
On the Turbulent Boundary Layer with Pressure Rise and Fall. 

By Busuke Hudimoto. 

This paper contains results from /1otl, experiments and computations. 
The first pa,-t covers the experinient<1l nm/ts of the veloct"ty distributions of turbulent 

boundary lr1yen .in diverging a11d com,e,-ging cha11nels. To e.,rpress the vdrying forms of these 
veloct"ty distributions, the following empirical formula is proposed. 

where u · is the velocity at distance y from the surface of the wall, o is the thickness of t1ie 
boundar;• layer and 110 is the velodty at y=o or at the outer boundary of the layer. 

As the function of g( f ), the form of velocity distribution in a parallel wall channel or 

along a flat plate placed edgewise to the stream is taken. Then h( f) is a function off• 

which is obtained frvm the experimental results and shtYZ/Jll in .Figs. 6 aud IO in the o,iginal 
paper. 

Some considerativns on the back jlow in a diverging channel ore suggested. As the result 
it ~vas .found that the back jltYZo may occur on one side of the wall at a smaller dive,-ging 
angle than is the case of back flow on both sides. the ,·atio of these angles being about 0.5. 

As applications of the aboVe formula of the velocity distribution, problems of tiu·buient 
botmd<lry layer of figure of revolution and appraxi,nalt relations between the Reynolds' number 
and m,zximum lift coejfident of aerofoil section are treated, making use of Gruschwitz'.s empirical 
formula. 

The theory of turbulent boundary layer was 
first investigated by Th. v. Karman1

> and L. 
Prandtl2l, and many other theories and results of 
experiments have been published since then. They 
have treated mainly the flow along a flat plate 
placed edgewise to the stream, or in a straight 
pipe. In these cases the pressure gradient is equal 
to zero or a constant respectively. But generally 
the_ ·flow of fluid is accompanied with a pressure 
rise or fall or, more strictly speaking a change of 
velocity in the direction of flow. In such cases, 
if the flow in the boundary layer is laminar, 
calculation is theoretically possible. Several papers 
have been published discussing them. But owing 
to complications arising in the turbulent flow, there 
are few results obtained by exi::eriments and no 
theory is plausible. 

On the present phase of this. subject there 
are available experimental results of E. Gruschwitz3! 

and A. Buri4
> on the turbulent boundary layer, 

and those of Fr. Di::inch5l, J. Nikuradse6l and others 
on the turbulent flow in diverging and converging 
channels. In the following sections, results of 
experiments are presented ; and making use of 

Gruschwitz's empirical formula, possibilities of solv­
ing some problems of turbulent boundary layers 
are mentioned. 

1. Experiments on the Flow in Diverging 
and Converging Channels. 

On the turbulent flow in diverging and con­
verging channels, there are elaborate experimental 
results by Di::inch and Nikuradse. The present 
experiments were carried out in the same way as 
those of these two authors, at the Tyuo-Zikkenzyo 
of the Kyoto Teikoku Daigaku during the summer 
of 1933 and supplimentary tests in 1934.71 

The arrangements of the experiments are 
shown in Fig. I. A small ventilator V delivers 
air into the channel A 1 and in passing through A1 
and A 2 turhulency of the strea:m is settled down 
by the honey comb H and screens of fine mesh 
5 1 and 5 2• Then through the converging nozzle 
B air flows into the test channel C with cross 
section of rectangular form. Its upper and lower 
surfaces, which were constructed from plywood 
and coated with varnish, are parallel. The side 

1) Th. v. Karman: Ueber laminare und tnrLulente Reibung. Z. A. M. M. Bd. 1, 1921. 
2) L. Pranrltl: Ueber den Reibungswiderstanrl stromender Luft. Ergebnisse der Aerodyn. Versuchsanstalt zu Gottingen,' 3. 

Lieferung. 
3) E. Gruschwitz: Die turbulente Reibungsschicht in eLener Stromung hei Druckabfall und Druckanstieg. Ingenieur-Archiv 

Bd. 2, 1931, also Z. F. M. Nr. 11, 1932. 
4) A. Buri: Eine Berechnungsgrundlage fiir die turbulente Grenzschicht bei Leschleunigter und verzogerter Grundstromung. 

Ziirich, 1931. 

S) Fr. Donch: Divergente und konvergente turbulente Stromungen mit kleinen Oeflunungswinkeln. Forsch.-ArL. lng.-Wes. 
Heft 282, 1926. 

6) J. Nikuradse: Untersuchungen iiber die Stromungen des Wasser in konvergenten und divergenten Kan5.len. Forsch.-Arb. 
Ing.-Wes. Heft 289, 1929. 

7) These experiments were carried out with the aid of Messrs. E. Simomura and T. Hirata. 
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. Fig. r. 
Arrangements of the Experiment. 

H 

walls are covered with thick brass plates. They 
are bolted to the holes of a1 and a2 and rotate 
about these bolts so the diverging angle can be 
adjusted. By fastening the walls to the holes b1 

Fig. 2. 

Velocity Distributions of Diverging Flow. 
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and b2 instead of a1 and a2 , the channel is made 
wider. There are several holes of 0.5 mm diameter 
on both side walls for the measurements of static 
pressure. 

Velocity distributions are meas­
ured at sections I, II and lif, mainly 
at the sections II and Ill. The 
Pitot-tubes for the measurements are 
made of copper drawn tubes of 
I mm outer diameter o. 5 mm inner 
diameter or 0.5 mm outer diameter 
0.25 mm inner diameter. Pressure 
is measured by an inclined-tube 
type micromanometer using alcohol 
as its fluid and from the readings 
of this manometer, and readings of 
thermometer and barometerstand, 
the air velocities are calculated. 

0,31@---+----+---+---+---l-----+----+---+---+-----, 

The measured velocity distribu­
tions at the middle height of the 
channel are shown in Fig. 2. When 
the diverging angle is small, the 
velocity distributions have almost 
symmetrical formes so they are 
plotted only on one side in dimen­
sionless form, taking the maximum 
velocity as unity on the ordinate 
axis and the distance of the point 
of maximum velocity from the_ wall 
equal to one on the abscissa axis. 
The velocity distribution marked 0° 
in Fig. 2 is the one when the 
diverging angle is equal to zero or 

0,21-----+----+---+----+---+----+----+---+----+----< 

0,11-----t----+---t---+---+----t----+-->-------+----I 
y 
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the case of flow between parallel plates. Unfor­
tunately owing to a lack of skill in manufacture, 
the surface of the brass plates are somewhat rough 
and not strictly flat, so the measured velocity 
distribution deviates from that measured in smooth 
pipes. The Reynolds' numbers of these tests lie 
between 3.4 • 104 and 8.8 • I04. Here the Reynolds' 
number is defined by the product of the mean 
velocity and breadth of the channel, divided by 
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Fig. 3a. 
Velocity Distribution of Diverging Flow. 
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the coefficient of kinematic viscosity. 
When the diverging angle becomes large, 

back flow takes place and the flow is no longer 
two-dimensional. The velocity distributions in such 
cases are shown in Fig. 3a, 20a and 20b in which 
small circles show the measured points. In these 
cases the velocity distrtbution losses its symmetrical 
nature so both sides were replotted again in the 
same manner as Fig. 2. Fig. 3b corresponds to 
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Fig. 3b. 
Velocity Distributions of Diverging Flow. 
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the velocity distribution shown in 
Fig .. ~a. 

42t-t--+---+--t---t---+---+--1----+---1----1 

On the other hand if the breadth 
of the channel is made wide, the 
velocity distribution shows a section 
of uniform velocity at the center part 
of the flow forming turbulent bound­
ary layers on both sides of the chan­
nel walls. In Fig. 4, some velocity 
distributions in the boundary layers 
are shown taking their thicknesses, 
which we may denote by the letter 
a, as unity on the abscissa axis in 
quite the same way as Fig. 2. 

The curve marked 0° shows also 
the velocity distribution when the 
walls are parallel and 2iJ becomes 
approximately equal to the breadth 
of the channel. The Reynolds' 
numbers of the boundary layers of 
these tests lie between I .9 · C04 and 
3.1 • 1a4, when it is defined as the 
product of the velocity just outside 

o,11---+---1---1----1--~---l---.L----4----1--_J the boundary layer times its thick-
)!_ ness, divided by the coefficient of 

o .__ _ _,_ __ ...L. __ j...__--1, __ -1.. __ ..L_ _ __JL,_ _ _._ __ ..,L__:O:..__J kinematic viscosity. . 
o 0,1 az 43 0,4 as 46 0.1 as o,ti 1,0 
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Velocity D"stributions of Diverging Flow. 

form of it is well known from many 
experiments for both smooth and 
rough surfaces and also from theo­
retical investigation. For smooth 
surfaces the simplest form will be 

where n varies from 6 to 10 

according the Reynolds' number.~ 
Then to express the velocity 

distributions for diverging flow, an 
equation of the following form is 

taken 

U=ztog( ~) X 

{m + (1-m)h( ~ )}, ... (2) 

Q,2~-t---t---t----t----if-------,,-t--+---+-----l-----1 

where m is a parameter and mere 

number and h( ~ ) is a function of 

~ satisfying h( l) = 1 and /, < l for 

0.ft---t--+-+--+----.:jf---+----l----1---l-----l y 

'Y o<a<I. 
For the function g( ~). the 

velocity distribution of 0° was taken 

in the present case. To find h(~). 

the ratio of a velocity distribution 
was first calculated. It gives 

0 ~----:'-:----'--..l.---L---1...-......L_...l.,_ _ _L__..L...:cf:__j 

0 U ~ ~ M ~ U ~ a ~ W 

2. Approximate Expression of the Velocity 
Distributions with Single Parameter. 

From the test results explained in the preced­

ing section, an attempt to express these varying 

forms of velocity distributions by introducing a 
parameter was performed. In the following these 

are explained. 
At first we express the velocity distribution 

in the parallel wall or along the flat plate by 

equation ( 1) 

U= Uog( ~ ), ·•·••••••••••••••••••••· ... • ... ••<I) 

where a=thickness of the boundary layer or 
the distance of the maximum velocity 
from the wall surface, 

1t =velocity at distance y from the wall, 
uo=maximum velocity which occurs at 

y=~ . 

g( ~ ) is a function of ~ satisfying g( 1) = I. The 

to that of 0° 

m+(1 -m) 1{ ~} 
The values of calculated ratios are shown in 
Fig. 5 for the velocity distributions of Fig. 2 

and 5b. From Fig. 5 the value of m for an in­
dividual case may be estimated, then It can be 
determined. But in reality, values of the ratios 

at y=o are very ambiguous, so m was determined 

from the value at ~ =0,I for convenience. To 

find It the value of h( o, 1) was assumed to be zero. 

Fig. 6 was obtained by calculating in this way 
for the measured points. Owing to the reduced 
accuracy of the experiments and the difficulties of 
measuring the turbulent flow, these calculated 

points scattered appreciably but practically they 
lie on one curve. In Fig. 7 and 8 some calculated 

results of the experiments by Donch0
' and 

Nikuradse10l are shown for comparison. 

8) Equation (2) has no theoretical basis, so it must b.: corrected after an accurate theory for the turliulent boundary layer has 

been formulated. But for practical purpose, it is better to express the form of the velocity distribution as simply as possible. As 

one of the simplest, equation (2) was taken. It is therefore assumed that h( f) is constant for all velocity distributions, but pre­

cisely, it seems to vary with m which must be investigated in the h:ture, using more accurate methods and accurately finished chan­

nels. Further, it seems that h(o) >o and there is a point of minimum for It between 2'...=o and .!. = 1 o but it is hard to obtain. a o · 
9) Donch : Joe. cit. footnote 5. 
10) Nikuradse: loc. cit. footnote 6. 
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Fig. 5. 
Ratios of the Velocities in Fig. 2. 
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n( ~ ) for Fig. 2. 
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Fig. 7. Fig. 8. 

h( f ) of Donch's Experiment. h(;) of Nikuradse's Experiment. 
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Our curve shown in Fig. 6 resembles exceed­
ingly with the curve of the velocity distribution of 
a two-dimensional free jet measured by Forthmann.H> 
But this may not be accidental because a free jet 
is the limiting case of diverging flow when the 
diverging angle becomes large. Also the flow in 

a diverging channel has more or less the nature 
of a free jet. 

The same procedure was carried out for the 
velocity distributions of Fig. 4, shown in Fig. 9 
and 10. In the previous case /t(o.I)""-"h(o) but in 
this case h( o. I)> h( o ), so at first it was assumed 

11) E. Forthmann: Ueber turlmlente Strahlausbreitung. Ingenieur-Archiv lld. 5, 1934. 
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h-curve anrl Computed Velocity Distributions by Eq. (2). 
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h(o. 1)=0 and calculated points were plotted. From 
them the probable mean curve was drawn and 
extending this curve to the ordinate axis, the 
intersection was found. In Fig. 10, the scale of 
the ordinate axis is so changed that h(o)=o and 
this scale is shown on the left hand side, while 
the old scale is shown on the right hand side of 
the diagram. The h-curve differs from that of 
Fig. 6. Also the probable h-curve deduced from 

12) Gruschwitz: Joe. cit. footnote 3. 

(F"ig. I I continued) 

0,15 L f,O 
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II 42 11,4 

the experimental results of Gruschwitz12
> (test series 

3) and some calculated forms of velocity distribu­
tions are shown in Fig. 11. 

For the converging flow, some velocity distri­
butions are shown in Fig. I 2. The ratios of 
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Velocity Distributions of Converging Flow. 

f,O 

..!L 
o--0" 
~ 

~ 

u. 
f,O 

,? ~ 

j'P' ~ ~ _.,. 
1,0 ! ..? 

pr 

I_/ ~ -~ 

0,8 I y~ 
II 
I 

11,6 

0,2 

0 

0 0,6 o,r : t.o 

Fig. 13. 

Ratios of Velocities in Fig. 12 and other Experiments. 
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velocities with that of 0° are shown in Fig. I 3 
with some results of Donch and Nikuradse. From 
Fig. I 3 it may be concluded that the ratios can 
be also expressed in the form of 

where m> I. 

3. Analytical Research of the Turbulent 
Flow in Diverging Channels. 

Before making the experiments described 
above, the author had attempted to express the 
velocity distributions by a simple formula and 
thence he g9t a result on the break-away of flow 
in diverging channels. To examine whether such 
a result is plausible or not, was one of the objects 
of the present experiment, though it failed to give 
a definite conclusion, since the flow is already not 
two-dimensional when the break-away or back 
flow takes place. The calculation carried out then 
and the results of the experiment are as follows. 

We considered the turbulent two-dimensional 
flow of an incompressible fluid in diverging chan­
nels as shown in Fig. 14. We take the channel 

Fig. 14. 

axis as z and denote the half breadth of the 
channel by b, the diverging angle by a, then if 
the angle is small we can say b=u.x. We denote 
the distance from the wall by y and let y' =b-y 
and express the velocity distribution in the fol­
lowing form ; 

where u is the velocity at distance y and u0 is the 
velocity at the center, i.e. at y=b. Considering 
the velocity distribution is symmetrical with respect 
to the x-axis, and m, m1 ••••• are mere numbers. 

For the convenience of calculation, we assume 
n=7 and 

u=uo( ~ )+ {m+1111(:) +1112( ~ )l ...... (4)13
> 

where m1 and m 2 arc determined by the 
conditions 

tt=Uo and 
du ~-=O at ;Jl=b. 
dy 

Some of so computed forms are shown in Fig. 15. 
Let 

I Jb cf=- udy 
tt0b o 

13) This part was read before the meeting of the Kikai-Gakkwai-Kwansai-Sibu in March, 1932. Now it seems better to 
take the velocity distribution given by equation (2), but there is no change in the principle of calculation, so it left unaltered. 
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Fig. 1 5. 
Assumed Velocity Distributions by Eq. (4). 
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and the value of R- 2110bifJ was taken as the 
JJ 

Reynolds' number of the flow, JJ being the coef­
ficient of kinematic viscosity. 

Now let the pressure of fluid to be denoted 
by p, the shearing stress at :J' by • and the dQnsity 
of fluid by p which is a constant value. Then in 
the case of steady flow, we have 

__e_fY' du2dy'=-y'ddp -., ..................... (5) 
2 Jo dx x 

. assuming that a is small and p is constant over 
the cross section perpendicular to the x-axis. 
Hence if we assume the velocity distribution 
changes along the x-axis but "affin ", then 

'!fx=p'P;ii _ ~o, ........................... (6) 

where 

I Jb 2 'f)=-~b u dy, 
Uo o 

and , 0 is the shearing stress at the wall surface 
and it is assumed as follows ; 

2 2{ JJ }+ , 0 =0.0225 pm 1tq --b , 
muo 

or 

~=0.02676(-1-)+ 1n + y,+. . ........... (7) 
pzto R . 

From equations (5) and (6) we get 

Following Prandtl we express • by using the 
length !, i.e. the so-called " Mischungsweg "141 or 

,=pi2 I ;; I : ............................... (9) 

The value of l varies from place to place. 
The theoretical value oft is not yet known except 
as deduced by Karman15

) in the case of the flow 
between two parallel plates. It may be assumed 
therefore after the experiments of Nikuradse16J as 
follows; l is proportional to x- _and the value of 
!/ b at the Genter part of the channel is approxi­
mately independent of a. Further we assume m= I 
corresponds to u=o and by this case t/b=o.1235 
aty/b=o.8, when R=2.86· ro417

l. 

Equating the value of t/b at y/b=o.8 to 
0.1235 when R=2.86 • 1a4 for all angles of r1., we 
get the following relation 

o 12352{di(.!!...)/,;/ L)}2 

-o 2~ 
· u 0 "\ b y/b=O.s • pu~ ( ) 

a= Jo.2 u, )2 ( y') , , . · I 0 
( - d, - -0.2'{) 

o Uo b 
1 

The computed relation between 1n and aR4 1s 
shown in Fig. 16 with the measured values of 
Nikuradse. The distributions of l are shown m 
Fig. 17. 

l 

m 

Fig. 16. 
J 

Relation between Parameter m and u.RT • 

0 (16 f,2 ..1. ~6 
aR• 

• NikvrodJe (estimated) 

In this way we find m = o corresponds to 

u.R4 = I .9 1 9 or 

a=8.46° when R=2.86 · 1a4. 

At and above this angle the flow breaks away 
from the channel wall on both sides. 

Then a question arises whether for a smaller 

14) For example. see Handbuch der Experimentalphysik, Bd. 4, Tei! 1, page 309. 
15) Th. v. Karman: Mechanische Aehnlichkeit und Turbulenz. Proceedings of the 3rd International Congress for Applied 

Mechanics, Vol. 1. 

16) Nikuradst:: Joe. cit. footnote 6. 
17) It is impossible to find l/b at y/b= 1.0 in this calculation. 
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Computed /-distributions. 
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angle, back flow takes place or not ; in other 
words whether back flow on one side only of the 
channel wall is possible or not. After trial calcula-

1 

tion, it was found that when aR4 =0.958, it is 
possible that m=o on one side only while m=o.77 
on the- other side of the wall giving an unsym­
metrical velocity distribution but with the same 
value of l at the center part. The velocity and l 
distributions in this case are shown in Fig. 18. 
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Computed Velocity and /-distributions for 
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If the angle is larger than the above, flow may 
perhaps break away on one side when the sym­
metry of flow is disturbed. We may term this 
type of flow unsymmetrical break-away (its limit 
being indicated by point A1 in Fig. 18) against 
break-away of a symmetrical form (indicated by 
point A 2 in the same figure). 

The ratio of the angles of these back flow is 
"11nsymmPtrical hreak-away 

I/ symmetrical break-away 
1 

and the range of aR4 is divided into three parts, 
viz. 

J 

rzRT <0.958 no back flow, 
1 

0.958 <aRT < 1.919 back flow may take place 
on one side, 

1 

aR4 > 1.919 back flow on both sides. 

They are shown diagramatically in Fig. 19. 

Fig. 19. 
Schematic Diagrams for the Relation between 

Diverging Angle and Break-away. 

T 
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In Fig. 20a and 20b some results of measure­
ments of unsymmetrical break-away are shown 
compared with the computed result. Fig., 20c is 
the corresponding symmetrical case. But they are 
all measured at the middle height of the channel. 
Now in these cases the flow is no longer two­
dimensional, so the form of velocity distribution 
may vary considerably with the height, and the 
above measurements will only exist in that section 
and is of quite different form at another height. 
So the above computation is not perfectly demon­
strated but we can conclude that the velocity 
distribution with m less than approximately 0.4 is 

Fig. 20a. 
Computed and Experimental Results. 
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Fig. 20b. 
Ditto. 
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Ditto. 
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not stable and apt to break away; which has 
been also ascertained by Nikuradse's expe.rirnent. 

4. Some Examples of Flow along the 
Surface of Revolution. 

The typical forms of velocity distributions in 
the turbulent boundary layers are shown in Fig. 
21a; one, when there is no pressure change, the 
other two when pressure rises or falls along the 
direction of flow. The corresponding shearing 
stress distributions, according Buri, are shown in 
Fig. 2 rb taking the shearing stress , divided by 
the shearing stress -r0 at the surface of the wall 
as the ordinate axis and_y/a as the abscissa axis. 

Now we will consider a small portion of fluid 

18) Buri : loc. cit. footnote 4. 

Fig. 2c. 

Approximate Velocity and Shearing Stress Distributions. 

a 

i ···· with pressure fall 
ii .... with pressure rise 

io o 

b 

y 
T 

f,O 

at the surface of the wall, a very short distance 
from the surface, and denote the y-component of 
velocity by v, then 

u c)u + V c)u - - I dp + I c>r . 
c)x c)y p dx p c>y 

And as a rough approximation we assume that 
the second term of the left hand side is small 
compared with the first term and can be neglected, 
then 

uc)u =-__!__ dp +__!__ c>-r ........... ....... (11) 
c)x p dx p dy 

In the case 
surface and 

of laminar flow, 1t=O at the wall 

I dp c)2u 
---=V--
p dx df. 

In the case of turbulent flow, u==!=o in the close 
neighbourhood of the wall, and we denote this 
velocity by 

Uwan =ntto, 

where 110 is the velocity just outside the boundary 
layer and n is a mere number less than one. 

Then by the relation 

d110 I dp 
Uo--=----, 

dx p dx 

we get 

dn __ (r-n
2

) I dp+ I a.(o'), ... (12) 
dx 2n q dx na pu~ oy o 

where ( :; t is the value of :; at the wall 

d - p 2 an q--- Uo. 
2 

Now n may be expressed by 

introducing the above mentioned parameter 111 viz. 

n=n01n 

where n0 is the value of 11, when m= I. 

Putting this into equation ( 12) we get 
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(I -nii11z2) 
2m11~ 

l dp 
q dx 

+~_;( ik ) ................... (13) 
mnou pzto oy 0 

and according to Fig. 2 I b 

for dp =O or flow along the flat 
dx 

plate placed edgewise to the 
stream. We may denote the 
value of m m this case by 1110, 

for dp > o or m <mo, 
dx 

for dp <o 
dx 

or m> 1110. 

The above equation ( I 3) is deduced by a 
very simple consideration but it will be possible 
to express the rate of change of m by generalizing 
this equation i.e. 

dm _ I dp b(:n) ( ---a(m)--d +-~~, ............... 14) 
dz q x u 

where a(m) and b(m)19l are functions of m but yet 
unknown. 

To determine these functions we make use of 
the empirical formula of Gruschwitz20

' viz. 

!!..._ dd'f;i =o.008941-0.00461, 
q X 

where 

11 -

( )

q 

r;= I - ti: ' 

u1 being the velocity at y={). 
From this formula and the h-curve as shown in 
Fig. I I, we can compute the values of a(m) and 
b(m). The so computed results are shown in 
Fig. 22. 

The validity of Gruschwitz's formula for every 
case is not yet confirmed but was proved recently 
by J. Stuper21 J in flight tests. Here, in the fol­
lowing lines, application of equation ( 14) to the 
surface of revolution may be mentioned. 

In the case of converging flow in a conical 
tube with circular cross section, the velocity distri­
bution at a cross section will show a region of 
uniform velocity at the center and the remaining 
parts near the wall surface form the boundary 
layers. In such a case the form of velocity distri­
bution in the boundary layer is maintained almost 
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Fig. 22. 

a(m) and b(m). 

\ 
\, 

'\ 

'\.. 
b<mJ I'--. 

0,4 

Olm) 

"-
" 

"-- .... 

0,6 

.... 

" '-... 

" " "' 
411 

m 

-
~ 

0,10 

bcm> 

/1,011 

0,06 

0,04 

0,02 

0 

-402 
1,0 

constant as indicated by the experimental result 
shown in Fig. 12. The ratio of the boundary 
layer thickness a to the radius of the tube r0 

varies along the tube axis, which we denote as 
the x-axis. As a velocity distribution formula the 
following proves very useful, 

u =uo( {-)+(; - ; ~). 
The equation of momentum, of continuity and 
Bernoulli's equation are as follows ; 

d jro 2 . .2 dp p- 21ru rdr= -7rr0-d - 2rrro,o, 
dx o x 

1:0 
21rurdr=const., •• • ••• ( l 5) 

du0 I dp 
Uo-=----, 

dx p dx 

where u is the velocity at distance r from tube 
center and 

zt=Uo for r<ro-a. 

From them we can determine the variation of a 
with x. An example of such a calculation was 
carried out for a very smooth Venturi-tube of 
standard form. The computed coefficient of dis­
charge from this example is plotted in full line 

against log10 u:d in Fig. 23, where um 1s the 

mean speed of fluid at the throat and d is the 
diameter of the throat. Laminar flow, assuming 
the velocity distribution in the boundary layer to 
be a parabola, is shown in the dotted line, while 

19) b(m) may not be only the function of m but Reynolds' number etc. 
20) Gruschwitz: Joe. cit. footnote 3. 
21) J. Stiiper: Untersuchung van Reibungsschichten am fliegenden Flugzeug. Luftfahrt-Forschung Bd. II, Nr. l, 1934. 
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Fig. 23. 
Computed and Actual Coefficients of Discharge 

of the Venturi-tube. 

tOO ,-----,.----.---~--~----~ 

Tvrhvlent 

Laminar 
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O,'IO ,__.,___. __ _._ __ _,_ __ ..._ __ J._ _ __. 
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loo u,.d 

:7f~ ,,, 

the mean curve given by A. S. M. E.22
J for Venturi­

tubes in practical use is shown in ch~in line. 
Next we take the problem of the turbulent 

boundary layer of an airship hull with its center 
line in the direction of flow. As an example, 
computation in the case of I/ 40-scale model of 
the airship " Akron " was carried out and compared 
with the experimental results of H. Freeman.23> 

The equation of the boundary layer is 

.!!..__ f" u2rdy -110-.!!_J°urdy 
dx Jo dx o 

where 

= -(,,oa + a'1 cos fl. )-I dp _ roTo , ( 16) 
2 , p dx p 

To=0.0225 pu~11.2(-IJ-, )+, 
rnuoo 

r0 =radius of the hull, 
u =velocity at distance y from the wall 

or distance r from the center line 
of the hull, 

a•=inclination of the tangent plane to 
the surface with the center line of 
the hull, 

x =distance measured along the surface 
of the hull in the direction of flow. 

Solving this equation with equation ( 14) we 
get the variation of a and 111. Calculation was 
carried out for the after-portion of the hull, from 

the measuring station No. 7 of Freeman's experi­
ment. At this station, we assumed <1=5.75 cm 
and m=o.92. The assumed velocity distribution 
is shown on the top of Fig. 24 which agrees with 

Fig. 24. 

Measured and Computed Velocity Distributions. 
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the experiment. Then velocity distributions at the 
stations 8, 9 and ro were calct1lated and are shown 
in full lines in the same figure, the abscissa axis 
being shifted to avoid confusion. In this figure 
the dotted lines show computed results by the 
formula proposed by C. B. Millikan, taken f. om 
Freeman's paper, while the measured points are 
indicated by small circles. We find that we can 
get -closer agreement with the experiment if we 
take the change of parameter m into account. 

5. Relation between the Reynolds' Number and 
the Maximum Lift. Coefficient of Aerofoil. 

Generally the maximum lift coefficient of aero­
foil varies with Reynolds' number. Karm.in24

> has 
explained this point theoretically considering the 
transition of the laminar boundary layer to the 

22) Fluid Meter, Their Theory nnd Application. A. S. M. E. Research Pul.Jlication, 3rd Edition . 
.E. Ower: Measurement of Air Flow. page 93. 

23) H. Freeman: Measurements of Flow in the Boundary Layer of a 1/40-scale model of the U. S. Airship "Akron". 
N. A. C. A. Report No. 430, 1932. 

24) Th. v. Karman and C. B. Millikan: The Use of the Wind Tunnel in Conr.ection with Aircraft-Design Problems. 
Transactions of A. S. M. E. March, 1934. 
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turbu!ent layer. But this only revealed the nature 
of the relation at rather low Reynolds' number. 
Gruschwitz25J has also made qualitative explanation 
but over a wide range of the number. In this 
section, very rough and approximate considerations 
are made on the same subject by the aid of 
equation ( 14). 

To make consideration easier we take two 
extreme cases, the one of thin aerofoil with small 
camber and the other of thick aerofoil with rounded 
nose, or thin aerofoil but with large camber. 
First we consider the former. 

In Fig. 25, diagrams of the break-away of 
flow are shown. When the Reynolds' number is 
low the bonndary layer is laminar and breaks 
away from a point near the leading edge as shown 
in Fig. 25a. Increasing Reynolds' number, the 

Fig. 25. 
Diagrams of Flows about a Thin Aerofoil Section 

near Cz max• 

C 

laminar boundary layer becomes turbulent before 
it breaks away, then the layer leans to the surfa_ce 
and no break-away occurs, hence the aerofoil is 
not yet burbled-Fig. 25b. But if the lift coefficient 
becomes large or the incidence angle becomes 
large, the turbulent boundary layer breaks away 
and the aerofoil is burbled-Fig. 2 5c. 

The available result of systematic experiments 
on thin aerofoil at various Reynolds' number is 
that of N. A. C. A. 2412 section carried out at 
Pasadena2

r,J_ Instead of this section, we take, for 
simplicity of calculation, the Joukowski section 

25) Gruschwitz: Joe. cit. footnote 3. 

(Gottingen Nr. 541) which resembles the above 
mentioned aerofoil. Then in this case, velocities 
over the surface of aerofoil can be easily calculated 
by the theory of the potential flow, an example 
of which is shown in Fig. 26a. The abscissa is 
the arc · length x over the upper surface of the 

Fig. 26. 

I duo2 d • h U Computed Values of 1102, ------., -- an o over t e prer 
u0- dx 

Surface of the Aerofoil at Cz""" 1.17. 

4 

3 

a 
2 

O'-+-------------~ 

C 
yiftt. 541 

=====---- C 

aerofoil, measured from the front stagnation point; 
the ordinate is the square of velocity when the 
lift coefficient is equal to about I. l 7, and the 
velocity far from the aerofoil is taken as unity. 
The curve of the square of the velocity may be 
considered as the pressure distribution curve, only 
the length of the ordinate and its sign should be 
changed, others remaming the same. The most 
characteristic property of this curve is that at the 
nose, near the leading edge, there exists a heavy 
pressure rise. So at this part the laminar boun­
dary layer, continued from the frc_rnt stagnation 
point, possibly breaks away from the surface of 
the aerofoil. Or if not, it changes into the tur­
bulent boundary layer according to the magnitude 
of Reynolds' ..number. For the case of break-away 
of laminar boundary layer, explanation has already 
been given by Karman. We may consider the 
latter case. In this case it is permitted to assume 
that the boundary layer is already turbulent from 
the front stagnation point, this assumption being 
made for the convenience of calculation. 

As a rough approximation, we integrate equa-

26) Th. v. Karman and C. B. Millikan: Joe. cit. footnote 24. 
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tion (14) term by term from the point where the 
laminar boundary layer changes to turbulent, which 
is marked by the small circle in Fig. 26c in our 
case, then 

JrraUing edge J a J b 
dm =- --;-a'u~+ -dx. 
Transition poh1t tlo ~ 

We write the right hand side in the following 
form~ 

Jdm= -a0J :~~ + boJ ~, .................. (17) 

where we take as a0 and b0 the mean values of a 
and b. And moreover we assume for convenience 
that the maximum lift coefficient had been reached 
when, at the trailing edge, m becomes zero. So 
for the maximum lift coefficient the left hand side 
has a negative definite value. 

The first term on the right hand side chiefly 
depends upon the lift coefficient c., and the second 
term may also depend upon c. but is greatly 
influenced by the Reynolds' number. In our case 
the first integral can be expressed approximately 
as a linear function of c. i.e., 

J du~ 
- -.-, =o.906c.+o.334. 

Uii 

The boundary layer thickness a was approximately 
computed taking the velocity distribution in the 
following form 

by the fotmuia proposed first by M. Ono2;J and 
later by H. Muller, an example of which is shown 
in Fig. 26b. The thickness a is proportional to 

1 

RT as in the case of flat plate placed edgewise 
to the stream, where 

w is air velocity and t is the length of chord. 
After several computations the second integral 

can be expressed approximately by a linear func-
1 

tion of c. and proportional to RT i.e., 

J ~x =R+(8.08-3.14c.). 

Moreover an example of calculation was carried 
out taking 

R= r.5 · 1c6, c.= r. 174, 

and at these values m is nearly zero at the trailing 
edge Estimating the mean values of a0 and b0 

from this example, equation (17) can be written 
m the following form 

1 

c. max+ 0.0297 c. max RT 
1 

-0.0766 RT =0.458 ................... (18) 

The value of the integral on the left hand side 
of equation ( I 7) was so controlled that c. max= I. I 7 4 
at R = I. 5 • 1 c6. This equation ( 1 8) is shown in 
full line in Fig. 27 while the broken line shows 
the following equation : 

f,3 

f,2 

,., 
f,O 

Fig. 27. 
Relation between c. max and R. 

Small Circles show the Experimental 
Results at Gottingen. 

-,,.,,-
i-------· :,,,· ---/" ./ ~ 

/ 
, 2 3 

1 

C• max+ 0.0297 C• max RT 
1 

-0.0766 RT =0.606, 

by which the above mentioned constant was so 
changed that c. max=I.172 at R=o.42 · l06 which 
values correspond to the test result of Gottingen."8

) 

If in the above equation the dependence of 
the second integral upon c • . jg ignored, we get the 
following relation, 

1 

C0 max=k1+k2RT, .............................. (19) 

where k1 and k2 are constants. If we determine 
them, so that c. max= r.174 when R= r.5 · tc6, then 

1 

c. max=o-458+0.0417 RT, 

while the results of Tokyo and Pasadena for 
N. A. C. A. 2412 section can be expressed ap­
proximately by 

1 

c.max=o.514+0.0405 R5 

which is shown in Fig. 28. From these two 
equations we see the orders and magnitudes of 
these constants are in good agreement, hence the 
author proposes the formula of the above forms 
-equation (18) or (19)-as the favorable type 
of formula to express e:xperimental results and for 
the purpose of extrapolation to higher Reynolds' 
number in the case of thin aerofoil. 

We now proceed to the case of thick or thin 

27) M. Ono: On the Frictfonal Resistance. Journal of the Z0sen•Ky0kwai, October, 1926. also, Musatu.teik0 to son.o Riron. 
Journal of the Aeronautical Research Institute, T6kyo Imperial University, No. 117, 1934. 

28) Ergelmisse dcr Aero<lyn. Versuchsanstalt zu Gottingen, 3. Lieferung, page 61. 
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Fig. 28. 
Rdalion between c• max an<l R for 

N. A. C. A. 2412 Section. 

e KtJl<ti-Kenlrytizyo, Tclcy8 

o Pasadena 

o,q 1_._ __ ..J.... __ ....1... __ --1. __ --1'------' 

a as io 1,s ~" R· ,o-6 

aerofoil but with large camber. As an example 
easily treated, we take the Joukowski section 
(Gottingen Nr. 433) again. The square of velocities 
over the upper surface are shown in Fig. 29. 
This time the gradient of pressure is much Jess 

Fig. 29. 
Computed Values of u02 over the Upi:er Surface 

of the Aerofoil. 

u.' 
3 

2 

arc length 

(iiitt. 433. 

~--~ 
than in the previous example and it is easily sup­
posed that in such aerofoil the position of the 
transition point from laminar to turbulent is greatly 
infh:,enced by Reynolds' number. 

We integrate equation ( 14) from the transition 
point to the trailing edge as equation ( I 7) and as 
a rough approximation we neglect the second 
term. If we measure the arc length f along the 
upper surface from the trailing edge, the square 
of the velocity C<ln be expressed approximately as 
follows; 

ui,=c1 +c~. 
The lengths and velocities are herelfter measured, 
taking the length of chord and the air velocity, 
far from the aerofoil, as unity, for the sake of 
simplicity. The constants c1 and c2 in the present 
example are c1 '¥0.86 and c2'¥ I. I 2 + 0.94 c.. Hence 
we get 

Ji d~~ = log (1 + ~) ..................... (20) 
o Uo c, 

Now this integral must be equal to a certain 
constant value in order that the break-away may 
occur just at the trailing edge. Equating the value 
of equation (20) to this constant, we can determine 
f, which gives the position of transition point from 
laminar to turbulent, 

Next we compute the thickness of the laminar 
boundary layer from the front stagnation point, 
the velocity distribution in the boundary layer 
being assumed to be a parabola and calculated in 
the same way as the turbulent boundary layer. 
The result can be expressed as follows ; 

iJ= ,J •••···•••·· ························(21) v'R 

where LI is a function of :r/t. 
Then the Reynolds' number of the boundary 

layer R 6 which we define as the quotient of the 
velocity just outside the boundary layer times its 
thickness and the coefficient of kinematic viscosity, 
becomes 

R 6 = ,.,/ R u0LI .............................. (22) 

The calculated values of u0L1 is shown in Fig. 30, 
and we may express them approximately by 
straight lines i.e., 

U.IJ 

6 

Fig. 30. 
Computed Values of u0i and c3x. 

0.2 a3 

tt0 d=c3X 

and in the present case Cs'¥ 3.78 + 6.79 c •. 
If we take the critical Reynolds' number R6 er 

at the transition from laminar to turbulent layer 
as equal to 3000, then 

v7[ (3.71:1+6.79 c.)xe=3000 

or 

~000 , ............... (23) 
v' R (3.78 + 6.79 c.) 

where Xe is the value of x at the transition 
point. The points defined by Xe and fe must coin­
cide with each other or 

Xe+ fe= arc length from the front stagnation 
point to the trailing edge 

=s. 

Putting equation (23) into equation (20) and using 
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the numerical values c1 , c2. and c3, we get the fol­
lowing very approximate relation ; 

+ C2 A - + (I. I 2 + 0.94 c.) ( ) I -----=-f;1 - I ~-------''-'--=-- S-.t"t 
c1 o.S6 

=const. 

Choosing the constant properly from an examl!le, 
as in the previous case of thin aerofoil, we .get 
the relation 

_/-R c,+ 1.19 ( ) 
v "¥ 39 ( ) ( , . . .. 24 c,+0.557 c,-0.306) 

and if the ,magnitude of R6 er is varied the constant 
390 varies. 1 'aking R 6 er equal to 2000, 3000 and 
4000, such curves represented by equation (24) are 
shown in Fig. 3 I in full lines. 

Fig. 31. 

Relation between Cz max and R. 
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Now equation (24) is valid only when the 
transition point lies between the point of laminar 
break-away B and the point of minimum pressure 
A in Fig. 32a. If the transition point lies before 
point A as in Fig. 32b, the position of the transi­
tion point has no much influeuce upon the break­
away as when it lies between A and B, so c

0 
dnes 

not vary much with the Reynolds' number. The 
condition in which the transition point coincides 
with point A is expressed from equation (22) as 
follows; 

These relations are shown in Fig. 3 1 in chain 
lines, taking R6 ,,. equal to 2000, 3000 and 4000 

Fig. 32. 
Schematic Diagrams of Flows about a Thick 

Aerofoil Section. 

A 

:-.. -.. ~ 
··.:-.;-.. 

b 

respectively. 
Experiments on thick or large cambered aero­

foils show that the lift coefficient yet increases 
with the incidence angle, even when break-away 
has already occured near the trailing edge. Hence 
the above calculated lift coefficient does not give 
the true maximum lift coefficient, but may be 
considered proportional to it or nearly so. More­
over at present, the problem of what value R 6 cr 

should take, how it varies with the conditions of 
flow Le. the pressure gradient along the direction 
of flow and the form of the velocity distribution 
in the laminar boundary layer are still in obscurity. 
Hence it is difficult to express the required relation 
in a single formula. But in this way it may be 
possible to explain the decrease of the maximum 
lift coefficient with the Reynolds' number. 
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