displacement a 
becomes a constant in the present. To represent 
the displacement· of the second part, that is the 
deformation of the cross-section, we use the 
following notations : 

z ...... The change of <p; z=o when f/=0. 

( ...... The change of z. 

Ill. Fundamental Differential Equations. 

At any point in the wall, let 

a'P and a, be normal stresses, 

" 
strains, 

shearing stresses and 

r 'P•• r •. ~ " r ~rp " " strains ; 
where the suffix ,f, indicates the ~irection tangential 
to the equatorial line, the suffix 'P indicates the 
direction tangential to the meridian line and 
the suffix z indicates the direction normal to the 
middle surface. 

The relations between strains and displace
ments, and the conditions of equilibrium of stresses 
at a point with respect to the above curvilinear 
coordinate system are expressed generally as 
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- i)x r i)C 
r.,.-p.;;---+- ~, 

uz p. ucp 

_ I. i)( , i)w 
r.,i, -- r. i)ip + 1. i)z ' 

r,.?=~ i){I) +..&. i)x . 
. p. i)cp r. i)'f 

___!_( n )- i)r. - i)p. 
i)ip r., P,i, p.u,i, i)ijJ ~ p., i)ip 

+ i)i)cp (r;rH)+ ::: (p.r;t·,,i,)=O, 

i) ( ) i)r. i)p. 
~ r.p.f19 -p.u,i, i)p -r.a9 ~ 

+ :z _ (r.p;-r 9.) + i)i)'f (p;r ,r,?) = o, 
(s) 

i) ( ) i)r. i)p. 
i):: . r.pp. -p.a"' i)g -r/1,p i):::-:, _ , 

i) i) 
+ i)ip (p., •. ~) + i)cp (r.,.,.)=o. 

From the assumptions for the shape of the 
pipe and the external forces applied, we can re
cognise immediately that stresses, strains, X and ( 
are all independent of ip, and hence we can put 

_'r ,r,-;, = r •,r,=r,n, =r•,r, =O, 

i){I) 
i)ip =constant=<u0• l (6) 

Substituting equations (2) and (6) in-equations (3), 
(4) and (5), and putting, for brevity, r=r

9
• and 

r=r ,,., we have 

(4) Geiger u. Scheel, Handbuch der Physik, Bd. 6. 1928. 
Love, Mathematical theory of elasticity. 1927. 

Similarly as Love, Meissner and others, we 
follow the fundamental assumptions of Kirchhoff's 
theory of plate, that is 

Then, from the equations (7), we get 

i)C' =O and p i)X + _r i)( =O 
i)z • i)z p. i)cp ' 

or 

where Xo ·represents the value of X at a point z=o, 
that is on the middle surface of the wall. 

Now we define, further, 

11 = t.0R1 -f /J cos cp, 

w=r:-a sin '/J, 

I ( du ) 
E1= R1 dcp -w ' 

} 

+ 11 cos cp- w sin 'P 
E2=(1)0 

r 

The geometrical meanings of these values are: 

11, the total displacement of a point on the 
middle surface in the direction tangential to the 
meridian line, 

w, do. in the normal direction, 
e1, the strain at the same point tangential to 

the meridian line, 
e2, do. tangential to the equatorial line, and 
0, the change of the inclination of the normal 

to the middle surface due to deformation. 
Putting equations (9), (10), (11) and (r2) into 

equations (7), and neglecting the terms of the 

second and the higher power of ( ;
1 

) and ( ;
2 
), 

we have 

!9=E1- ;I (~~ -!1), 

E,i,=e2 - ;
2 

(Ocoty,-e2 +,~0). 
} (q) 

In each of the equations written above the coeffi
cient of z represents the change of the curvature 

;

1 

and l
2 

respectively due to deformation. 

Relations between stresses and strains for the 
case a.=e.=O are: 
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<1-,=~(e,,+pe,),} 1-µ 

E 
<1"1= I -µ2 (e,+µ:-,)' 

where µ is Poisson's ratio (1/m), and E is the 
modulous of elasticity of the material. 

Solving the last two equations (12), we get 

. f R 1:1-R2e.+R.<uo ,, 
tt=SIO <p . • • mp 

SIO <p 

+u0 • sin <p, 

f R11£1 - R;ei + R2wo d, w=cos <p . <p 
SIO 'f 

+ U0 • cos <p- R21£2 + R2Wo, 

If we start the integration from <p = + !!.... , the 
-2 

integration constant u0 becomes zero on account 
of the condition of symmetry. Substitution of 
equations ( 1 5) into the first of equations ( 12) gives 

1- tle2 ( ) (j . ( ) Ri d<p - 1£1 - 1£2 COS <p = - SIO <p + <tJo cos 'f · I 6 

\ 

\ 
\ 
\ 

\ 
\ 
\ 

\ 
\ 

Fig. 3. 

Further, as shown in Fig. 3, let. 
Ti and 7; be the total normal forces acting on 

the cross-sections <p =constant and ¢,=constant 
respectively per unit length of the middle 
layers of the wall, 

G1 and G2 be the bending moments acting on the 
same cross-sections per unit length and 

N be the total shearing force acting on the cross
section <p=constant per unit length; 

that is 

Ti= rh(1,, ;· dz= r"<1,;, RR~z d'::, ) _,. _,. 

(17) 

Substituting equations ( 1 3) and ( 14) in equa
tions ( 1 7), and neglecting the terms of the second 

and the higher power of ( ;
1 

) and ( ;
2

) as be

fore, we get 

Ti= 
2

hE2 (=1 + µ=2), } 
I -/t 

2hE . T:i=--2 (e~+ µe 1), 
1-µ 

G _ 2h8E { 1 dO + (} cot <p 
i - - 3( I-µ'-) R1 d<p /l R2 

( I 8) 

In order to obtain the conditions of equilibrium 
of these forces and moments, multiply both equa
tions (8) by dz and the first of them by zdz, and 
integrate them between the limits ±h. Then, 
considering the surface conditions of the wall 

[ T ]•=J:h = [ <1,],=-I, =O, 

we can obtain the following conditions of equili
brium. 

d di (J;r)- 7;R1 cos <p-Nr=o, 
<p . 

f (Nr)+ Tir+ 7;.R1 sin <p 

<p =p(R1 -h)(r-h,_sin<p), 
d 
d; (G1r)-G2R1 cos <p-NrR1=o. 

Eliminating T:i from the first two equations 
( 21 \, and then integrating with respect to <p, we 
get 

1(7; sin <p+Ncos <p)=..!-.p(r-h sin <p)2 + C. 
2 

If we put 

the integration constant C becomes 

pr2 
C=2hro,,0---0 , 

2 
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and 7; and 7 2 can be expressed by the following : 

Ti=-Ncot +L (r-h si_n cp)2-1~ + 2h~0ro, 
'P 2 r sm <p r s1n <p 

7;= __ 1 _!!__(_Ii!__)+ PR1 [(i -~)2 

R 1 dcp sin <p , 2 R1 

2hr01-0 

R1 sin2cp ' 

or, introducing a new variable V such as 

Nr V NR2=-.-, 
Sin cp 

2hroro 
R 1 sin2 <p • 

(25) 

From equations (16), (18), (19), (21) and (25) 
we can obtain two simultaneous differential equa
tions of the variables O and V, which, however, 
appear impossible of solution ; therefore, we must 
make some suitable approximations effecting no 
appreciable errors to the results. For this purpose, 
we now investigate the following two cases 
separately: 

Case I. The theory of Bourdon pressure 
tubes and of thin walled curved 
pipes in general. 

Case II. The bending of comparatively thick 
walled curved pipes with the circular 
cross-section. 

In Case I, it will easily be seen that e1 and 
e2 become very small compared to the amount of 

deformation, that is to the values of O and dO ; 
d<p 

and, therefore, we can neglect the terms of e1 and 
dO 

e2 compared to those of O and d<p in equations 

(19). 
In Case II, however, the cross-section 1s 

difficult to deform, and the neglect of e1 and e2 

will cause considerable errors in the results. But, 
even in this case; it is possible to estimate from 
the previous approximate theories that e1 and e2 

still take considerably smaller values than O and 

~; ; and, therefore, we can substitiite, with suffi

cient accuracy, the values of e1 and e2 obtained by 
some of the previous approximate theories in place 
of those in equations (19). We take here the 
results of Karman's first approximate theory/5

J 

that 1s 

(5) See foot-note (1). 

l (26) 

or 

where 

k 6 (28) 

5+24( ;; r 
In order to estimate both e1 and e2 , in the 

present case, we make further the following ap
proximate estimations based on the equation ( 27 ). 
Putting jJ=O and r-0~0 in equations (23), and 
eliminating N from them, we get 

7;=-- J:iRid'f~-- T2 1U'f • 
cos 'P JP cos 'P JP R J 

r .. ro .. 
9=-2 9=-2 

By substituting the value of 7;, given by the 
equation (27) in the above, 

7;=-2hEll>o( ~
0

1 Y (1-k+{-cos2 cp)cos
2

cp 

~-2hEw0 ( ~:Y(1-; k)(1-sin
2

cp). 

Then from the equations ( 1 8 ), we have appro
ximately 

R1 [ R, ( 2 k)( · 2 ) E1=-w0- - 1-- • 1-sm 'f 
ro ro 3 

+µ(I -k sin2 f) sin ~J. 
- (29) 

R1 [ R1 ( 2 k)( · 2 ) e2=Wo- µ- I -- I -Sill 'f 
1'o 1'o 3 

+ (1 -k sin2 cp) sin <p J. 
By the above approximation, equations ( 19) 

become: 

For Case I, 

G _ B[ I d/} + 0 cos cp + ,00 sin cp] } 
1-- -- µ µ ' 

R1 d<p r r (30)1 

G2--= -B[ 0 cos cp + L dO + ,00 sin cp J. 
r R1 dcp r 
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where 

Substitute equations (25) in the equation (16) 
by the relations ( I 8), and also substitute equations 
(30)1 or (30)11 in the third of equations (21),. then 
we have the fundamental simultaneous differential 
equations of the variables O and V in the follow
ing form. 

Lff)+a11.V=u).10+ rfl1 , } 

(32) 
Lce>-"fJ.fJ= -u.J.2 V + (/)2, 

where 

And, for Case I, 

(/) 1 cos 'P · [{L(a2-r2)+ 2hr ,, } x 
sin4 ,p{l+asin,p) 2 ° 0 0 

(2 t- 3 a. sin ,p)- fl
2
a

2

( t - ~) a3 sin3 ,p] 

-u.A1Wo cot ,p. 

rfl2 = - fl(IJo C~t ff {11.-( I -11.) a sin ,P} ; 
I +a SIU '/J 

for Case II, 

cos 'P zhroro ( 2 t- 3,1. sin 'f) 
sin4 ,p(I +a sin ,p) 

(33) 

IV. The Complementary Functions of the 
General Solutions. 

Eliminating O and V respectively from equa
tions (32), and putting 

(f)1 =rfl2 =0, 0=01 and V=V., 
LL(01)+,i1i2U1 =0, } 

LLcv1 l + oh,2 V. =O, 

we get 
(39) 

where 1l=A1A2-l• (40) 

Two differential equations (39) are of quite the 
same form to each other, and both 81 and Vi 
must be given by the same fundamental system 
of integrals, differing only by the values of the 
integration constants. Vv'e need, therefore, to 
solve only one of the two equations (39), which 
we determine here as the first, that is the equation 
of 01• 

According to Meissner, the above differential 
equation of the fourth order can be divided into 
two equations of the second order as follows ; 

where 

Lc 811 -iw,01 =0, 

Lrn,>+iw181=0, 

i= ✓ -1. 

} 

Obviously the integrals of the above two differen
tial equations are conjugate imaginaries to each 
other, and, if we know the integral of one of the 
two equations, the integral of the other can be 
obtained by changing the sign of i. It is, there
fore, sufficient to solve only one, the first for 
example, of the two equations (41), that is 

LC8 1 >-ia.n01 =0, 

- aJ.1,00 cot ,p, 
3 

(36)11 or 1 +a.sin ,p d 201 + t d01 
,J,,,2 (J. co ,P ,J'" sin ,p uT uT 

a,00 cot ,p I~ A . ~ } . l ~ SIU 'P , 
I + a SIU ,P ~=O 

where A0=µ(2--a2+ ; a2k), 

A1=-2u.(2-11.-;k), 
(3i) 

A2= -{ 3µk+a2(2-µ)( 1 -+k )} , 
A:1=1,(I- 3/1.) k. 

Now, let 
81 and Vi be the complementary functions of the 

general solutions of the differential equations 
(32), and 

82 and Vi be the particular integrals of the same 
differential equations. 

Then the required general solutions of equations 
(32) will be given by 

{ 
a2 cos2 ,p . } - -------+um 81=0. 

sin ,p (I+ a sin ,p) 

Putting sin ,p=x, (43) 

the equation (42) becomes 

d2d dO 
( I-x2)(1 +ax)2--i +(1 +ax)(a-x-zaz2)-d. 1 

dz z 

-{u2 +iallx+o.\in-1)x2 }81=0, (44) 

which has the form 

(x-b)2[~/92g{x-b)q] ~:~ + (.i--b) x 

[~P1ix-b)q] ;:1 + [~P0Jx-b)q]01 =o, (45) 

that is a differential equation of Fuchs' type, in
tegral of which can be given by 

co 

01 =(x-b)P ~Cv(x-b)v, 
v=O 

0=01+02, l 
V= Vi+ Vi. ) 

( 38) an infinite power series expanded around a pole 
·x=b. 
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The domain of convergency of the series (4fi) 
is inside a circle having the point x=b as centre, 
and passing a singular point nearest to this centre. 
The singular points of the differential equation ( 44) 
in the finite region are 

I x=+r, x=-I and x=--: 
u. 

the points x= ± 1, poles of the first order, are the 
intersection of the neutral layer of the wall and 
the plane of symmetry in a meridian plane, and 

the points x= --
1
-, poles of the second order, lie 
a 

always on the axis of rotation, which in the 
present case can never be attained. 

In order to obtain as large a range of con
vergency as •possible, at the same time making 
the convergency in the useful range as good as 
possible, we now assume the value of b as 
follows: 

for -11:~<pSO, 

and for o < <p ,S 11:, 

b=-1; 

b= + r. 
Then the ranges of convergency on the real axis 
become: 

for -11:,S<p<o, that is for b=-r, 

I I .-3<x<+1 when -23 and -=I, 
11.- (I. 

_r __ 2 <x< __ 1_ 
11. 11. ' " 

I o<-<r; 
11. 

and for o.:S:::ip<1r,thatisforb=+1, 

-I <z<+ 3 when 

" 

I 
-~I, 

(I. 

_r_<z. 
11. 

To avoid the difficulties of convergency for a 
circular cro3s-section, we make here the following 
limitation to the value of a, that is 

I ~ I -= j,c.> > 2, or more preferably - > 3. 
u. \J u..-

In practice, most oval cross-section, Bourdon 
pressure tubes for example, seem to give no dif
ficulties of convergency in the useful ranges of x. 

Because of this, we give the solutions separa
tely for each range of <p greater and smaller than 
zero. 

(a) o < cp S 11:, b= + I 
From the equation (44), 

d20 
(.x- 1)2(1 +x)(r +ax)2--; -(.x-1)(1 +ax)x 

dx 

or 

(.r- 1)2[±.B2q(x-1)q] ;!2
1 +(x- 1) x 

_q=O 

3 dO 3 

[~P1ix-1l]-;i-+[~.Boi,r-1)q]o1=0, (47) 
q=O X q=O 

where 

,820=2(1 +a)2, /110=(1 +a)2, 

;921 =(1 + 11)(1 + 5a\ P11=(1 +a:1(1 + 5a), 

P22=w(1 + vi), 

/i2:-,=u.2, 

Poo=O, 

Poi =ian( I+ a), 

j902 =iu.11( I+ 211.)-211.2, 

/1re=(i11- 1)1./. 

Putting b= + I, the equation (46) becomes 
co 

01 =(.x- 1)? ~Cv(x- 1)11
• 

v=O 
(49) 

Substituting. equations (48) and (49) in the equa
tion (47), and equating the coefficient of the term 
of the lowest power to zero, we get 

that is 

p(2p- I)=O, 
I p=o, or p=-. 
2 

The general integral of 01, therefore, can be given 
by 

co co 

01= ~C,,(x- 1)"+(x-1i~c;,(x- 1)". (50) 
v=O v=O 

In order to get the relations between the 
coefficients C,, of the first integral, put 

co 

01= ~C.(x- 1)" 
v=O 

in the equation (47), and equate the coefficient of 
the term (x- r)" to zero; then we have 

C,,{ v(v- r)f12o+vf110+ Poo} 

+ c,,_1{ (v- 1)(v-2)P21 +(v- 1),811 +Poi} 

+ Cv-2{(v-2)(v- 3)fd22+ (v-2);912+ P02} 

+ Cv-3{ (v- 3)(v-4)P23 + (v- 3)/913 + /903 }=o. (52) 

By the relation (52), all the coefficients C,, can be 
expressed by Co and other known constants, 
where Co is an arbitrary integration constant. 

Next we are to determine the relation be
tween the coefficients C~ of the second integral, 
which, however, becomes so complicated as to be 
difficult to calculate. Therefore, it is better to 
secure the second integral by the_ following dif-
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ferent way. 

Putting 81 =cos cp .fJ; (53) 

in the equation (42), and then employing the 
transformation of the independent variable, ( 43 ), 
we have 

d 20' (1 -.i2)(1 +a.i-)2 dx; + { ,,+ ( u-2- 3).l,"-7ax2 

dO' 
-4a2x3

} d; -{(1 +a2)+a(3+in)x 

+ ti( I + in ),r }O; = o, 
or 

(x- 1)q] did.D; + [:±11;q(x-1lJO;=o, (55) 
X g=O 

where p;,,={12,,, (q=o, I, 2, 3.) 

/1:o=3(l +fl)2, {1~=0, 

[1;1=(3+ I iaX1 +a), ~1=(1 +0)(1 + 2'z+ian), (56) 

{1;2=fl(7+ I w), /1'o.i=a(3 + w)+ ia11(1 + 2a), 

P'o-.i=a2(1 +i11). 

The differential equation (54) or (55) thus obtained 
is also Fuchs' type, and its integral can be given 
similarly as before, that is 

co 

O~=(x- 1)P*~c;(x- 1)". (57) 
v=O 

The values of p' can be determined by the same 
way as before : 

/=o, and p'= --1
-. 
2 

Hereupon, we employ the former value p'=o for 
the purpose of getting the required second integral 
of the original differential equation (47). The 
relation between the coefficients c;; can be obtained 
also by the same way as before, that is 

C.,'{ i{ v- I )/1~ + ·v[1;0 + {1'uo} 
+ C.,"'...1{ (v- 1 )( v- 2 ){/;1 + ( v- I )[1;1 + /1~1} 

+ c:~2{ (11-2)(v- 3){1;2+(v- 2)/1:2 + {1~} 

+ C.,"..a{(v- 3)(v-4)i9;J +(v- 3)[1;a + {1~ }=o, (58) 

and Co" is also an arbitrary integration constant. 

If we put Co=C/=1, (59) 

all the coefficients C., and C~'' become !=Onstructed 
by known constants only, and the two fundamental 
systems of integral of the differential equation (47) 
are given by the following expressions. 

"' co 

~C.,(x-1/= ~C.,(sin rp- 1?, (60) 
11=0 11=0 

co co 

Coefficients C., and c; are complex functions, 
and if we express conjugate imaginaries by Cv 
and c;; respectively, the infinite series 

co 

~c .. (sin cp-1)" 
11=0 

co 

and cos 'I' ~c; (sin cp- 1)'' (63) 
•=0 

become the integrals of the second differential · 
equation o( (41), and, therefore, all four expres
sions (60)~(63) are the integrals of the first 
differential equation of (39). Consequently, any 
proper sum of these values must also be integrals 
of the same equation, and we take here the 
following four expressions as the fundamental 
system of integrals of the first differential equation 
of (39). 

f'u=f[~C.,(sin cp-1)•+ ~C.,(sin 9- 1)"] 
11=0 11=0 

Ou= ;J~cv(sin cp- 1)•- ~C,,(sin cp- 1)"] 
v=O 11=0 

(64) 

01.a=co;cp[~C;(sin cp- I)''+ ~C;(sin cp- 1)•'] 
11-0 11=0 

Or putting 

that 1s 

in which 

C,,+ C,, = Real part of C.,=k,,, 
2 

C,,-: c;, - Imaginary part of C., ;/~, 
2t 

c:+ c:, -R I t f r''-k' ea par o l,, 11= ,,, 
2 

Imaginary part of c:--J:, 

Cv=kv+ij~, 

C;=k:+ii:, 

co 

C.,=kv-ij~. 
C;=k:-iJ;, } 

(66) 

cos cp ~C;(x- 1)"=cos cp ~C;(sin cp- 1)". (61) we have 8J.J= ~kv(sincp-l)v, l v=0 v=0 v=0 
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CX) 

81.2= ~;~(sin <p- 1)'', 
11=0 ' (67) 

CX) 

81.3=COS <p ~k:(sin <p- 1)11
, 

v=O 
co 

81.4=COS <p ~j:(sin q,- 1)11
• 

v=O 

Then the general solution of the first differential 
equation of (39) is given by 

81 = B//l.l + Bl/1.2 + B//1.3 + B481.1, ( 68) 

where B 1~B4 are four integration constants. 
Next, in order to obtain the general solution 

of Vi, that is the second differential equation of 
(39), we proceed as follows. 

From equations (64) we have 
CX) 

~Cv(sin q,- 1)"=81.1+i81.2, 
v==O 

CX) 

~Cv(sin ,p- 1/=8J.[-i81.2, 
•v=O 

CX) 

cos p. ~c:(sin <p-· 1)"=81.3+ itJ1,4, 
11::::.0 

CX) 

cos <p. ~c:(sin r- 1)"'=8i.;;-i81.4. 
v=O 

Puttino- these values into equations (41 ), and 
separa~ing them into the real and the imaginary 
parts, we get 

Lco1-1l= -u.nll1.2, 

L(o1,2l=u.n8u, 

L181 .,l= -u.n8u, 

Lco1-•l =u.1181.3-
0n the other hand, from the 
(32), putting ~~=o, we have 

l 
second equation of 

Vi=-_!_;. {L101 l-aµ81 }, 
· (I. '2 

which becomes, by equations (68) and (69), 

Vi= B1 (1t81.2+ µOl.l)+ B)2 (1181.2-1101.1) 
)2 ·2 

+ E).\ (1t81.4 + µ01.a) + i4 (µ0u-Jt01.3). 
'2 2 

we have 

Vi= D1 Vi.1 + D2 Vi.2 + Ds Vi.s + D4 Vi.4• 
which is the required general solution of Vi-

(b) -1r :S:: <p < o, b= - 1. 

Since the process of solution in this case is 
quite the same as before, it will be sufficient to 
give only the important expressions necessary for 
the numerical calculations. 

Instead of the equations (47) and (55) we get 
in this case the following differential equations : 

3 d2fJ 
(x+ 1)2[~P2/x+ 1)'1] dxi· 

q=0 

a d{} 
+ ( X + l >[~P1i X + l )q] d; 

q=0 

3 

+ [~Po/x+ I /]01 =O, 
q=0 

where 

f120 = 2( I -a)2, f11o= ( I -a)2, 

{121 = -(1-a)(1-5u.;, Pu= -(1 -u.)(1-5a), 

f122 = - 20( I - 211 ), /112 = - 30( I - 2a ), 

Poo=O, 
{101 =iu.11(1-a), 

{102 = -iu.11(1 -za)-211.2, 

/103= -(ilt- l)a2
• 

~ d28• 
(x+ 1)2[~p;q{x+ 1/] dx; 

q=0 

s d(f' 
+(x+ 1)[~p;'g{x+ 1)q] d; 

q=0 

3 

+[~P~/x+ 1)q]8;'=0, (75) 
qa0 

Or putting B). q =Dq, (q= I, 2, 3, 4), (70) where p;q=/12q, (q=o, 1, 2, 3.) 
'2 

00 

= ~(1y~+µk.)(sin <p- 1)'', 
v=O 

Vi.2=µ0,.2-n0u 
CX) 

= ~(µ;~-1lkv)(sin <p- l)v, 
v=:O 

CX) 

=cos <p ~(1y·;+ µk;)(sin <p- 1)", 
v=O 

p;0= 3( I -a)2, P~=O, 

p;·l = -(I -u..)(3-• Ira), P~1 = -(1 -ax1-2a-ian), 

p;·2=-a(7- 12a), /3"~=-a(3-2a)-iti11(1-2a), 

p;•3 = -4,i, {1;3= -,l( I+ in). 
......;_ ____ ~(7"'.:6-:---) -----

The fundamental system of integrals of the 
(71) equation (73) is expressed similarly by 
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and ](77) 
m m 

COS cp ~C,:(x+ I)v=COS cp eC;(sin cp+ I)v. 

Equations (52) and (58) hold good in this 
case also; and equations (62)~(72) can be used 
here if we write (sin cp +I) in place of (sin cp- I). 

V. Particular Integrals. 

Eliminating V from equations (3 2 ), and writing 
82 instead of 8, we have 

LL(o.)+<i1Nl2= </J, (78) 

where fP=Lu1,.i+oµ(/)2-aA2(/)1• (79) 

If we put the values of (/)1 _and ,Pl in the equation 
(79), </J becomes 

</I cos cp rH.( . ) = sin4 ¥J( I + a sin cp )L O 2 + 3a sm 'P 
4 

+ ~ H~ sin ~+2cp], (Po) 
~=1 

where, for Case I, 

Ho= -aµ(l}o-aA2{ ! (a2-ro)+ 2hT"0r 0}, 

ll 2(. 2 ) 4,l pa2( /,2 
) 

1=a It -I co0 +u. 22 I- R'f. , 

H 2 =a3(1t2+ 1),00, 

Ha=H4=0; 

and for Case II, 

Ho=-aµ,0 0(2-u.2 + ~ ,rk)-2aA2hT"0 1•0 , 

Hi =a2(1}o[ n2-4-µ2-<l(2-2µ-µ 2
) 

' ++ k{9µ-2+2a2(2-2µ-µ 2
)}], 

ll;=acoo[r.t2(n2-4 + 6µ- µ2)-4k(3µ + a2µ-a')], (81 )u 

1/2= -a2wl u.2( 2- 3/t + µ2
)--

1 k(27-90µ 
L 3 

+ 9µ2 + 4a2-6µr,.2 + 2µ2,r) ], 

H 4=a3cook (5-µ)(1 - 3µ). 
Now, according to Wissler,<6l let us consider 

the following differential equation of the second 
order: 

LctJ -iant=-1- </J, 
an 

and assume t=Pc'PJ + iQ<'Pl 

(82) 

(83) 

to be an integral of it. Putting the equation (83) 
into the equation (82 ), and separating them into 

the real and the imaginary parts, we have 

L<Pl+rmQ=-
1
- </J, l an 

L<Ql-anP=o. 

By further eliminatieg P from equations (84), we 
get 

LL<Ql + a2n2Q = </J. 

We know, therefore, that a particular integral of 
the differential equation (78) is given by the 
imaginary part of an integral of the differential 
equation (82), that is 

(85) 

Then, from the second equation of (32), employing 
the second relation of (84), we get a particular 
integral of Vi as· follows : 

I Tl:z= ---,{L(o.)-aµ82- </J2} 
a'-2 

= --1
-{nP-µQ--

1 <P2}. (86) 
A2 a 

We need, therefore, only to solve the differential 
equation (82), that is 

I + a sin cp [ d 2 t + a cos cp dt _ a~ cos2 cp t] 
sin cp dcp2 

I + a sin 'I' dcp ( 1 + a sin 'I' )2 

-iant=-1- cos 'P 
an sin4 ¥J(I+asin¥J)x 

[ H 0(2+y1sin p)+ ~H~sin~+2¥J J. (87) 
~~1 

Although Wissler has solved a similar dif
ferential equation in his paper,(7) since his solution 
seems somewhat unskilful in regard to the con
vergency of the series, here we do not follow him. 
In order to give a solution by infinite series 
having· quite the same range of convergency as 
those in the complementary functions, we make 
the transformation of the variables t and 'I' as 
follows: 

Ho • t=- cot '!'+cos <p • t, 
an 

sin cp=x. l 
Then the equation (87) becomes 

d2t* 
(1-.r)(1 +a.i-)2 dxz +{a+(a2-3)x-7ax2 

(88) 

(6) H. Wissler, /iestigkeitsbendmu11g von Ringjliichmscha)en, Promoliunsnrbeit, Zilrich, 1916. 
(7) The subject of Wissler's paper is an axial symmetrical ring shell, which is the case when the surface or revolution is 

completed, but the shape of a meridian section is r.ot closed; a practical example of such a case is the corner part of the end 
plate of a cylindrical boiler. 
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+u.2(1 +in)x2 }t"=(Hr +iHo) 
an 

( H. ,1. ff. + · R) H1 2 H4 ~ (S ) + --- - o ti/. o X-t--· X +- X. 9 
an n an wt · 

The equation (89) has only the same singular 
points as ( 54), and the left hand sides of these 
two equations have quite the same form; there
fore, the same conditions of convergency must 
hold here for the solution of t*, which will also 
be given by the same form as before, that is 

00 

l= ~c;"'(x-b)". (go) 
v=O 

Similarly as before, we assume 

/, = - I for -11: _:s;;: 'f < O, 

and b= + I for 

(a) o < <p < 1r, b= + r. 
· The equations (89) and (90) become in this 

case: 

3 4 

+[~p;/x-1t] l= ~a;(x-1/, (91) 
q=O q=O 

00 00 

t"= ~c;'(x- 1Y= ~c:·(sin cp- 1)". (92) 
v=O v=O 

The coefficients {J~q (~~8; }: :: 3.) are given by (56), 
and a; by the following. 

6;=o, 

,r;· = -{-1-(Hi + 1/2 + Hs +JI,,) 
Wt 

_ ..!!:_J-fo + ip +(/.)Ho}, 
n 

where a; = o for v > 5 ; and, for the sake of 
simplicity, we put the arbitrary constant C~"' as 

c;'=o. (95) 

Separating, as before, the coefficients c;• into 
the real and the imaginary parts, that is, putting 

we have the expressions for P and Q as follows : 

fJ.1l 11=0 
P= Ho cot So+ ~os <p ~k;'(sin So- 1)'', l 

00 (97) 

Q=cos <p ~J;'(sin cp-1/. 
v::O 

Then the required particular integrals of the 
differential equations are : 

00 

82=COS 'P ~J;''(sin <p- 1)", 
v::::O 

(98) 

(b) -7! _::;;: 'P < o, b= - I 

The equations (89) and (90) become in this 
case: 

S 4 

+ [~fJ~q(x+ 1)7] l= ~a;(x+ 1)9, 
q=O q=O 

(99) 

00 00 

t"= ~c;''(x+ 1)"= ~C;'(sin cp+ 1y. (100) 
v=O v=O 

The coefficients {J* ("=0
• 

1
• 

2
•• ) are given by (76), \HJ Q-0 1 1, 21 .:,. 

and a; by the following. 
a;= -{-1

-(H;+ 2H3 + 311,,) 
an (93) J~=O, 

The relation between the coefficients c;• is given 
by: 

C/' { 1{ v- I ){1;0 + v{J;o + fJ~o} 

+ C~".'.'J{ ( V~ I)( V-:- 2 ){J;1 + ( V- I ){11\ + f1~1} 

+ C,,".:'2{ (v- 2)(v- 3)f1;2+ (v- 2){1;2+ f1~2} 

+ C,,".'.:s{ (v- 3)(v-4){J;:; + (v- 3){1;:; + {J~:;}=a;, (94) 

a; =-1
-( Hi - H2 + Ha - Hi) + _!!__ 1-fo 

<tit .1t 

+i(1-u..)Ho, 

a;=-1-(H2- 2]fs + 3H4)-..!!:_Ho + ialfo, 
Wt 1t 

(101) 

Equations (94), (95) and (96) hold good in this 
case also, and equations (97) and (98) can be 
used here if we write (sin 'P+ 1) in place of 
(sinsci-1). 
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VI. Suinmary of Results. 

Here we collect the results obtained above 
for the expressions of stresses, strains and dis
placements using the following simplified notations 
(102)--{rn5) for the infinite ~ries. 

co 

flu= ~k,,(sin 'P+ r)", 
,v=O 

co 

01.2= ~jv(sin f'+ 1)", 
v=O 

00 

81_3=cos ,p ~k:(sin 'P+ 1)", (102) 
11=0 

01_4=COS 'P ~j;(sin 'P+ 1)", 
11=0 

co 

fl2=COS 'f ~j;;'(sin 'P+ it 
,,~o 

... 
Vi.1= ~(,y:+ µk11)(sin 'P+ 1)", 

v=O 

co 

V..2= ~(19~-11k,,)(sin 'P+ r)", 
v=O 

00 

Vi.s=cos 'f ~(11;";;+ µk:)(sin ,p+ 1)", 
v=O 

V..4=cos,p ~119·;-nk;)(sin 'f+ 1)", 
11=0 

00' 

V2.o=cos 'f ~(pj; ... -11k:,")(sin <p+ 1)". 
v=O 

0=B101.1+B201.2+BsOu1+B40u+ 02. (ro4) 

V.=B1v~_1+B2V..2+BsVi.s+B4Vi.4+ ~.o• (105) 

V= 2/t8E ( v. + WoCOS<p)+{Lca2-,-2) 
3(1 -1.t2) R1 r 2 ° 

+ 2hT0ro }cot <p for Case I. ( r o6)1 

v- 2h-8E (v· +WoCOS<p<P)+ h t 
- 3( 1 -µ2) Ri ,. o 2 1"of'o co <p 

where 
for Case II, (106)n 

(/)0=2+(1-; kX2-µ~)+{3µk ;;l 
+ Ri (2-µX1-_!__k)}sin <p 

. Yo 3 

k 

zlll!.' ( V, + mo cos <p) cos <p + l • sin <p 
• .2 - -- 2/tf'o10--3(1-,,..) Ri r r r· 

+ ;r [{a2-ri+(R1 -k)2}sin ,p+2a(R1-h)] 

for Case I. ( 108)1 

1·- 2lt8E ( V, +w0 cos<p ✓r.)COS'f+ h sin,p 
1------c-----,. - ---ll'o -- 2 f'oro--

3(1 -µ 2
) R1 r r r 

for tase II. (ro8)u 

2h
8E _r_ -.!!_( V, + w0 cos <p) 

3( I - µ2) R1 d<p R1 ' r 

+ f R1
( 1 - __1!__)

2 

for Case I. ( IO;) )1 
2 R1 

2h8£
0 

_I_-.!!_( V, + WoCOS <p <Po) 
3(c-µ-) R1 d<p R1 ,-

for Case II. (ro9)11 

N= 2lt8E ( V, + w0 cos <p) sin <p 
3(1-µ2

) R1 r r 

+ { ! (a2-,-n+ 2h1""0>-0} c~ 'P for Case I. (110)1 

N 2/lE ( V. + w0 cos <p (/)·) sin <p + , cos <p 
( 2) -R o -- 2ttf'oro--

3 I-µ J f' r r 

for Case II. (11o)n 

G = _ 2/lE {-1- dO + 0 cos <p 
I 3(1 -µ2

) R1 d<p µ ,. 

( 
1 sin 'f) + m0 sin <p } -ei ---- µ:---'--- , 

R1 r r 

G
2
= _ 2li8E { 0 cos <p + L dfJ 

3(c-µ2) r R1 d<p 

+ ( I sin 'f)+ w0 sin <p} 
E2-R -~ • 

1 r r 

J,, [ R1e1 r(e2-C1.10) ]1 w=cosm ------;--a,--- u<p 
T ±~ sin <p sin2 <p 

2 

r(e2-mu) 
- sin ip 

(111) 

(II 2) 

(II 3) 

Since the values of u and w at <p=0 are 
difficult to calculate from the expressions ( 1 I 3), 
we consider the displacements parallel and per
pendicular to the plane of symmetry, and represent 
them by r; and JJ respectively. Then 

'f)=U cos ,p-w sin <p, } 

JJ= u sin <p + w cos cp, 

or 
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;; =Ri(e1 cos· s,,:......O sin cp), l 
;; =R1(~1 sin s,,+O cos s,,), ) 

and, therefore, 

'1)=R1J(e1 cos s,,-0 sins,,) ds,,+170, 

v=R1J(e1 s}n s,,+U cos s,,) ds,,+vo. 

If we start the integrations from s,,= ± ~ re-
2 

spectively, the integration constants 'T)o and v0 take 
the following values because of the condition of 
symmetry. 

} ( I 16) 

Then, at s,,=o, we have 

iJ=u<p=0='7p=O=R1.r .. (e1COS 9'-8 sins,,) ds,,+'T)o, l 
±2 (117) 

W 17=o=J.1'P=o=R1f,. (e1 sins,,+ 0 cos s,,) ds,,. 
•.l:·2 

VII. Boundary Conditions and the Determina
tion of Unknown Constants. 

In the present paper, as defined previously 
in the introduction, we are treating the cross
sections built up of two pairs of circular arcs as 
shown in Fig. 2, or of a circle; and, according 
to the solutions obtained above, we have to treat 
them separately: the first must be treated in four 
parts, that is 

I 

II 

III 

IV 

'Ir 
-2<s,,<-s,,o, 

-9'0~9' < o, 

o~s,, <+s,,o, 

and the second, a circular cross-section, must be 
treated in two parts, namely 

I 

II o~s,,~+:. 

Owing to the condition of symmetry, we need not 
consider the range of 9' outside the above. The 
solution for each part gives four integration con
stants, and, moreover, there are two common 
unknown constants w0 and -:-0 ; an oval cross-sec
tion, therefore, gives 18 unknown constants, and 
a circular cross-section IO of them. 

In order to describe the boundary conditions 
to be satisfied, it is necessary to make a distinc-

tion between each part by adding .the index I~ 
IV respectively, and the values. at the beginning 
and the end of each part are distinguished by the 
suffix A a_nd B, thus, for _example, 

f~ = - : , "1=fY = -f•~ '1"1 = 'P'Y =o,}c 
11

8) 

9'Ifl = 9'~ = + 9'o, 9'1; = + _ . 
2 

(a) 'Ir 
Boundary conditions at 9' = + - , 

-2 
(~ and }n, 

From the condition of symmetry, we have 

11~=( dw )
1 

=lll=Nl=o, 
ds,, A 

uiv _( dw )IV-01v -NIV _ 0 B - ds,, B - B - B - • 

The conditions u=o are satisfied by beginning the 

integration from s,,= ±~ respectively, and all 
2 

other conditions are reducible to 

OI -{}IV -(V )I -(V )IV -o A- e- BA- sB-, 

which leads to the results 

BI=B!=Blv =mv =O. 

(b) Boundary conditions at 9' = ± S,,o , 
(1, ~ and 1]k ~). 

(for Case I only.) 

(119) 

At both sides of these sections we must have 
equal values of Ti, J:i, N, G1, G2, 0, '1) ane J.1 ( or 
u and w), among which the conditions for '1) and 
v or tt and w are satisfied by continuing the in
tegration successively. All other conditions are 
reducible to th~ following : 

01e=01J, Vft= V1], 

(
_I_ dO )I =(-1- dO )II, (?;i)1=(72)1l; 
R1 ds,, B R1 d~ A 

0111=o~v, v111= v~v. (120) 

(c) Boundary conditions at s,,=o, (11, I!1J. 
I;, T2, N, G1, G2, 0, '1) and v (or u and w) at 

both sides of this section must be equal, among 
which the condition for N being satisfied already, 
since N,p=o= 2hr0 for both sides of the section. 
All other conditions can be reduced, in this case, 
to the following five conditions : 

( dO )II --( dO )III, 011=0111, 
ds,, B ds,, A 
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the conditions for u and "I) being satisfied by those 
for Ti. and I; of itself. 

( d) Boundary conditions for the entire 
meridian cross-section. 

Besides these boundary conditions mentioned 
above, there are still two more conditions to be 
satisfied in the entire meridian cross-section, namely .. 

2j2t l;(r-r0)-G2 sin <p }R1d<p=M, (122) .. 
-2 .. 

and 2J: I;Rid<p=pF, (123) 
-2 

where F represents the inner cross-sectional area 
of the pipe. The condition ( r 2 3), however, is 
satisfied by itself in the solution obtained above, 
as will be shown briefly in the following. 

From the second equation of (25), we have 

2J~ l;R1d<p=-2[v]: +t{(R1-h)2<p 
-2 -2 .. .. 

+ (a2-r:) cot <p ]
2 

+ 4hi-0ro[cot <p ]
2

, .. .. 
-2- -2 

m which the first and the last terms in the right 
are zero, and the coefficient of p always represents 
the inner cross-sectional area F. 

Equations (119), (120), (121) and (122) offer 
18 conditions for a oval, and IO for a circular 
cross-section, a number sufficient for the determina
tion of all the unknown constants. 

VIII. Conclusion. 

The foregoing article, which gives a mathema
tically strict solution of the present problem, may 
be regarded as a theoretical standard for various 
approximate theories relating to the same problem . 

The present theory, moreover, can be applied 
to various modified forms of cross-section, such as 
given in Fig. 4 for example, if we employ suitable 
infinite series and boundary conditions with the 
proper independent variable. 

Fig. 4. 

·t 
In the further reports to follow, the author 

will give some examples of numerical calculations·i 
along with some applications to the modified' 
forms of cross-section. 


