On the two-dimensional flow around the flap wing section
composed of two circular arcs.

By Busuke Hudimoto.

In this paper the author tyeats the problem of two-dimensional potential flowy around
fap wing section composed of twvo circular arcs by the method of conformal representation.
And the results of approximate calculation by the method of vortex field are added.

The two-dimensional flow of a perfect fluid
around a thin flap wing section composed of two
segments of straight lines has already been investi-
gated. In this paper the author investigates the
same flow but the section is composed of two seg-
ments of circular.arcs. In the following paragraphs,
the conformal representations applied and the lift
and moment acting on the section will be described.

I. Conformal Representation.

" To simplify the problem but without losing
the generality, we assume the two circular arcs,
which form the flap wing section, have the same

radius. We consider this flap wing section AHB
in the Z-plane as Fig. 1. We take the y-axis
p,

z

Fig. 1.

passing through the two centers O, and ‘O, of the
circular arcs and x-axis passing through hinge
point /7 and perpendicular to the y-axis. Let the
flap angle be ¢ we get

HO=C=R cos Z .

Now we take a point / at x=—C or make O/=C
and express

AH=p,, AJ=p,, BH=p; and BJ=p,.

Next we transform this Z-plane into the #-plane
by the following relation

Z—C __
m_t ................................. (1)

Let the points in the #-plane corresponding to A
and B in the Z-plane be ¢=# and #=#, then

—log £ +i =0
log #,=log n +1 P

= O ;70
log t,=1log 0 P
If we denote 2=72% and #=p,¢" etc., then
=P =T t
y ! S y ¢ S e etc.

The transformed flap wing section in the Z-plane
is composed of two segments of straight lines as
shown in Fig. 2. And moreover Z=—( corres-
ponds to z=woc0 and Z=-co corresponds to f=1I.
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Fig. 2.

Next we transform this flap wing in the z -
plane into a circle of radius one in the ¢-plane as
shown in Fig. 3. The relation is as follows*
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Fig. 3.
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e (C+ efo)l-g-s(t_e—ts)l—s
¢

where £ is a constant factor.

This relation can be derived by considering the
flow due to sources of strengths 27 (1+¢), 27(1—¢)
and —o27 placed at the points A, A, and origin
respectively in the ¢-plane, which has the circle as
one of the stream lines, and the flow due to a
source of strengtn 27 at the origin of the #plane.
By this relation A, and A; correspond to the origin
of the z-plane and so to the hinge point A in the
Z-plane. We denote the points corresponding to
4 and 4 by 4 and B. The value of ¢ is deter-
mined from the flow in the #plane i.e,

I+e _7n+d
f—e 7—0 '
hence )
)
B (3)

Now we must determine 4 and & in Fig. 3.
The velocity at the points 4 and B due to the
sources placed at A, /A, and origin must be zero.
"This relation is expressed in the following equation

(I+e)~/l+sm(0 4)

1—sin(f—4d)
o I+sin(0+4) _
(1 E)N/x—sm(aﬂr) O trivrenn (4)

And considering the stream lines spring out from
A, and H,, we can find the constant £ as follows

where # is a real number.

Now let the potential function at 4 and 5 be
¢, and ¢, respectively, then

$,=log 2 (cos 4+sin ) 3
sin (L+%+%>
4
+¢log : — 3 y
sin (—+_-—_.._
o ©
$o=log 2 (cos 4—sin 0) oo
(imtet)
+ ¢ log 4 T
sin (== =) )
But ¢,—¢,=log ‘;’ hence
. " sin (L+L+_‘L
21 _ cos d+sin g 4 2 2
2 cos 4—sin 0 in (L-{-L._i
4 2 2
sin (L-i__d- T
4 2 22 )
sin (_”_—L+i
4 2 2
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From egs. (4) and (7), the values of 4 and @ can
be determined. Then # is given by

log # =log g —¢5.

Summarizing the above transformations, the
relotion between Z and ¢ is expressed as follows

Z—C _ (N —
Z+ C = _ 14

—10)1—5

II. Potential Flow and Velocity,

Let the » and y-components of the velocity in
the Z-plane far from the flap wing be denoted by
# and —"respectively and express

u+tv=we® (see Fig. 4)
> u
A
s

vy

B
Fig. 4.

The corresponding flow in the #plane is ex-
pressed by the flow due to a doublet placed at
=1, and the complex velocity potential of this
flow is as follows,
2c(utiv)

-1

2¢ we'®
—1

Wi=—

Let the point in the -plane corresponding to
t=1 be {=ae’™ and the corresponding moment of
doublet to be 7, then

' m
! C-ae™

Comparing these two flows we get

m=2ctwae
a
where ge% = (—C iy
! Jaty=ae

The flow around the flap wing is the combined
flow of this doublet and the circulation flow around
the flap wing. To simplify the calculation, first
we transform the {-plane into the S-plane by the
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following relation S={¢".
complex of the velocity is expressed as follows.

dW _ 2cwoe
ds —  (s—a)

$G+o-1) 20 gt EHI=T)

0 1Y
“(s—7)
a

Returning to the {-plane

AW _ 2cwget®t?)

g (C—a"y

2£wa-e"i(3+¢-2‘r)

s

_iar JAR
2w {—ae™  2m AT

=

The magnitude of the circulation can be deter-

veeer (9)

mined by putting %%V =0 at the point correspond-

ing to the trailing edge ie. 5.

In the case of a small flap angle i.e. when ¢
or ¢ is every small and also with small camber
i.e. when « is very large, we have the magnitude
of the circulation as follows,

I ewo cos (,9+¢+A-—2r)+%sin B+e¢

2 4

+2 sin(d-r)——i‘, cos 2 (d—y)
a a®

+2d—37)—3;cos(B+ 9+ 34—47)

... (10)

III. Lift and Moment.

The force and moment acting on the aero-
foil can be calculated by the Blasius’ formula.

Let the x and p-components of the force be
Px and Py respectively, then

Pr—iPy=1"_ P ﬁ(dz )a’z
Ny ¢’(a’W2a'(a,

ac _ (l—z')2
but T
20—
af
Hence
Px_z.Py=__‘02z 95’ (dW (l-t)z O= e (o)
dC

In the same way the moment around the point
Hor Z=Cis

= —-ﬁ R ¢ (d—I/K>2(z—-c) dz

’(““ v (12)

or

C

Then the conjugate ‘

where R denotes the real part of the integral.
To calculate the above integrals we expand
4 i
(‘Z—ZV) in the power series in the neighbourhood
of f=a¢*" and we get,

(d w )2= Vs aamad

i’ qewodt G+

(C—ac™y  2n ([—ac™)
4 I [i[_' 4acu g BT
(& —ae™) 2% (@—1)
I 8cw’a®

< (13)

S T—

Also we expand 7 in the nelghbourhood of -
{=ae®™ and we get

_=a0[60+26 C—~aé™)] ......... e (14)

37 0 €
ae’t+¢
where a,= [———_—w] ,

é0=aet*—'

I 2¢ cos 0
&1= I +
(¥ ae™ '
PR S 25 cos 8
2 (ae*) (ae¢T+etO)(a£¢T_e—t0)

2ecos
ad " (a’T — )

[+ i 1+

[I_ (1—¢) cos A

PR 7 2ecosf
2T (@) (ue)(ad + ) e — )
2e cos 8 [l 4! :'
(ae¥ +€%)(ae™™ — e t0) (e} 1
I:I"" (1—e)cos 7] _ 2ecos
et 4% e’ (ae' —e )
' [1 __2(1—¢)cost + 2(1 —s)(z-—e)coszﬁ]
ae”—{-e"’ v 3(aeﬂ+e¢9)2 M

Hence at =ad,

- . ar
kayby=1 and (d—;)§=az‘i7

Using these values

_ 1
- léaobl ’

(‘;; 2Y e bagb (7 — adY + 2hagd(by—bs) X

ac
(C—ac P+

and

(1=8_ _ /gﬁ[blbo(c —aé”)+ (63— bbe)(C —ae'")
at b

ac
] (16)

+ (@— zéobs)(c—ae‘*)3+
1

Hence from eq. (11)
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. I 27006t 29
P,—sz——‘—‘ﬁ[ kﬂob] pye (C_nag )

— ] dg = —ipka"wetad®®.

Introducing  gé®=

_r
kayd,
P,—1P,= —iplwe®
which is the well-known result.

The moment can be calculated also by taking
the coefficient of ({—a¢®™)™' in the expansion of

(%’;‘Z Zt([i_t—t). Let this coefficient be Idenot;ed by
a
M, then from eq. (12)
M= — 7 S ooveerereeneeereenenrneenns (18)

where & denotes the imaginary part of M. The
coefficient of M is as follows.

I" | 856" il" gacwee’ PO

4t (zz“—[)2 27 (a"’-—l)

M=

T B+9)

_ ji__i)g 2P, L (19)
. 1

In the case of a small flap angle and also a
small camber i.e. when e is very small and a is
very large, we can express IR approximately in
the follwing form.

M= —ﬁﬂiﬂ |:sin #sin(8—y)—ecos fcos(B—7)

+ 3cos(f— 2r)—-cosﬂ+ 3esin2fsin(B—27)
2a 2a
+ sinfsin(f—7)+ 2sinfsin(f—2y)
”2

9 2 :
_SP_Z‘;K I:sin 2(B~y)—esinzfcos2(f—7)

4 4sin fcos(28—3r) _ 2¢e?cos’fsin2(f—y)

a
4( '——z— cos? ﬂ) & cos O sin (23— 37)
i a
__(6+45sin® #) sin (25——47‘)] (20)
o e 2

IV. Approximate Relations between Z and ¢.

The approximate relations between Z, ¢ and
{-planes are summarized as follows. In the follow-
ing we assume that e is very small and a is very
large

In the Z-plane

o I
o) 2 3
P ~/4(i) —I+sini’i+sini
™M 2 2

¢4<,,,>-:+—
ﬂj /(_ x+—

1+ 6—£§>
A U T . 2¢

P 2P P5g /'1(,; )

Hence

The value of 4 can be determined by eq. (4)
which becomes approximately

. )/I-}-Smﬂ
cos ¢ —sing

dace cos 0=%'cos 4.

hence

Egs. (6) can be expressed approximately as follows

- cosl A ¢
Y end 1 +sin T+sind 2
#=log 2(cosd +sinf) vy I

| T s 2
Tri+ cos 4.
. 1—sintd 2 i
$s~slog 2 (cosd —sinf) m »
B 1—sinfl 2

p1, Cosd+sinb [ 1 —esind ¢

h
ence p. cosd—sintl L 1 +esind
From above eq. # can be determined.

In the special case of e=o, let #=0, then

sinfly=21"22
Pt
And approximate value of ¢ is given 0=0,+0.
where ¢ is determined from the following equation.

g(cosd—sinf)’ p,

__cos’d—sin®f,[ 1 —esinfy*
2cosdcostly  p,

2cosdcostly | 1+ esinb, |

Also from ¢ ,=log %, # can be determined and

2e2]

Next we must determine the value of @e". Ex-
panding ¢ in the series assuming { to be very
large we get,

approximately as follows.

ac4(cosd +sinb) |:

1=k I:C"'Zl'Sillﬂ-l;zecosﬁ—I_—_le_S‘ﬂzg_ ]

T

Hence the first approximation for a.’" is

10
¢ I sinefl
—2¢sinf ~— —72sinf + 2

g #
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I

and me,
#7?(esin 20 4+ 2sinefl — 44#'sint))
90'\/50'*' I+k’2 .
So the second approximation for a¢” is
az“w% -+ 'é/-—-——_l'iez,(;w —2¢sinf + zglz,eﬂ y
_’_,k’(z,é’sinﬁ—ssin 20 —sinef)

1447

Finally let the incidence angle « of the flap wing
section be the angle between zv and the chord AH,
then the relation between 8 and « is as follows.

T, 0 . 1 M1
- —— y h = 1———-
a 2+2 B+¢, where ¢=sin 5

V. Approximate Solution.

Since the solution developed above is investi-
gated by the method of conformal representation,
the solution is accurate but tedious for calculation.
In this paragraph, therefore, we add the approxi-
mate solution by the method of vortex field.

At first we consider the flap wing section com-
posed of two segments of straight lines. K We
transform this section into a circle in the ¢-plane
by the following relation.

Z = (C_ew)1+s(c__e~1e)l—s ‘
¢

The relation between Z-
shown in Fig. § and

and ¢-planes is

r a2 (1—cosf),
re~s2 (1+cosf)

and Awé_sin d.

T

When the flow far from the flap wing is
parallel to the real axis of Zj-plane and ¢-plane,
then it flows smoothly both at the leading edge
A and trailing edge B. In this case the magnitude
of circulation is

[y=4musin 4.
Hence the lift is given by
Ay=mnpiitsind
where ¢ is the chord length.
And the moment around the hinge point / is

ED?f:Af% cos #,

the moment being positive in a clockwise direction.

To solve the problem of thin aerofoil section
of arbitrary shape by the method of vortex field,

we usually apply the following three forms of

circulation distribution along the chord.

L
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Fig. s.

2x

4 J (zx )2 2x N/ (2.t )2
. —(==), = Ji—-(Z2) .

2x ! t -t ¢

z

First we consider the flap wing section com-
posed of straight lines but flow is not smooth at
2x

I -

¢

I

I+

A. In this case we take Let the flap °

l+—2x
?

wing be placed as in Fig. 5 and the flow far from
the wing make an angle « with the real-axis
and with magnitude w, then

lit A, =mpw’ I:sin w+ % sinficos a:] ,
and the moment around the point A is

’2 2
gﬁ-sf: n'nge L
We proceed now to the case of the flap wing

In this case we add

[sin 2u(1+2cosfl)+ 2%cos"’asin 20].

composed of two circular arcs.
N/I —(3-;—) This latter distribution gives a nearly

circular arc section and the form of the section is
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12

and the corresponding circulation when the velocity
far from the wing is parallel to the real axis and
magnitude of #, is

I,=27fu.

Adding this type of distribution, the form of
flap wing section is as shown in Fig. 6 and

o 1 (o= ) 0 Y e 2]

for HB y= ——(x— ZCZS(i) [:5(7:—0)

+4:_£ s tcosﬂ):l )
I 2

and
Z=50+-2j—c(1 —cosf).

When the flow far from the flap wing is parallel
to the real axis in Fig. 6, it flows smoothly at
A4 and B. ‘

The lift and moment around the hinge point
H in the general case are as follows.

Fig. 6.

A=npw’t [sin a+—i—cos asinf + EJ:cosai:]

z
anwzt[a +~gsin a +%] ‘

and

Tpwlti . 0 .
M= 3 7smza(l+2cosﬁ)+271_—cosgasm20

+ % cosl cosQa:I

Tow’f
4

i

- i 4f
La(l+2cos(7)+7t—sm20+7cosﬂ].

(Berlin, gth. Feb. 1937.)



