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Abstract.

Matsumura’s theory of malleable materials,
statmg that * the elastic failure occurs in malleable
materials when the maximum shear stress reaches
a definite value depending on shear strain energy”
is fairly well applicable to results of experiments,
so far as the material is ductile ; but the theory is
not applicable to brittle materials.  Extending
Matsumura’s theory to all materials, ductile and
brittle, the authors propose now a new criterion and
applying it to the case of fatigue, they think that
“the fatigue failure occurs in ductile materials when

the greatest maximum shear stress induced by com-.

bined repeated stresses reaches a definite value
depending on shear strain energy at the instant,
and that the fatigue occurs in brittle materials when
the greatest maximum principal stress induced by
the combined repeated stresses reaches a definite
value depending also on shear strain energy at the
instant.” From this new criterion on fatigue, they
derive the conditions of fatigue failure under the
combination of various stresses. Comparing the
results of calculation with those of experiments, it
is established that the new criterion is fairly well
applicable to results of experiments in every case.

I. Introduction.

There are two kinds of failure in metals, i.e.,
static failure and fatigue failure, the mechanisms of
which seem at the first glance to be essentially
different from each other. When materials are
broken under static stress, considerable deformation
generally takes place ‘before destruction. So it is
reasonable to regard the static strength of materials
as the resistance to elastic break-down, that is, the
resistance to generation of slip bands in crystals.
But the resistance cannot be ascertained practically
without some troublesome measurement. Then we
can regard the yielding point of the materials ap-

. proximately as the static strength. On the -other
hand, when materials are broken by fatigue, the
relation is quite similar: namely when they are
subjected to repeated stresses, they receive the effect

which is similar’ to the so-called strain-hardening
and become brittle before destruction. At the time
there are many slip bands in crystals, which -grow
gradually to cracks and lead to destruction. So it
is also reasonable to regard.the magnitude of the
cyclical stress, which is just enough to generate
slip bands in crystals, as the fatigue resistance in
the true sense. But it is not easy to obtain the
magnitude from experiments. Therefore usually we
regard the magnitude of the cyclical stress which
is just enough to break down the material as ap-
proximately the fatigue resistance. Generally ‘the
stress which is just enough to generaté slip bands
in crystals is somewhat lower than the stress which
is just enough to break down the material.® As
above mentioned, when we attribute the strength
of materials to the resistance to slip in crystals, we
are convinced that both the static and fatigue failures
are essentially analogous. ‘ !

The authors have previously carried out the
experiments on the strength of metals under com-
bined alternating bending and torsion, and compared
the results with some of the theories concerning
the elastic failure of metals under static stresses.®
Let o be direct stress and 7 be shear stress in static
cases, then many theories of elastic failure undet
combined direct and shear stresses are generally
represented by the following relatlon

Sflo, =

where f is a certain function of ¢ and 7, and ¢ is
a constant. The form of the function fis determined
according to each theory.: For example, in the
theory of constant maximum principal stress,

I 1 s
=—0 —’\/ 2 72_
S P + paldy + 4 ‘
In the theory of constant maximum principal strain,
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where 72 is Poisson’s constant.
constant total strain energy,

In the theory of

9 I "t_) .
[f=c+ 2(1+7>‘ ;

(1) T. Nishihara and M. Kawamoto, “ Studies on Fatigue of Mild Steel by a Corrosion Method”, Memoirs of the College
of Engineering, Kyoto Imperial University, Vol. X1, No. 3. (1943), p. 3I.

(2) T. Nishihara and M. Kawamoto, “ The Strength of Metals under Combined Alternatmg Bendmg and Tor*lon ", Memoirs
of the College of Engineering, Kyoto Imperial University, Vol. X, No. 6, (1941), p.' 117.
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in the theory of constant shear strain energy,.
[=0"+37%;

in the theory of constant maximum shear stress,

and

f=— VT

Then we apply these theories to the case of fatigue,
in which both direct and shear stresses alternate
between two equal magnitudes of mutually opposite
signs. Now we consider ¢ as the maximum direct
stress and ¢ as the maximum shear stress in fatigue
cases. Then similarly to equation (1), we can
represent the condition of fatigue failure under com-
bined alternating direct and shear stresses as fol-
lows :

where ¢/ is a constant, which is different from ¢
and .should be determined from fatigue tests. In
the case of static failure, it is a well-known fact
that equation (1) is fairly well applicable to ductile
materials, if we take the maximum shear stress as
the function f, while it is applicable to brittle
materials, if we take the maximum principal stress
as the function /. Similarly, in the case of fatigue
failure, equation (2) is applicable to ductile or brittle
materials, if we take the maximum shear stress or
the maximum principal stress as the function f
respectively. Therefore we can consider both static
and fatigue failures to be essencially the same.

In the above-mentioned theories, every criterion
contains no quantity varying according to the nature
of materials. That is to say, these theories propose
the criterion of elastic failure of materials with a
definite expression, no matter whether the materials
are ductile or brittle. In this point there is un-
reasonableness of these theories. So that, these
theories are not generally applicable to every
material, though each theory is fairly well applicable
to a particular material. So it is proper to attempt
to make the expressions of these theories to contain
a variable quantity, which may be chosen appro-
priately according to the characteristic of materials.
Thus we can make the theory applicable to every
material, ductile or brittle. Let us consider some
of the theories in such a way.

1. Matsumura's theory.®

According to this theory, the condition of
elastic failure is given by the following equation :
Ao+ Vg 4T =C e (3)

where £ is a constant which varies with the kind
of materials and must be determined by experiments.
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If we.put £=0 in equation (3), this theory becomes
the constant maximum shear stress theory, and if
we put 2=1, it becomes the constant maximum
principal stress theory. So it can be said that this
theory is the combined criterion of both the extreme
theories, i.e., the maximum shear stress and the
maximum principal stress theories.
Let ,
o.=elastic limit under pure direct stress due
to tension.
7,=elastic limit under pure shear stress.
then, determining the constants 4 and ¢ in equation
(3), we obtain the following equation :-

g, g,
(I - - )d + .
27, 2z,

2. Moky’'s theory.®

In this theory the condition of elastic failure is
given by the envelope of many stress circles in
Mohr’s stress diagram, which is obtained by ex-
periments for each material. But if the envelope

VFFai=0,

"cannot be obtained without making many experi-

ments, the value of this theory becomes insignificant
in practice. Mohr then proposed to use the follow-
ing straight lines approximately as the envelope:
that is, common tangent lines to two stress circles
which correspond to cases of pure tension and pure
compression, as shown in Fig. 1. Now let us
apply this theory to the case in which direct and
shear stresses are combined.

B

Fig.. 1.
Mohr’s Stress Diagram.

Let
o_,=elastic limit under pure direct stress due
to compression. \
then, the -condition of elastic failure, which is
represented by the approximate envelope, becomes
as follows: ‘

O_— 0, . T %
e ea+ ¢03+472=
g—e+ae

20_.0,

s (s)

When @, is equal to o_,, equation (5) agrees with
the constant maximum shear stress theory. When

(3) ."T. Matsumura, J. of the Society of Mech. Eng:, Japan, Vol. XIII, No. 23, (1910), p. I.
(4) O. Mohr, V. D. I, Bd. XXXXIV, Nr, 45, (1900), p. 1524 and 1572,
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o_, becomes infinity, equation (5) agrees with the
constant maximum principal stress theory. And
when ¢_,/s, is equal to Poisson’s constant », equa-
tion (5) agrees with the constant maximum prin-
cipal strain theory. Thus Mohr's theory contains
many other theories as special cases..

3. Onod's theory.®

In this theory, the common tangent lines to
the three stress circles corresponding to cases of
pure tension, pure compression and pure torsion,
are adopted approximately as the .envelope in
Mohr'’s theory ; that is, common tangent lines AB
and CD in Fig. 2. According to this theory, condi-
tions of elastic failure become

el

D
C’ B
A
<
0
o-0 —l L
Fig. 2.
Mohr’s Stress Diagram.
G, [
for AB (1— % Vo -2/ 4 =0, ...(6)
27, 27,

for CD (‘;;:—I)H Tt = (])

Equation (6) is the same as equation (4). So Mohr’s
theory with Ono’s envelope is identical with Matsu-
mura’s theory..

Starting from Mohr’s theory, a criterion on
fatigue resistance under combined stresses has been
derived by Dr. Ono.®

4. Bailey's theory on ductile materials.”

According’ to this theory, the condition of
yielding of an isotropic .material is given by the
following equation :

(61— )+ oy —0.) + Aoy —a, P =p......... 8)
‘where @y, 6,(=0), and o; are the three principal
stresses at or near the surface of a test piece, and
-4 and p are constants. Applying this theory to the

case in which direct and shear stresses are com-
bined, we can obtain

If we put A=0, A=1 and Ad=m—1 respectively"in
equation (9), this theory agrees with the constant
maximum shear stress theory, the constant shear
strain energy theory and the constant total strain
energy theory, respectively. From equation (9), a
further discussion has been made on fatigue resist-
ance of ductile materials under combined stresses.

5. Matsumura's theory on malleable materials.®

This theory is represented by saying that
“ Elastic failure occurs in malleable materials, when
the maximum shear stress reaches a definite value
depending on shear strain energy. The relation can
be written as follows:

(o1—asy=a—0[(o — 6.+ (02— 0,)
+ (a5—0,)).- - (10)

where oy, 6y, 65(a;> 0> a;) are the three principal
stresses, and @ and & are constants which depend
on material and stress distribution. Applying this
theory to the case in which direct and shear stresses
are combined, we obtain

2 3&+2 = @ II
g +22é+] [3 2[7+I ............ ( )
If we put $=0, &=co and é=-—.Z:; respectively

in equation (11), this theory agrees with the con-
stant maximum shear stress theory, the constant
shear strain energy theory andthe constant total
strain energy theory, respectively.

II. A New Criterion for Static Failure.

Bailey’s theory and Matsumura’s theory for
malleable materials are an elliptic law about direct -
stress o and shear stress 7, as can be seen in equa-
tions (g) and (11). The elliptic formula is generally
applicable’ with good accordance to every ductile
material, but it is not applicable to brittle materials.
According to the authors’ experiments, the elliptic
law is also not applicable to ductile materials with
comparatively small ductility.

Then extending Matsumura’s theory to all
materials, ductile and brittle, the authors propose
the following criterion: * Elastic failure occurs in
ductile materials when the maximum shear stress
induced by combined stiesses reaches a definite
value depending on shear. strain energy, and it
occurs in brittle materials when the maximum
principal stress induced by combined stresses reaches

(5) A. Ono, J. of the Society of Mech. Eng., Japan, Vol. XVI, No. 29, (léxz), p. ‘37. ]
(6) A.Ono, Trans, of the Society of Mech, Eng., Japan, Vol. 6, No. 25, (1940), Part 1, p. 30, and Vol. 7, No. 29, (1941),

Part 1, p. 7.

(7) R. Bailey, Inst. of Mech. Eng. Proc., Vol. 143, No. 2, (1940), p. 1oL _
(8) ‘T. Matsumura; J. of the Society of Mech, Eng., Japan, Vol. 33, No. 156, (1930), p. 181.
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a definite value depending also on shear strain
energy ”. According to this new criterion, the
conditions of elastic failure can be expressed as
follows :
for ductile materials
5("'1‘0'3)2‘*'[(0'1"”2)2"‘(‘72_—0'3)2
+(ts— o fl=p -rrnno(12)
for brittle materials
102+ [(0y—02) + (0:—as)
+(@—af]=g ...... (13)
where gy, 0;, and a5(0,> 0,>> ;) are the three princi-
pal stresses, and §, 7, p and ¢ are constants de-
pending on material and stress distribution and may
be determined by experiments.
Now we consider the case in which direct stress
o and shear stress t-are combined,

a=—ot+— Vo 4
@G=0 (14)
a=—0b -% VFET 47
Substituting these in equations (12) and (13), the
conditions of elastic failure become :
for. ductile materials
(E+ 200+ 2(25+ 3)P=p

for brittle materials
' 1 L —
NPV g 2 2
?[0‘{—02 + 2 g +4L }+ ]
2 +3t)=g coeriiinn. (16)
Let us then determine the constants ¢, », g and 4.
Let o, be the elastic limit under pure direct stress,
From equations (15) and (16)
' = (f + 2)022
g=(7+2)o’
Let =, be the elastic limit under pure shear stress.
From equations (15) and (16)

p=2(26+3)}

g=(7+6)s’
Eliminating p or ¢ from equations (17) and (19) or
equations (18) and (20) respectively, we can deter-
mine the constant § or . And putting

o= ;: ....................................... (21)
in the results, we obtain
for ductile materials
_ 42 . 1—3¢
¢2 2(2‘: +3) or ;_24¢2_ PR (22)
. for brittle materials
etz 39 —1
¢ 716 or 77—21_5/}2 —(23)
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Now let us consider in what cases we should
use the equations for ductile materials, and in what
cases we should use the equations for brittle ma-
terials. Constants § and 7 are always greater than
or equal to zero, so that from equations (22) and
(23) we can derive the following relations :

P
3

for ductile materials
for brittle materials ¢>——I=
V'3

So it is known that we should use the equations

1.
Vi3l
should use the equations for brittle materials when
When ¢=

for ductile materials when ¢ < ,-and that we

both equations for duc-

1 1
> ) -
¢/ /‘——3 ~ 3 »
tile and brittle materials become the same. But it
is of course the better to use the equations for ductile

materials when ¢=T/£:’ because of simplicity. °
3

In short, the author’s criterion can be sum-
marized as follows :
Let

U=8&(o—a;)+ [(0'1 - 02)2 + (?'2 —a,)
+(o5—a )] (24)
V= 50'12 + [(‘71 _0'2)2'*' (0'2“‘0'3)?‘*' (0'3—0'1)2] .- (25)
Then the values of function &/ or ¥ determine
the elastic failure of materials.
of elastic failure can be represented as

I

U= i 3 (26)

when ¢«

>

V=g ' «/I—3~ ............. ‘..(27)

It must be mentioned that the static case is
analogous to the fatigue case in which combined
stresses are alternating between two equal magni-
tudes of mutually opposite signs. (See chapter V
for details.)

IlI. A New Criterion for Fatigue Failure.

We apply the above-mentioned new criterion
of static failure to the case of fatigue, and we con-
sider that * fatigue failure occurs in ductile materials
when the greatest maximum shear stress (the great-
est value of the maximum shear stress) induced by
combined repeated stresses reaches a definite value
depending on shear strain energy at the instant,
and it occurs in brittle materials when the greatest
maximum principal stress, induced by the combined
repeated stresses reaches a definite value depending
also on shear strain energy at the instant.” Let o
be the greatest maximum principal stress and o,
03(0:> 05). be the other principal stresses at the

. same instant; and also let

And the conditions -
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Uma=5(0'1 —o)+ [("x —a) + (o —a)

+(o3—01 )] coeiieiinnn, (28)
sz=’]0'12+ [(01 ""'2)2 + (‘72—0'3)2
+(o5—a )] ceieririnnnns (29)

then the value U, or V.. is considered to exert
an influence upon the occurrence of fatigue failure.
In equations (28) and (29), we assumed constants §
and 7 to be the same as those in static cases.
About the propriety ,of this assumption we shall
discuss later. :

But we connot, of course, consider the value
Uoew OF Vyas as the only factor that causes fatigue
failure. Because fatigue failure should be caused
not only by magnitude of the three principal stresses
gy, g3, and a;, but also by the stress ranges of those
alternating stresses. Then we divide those alter-
nating stresses into the tow components: namely,
the one is the mean stress acting statically and the
other is the stress amplitude acting alternately be-
tween the two equal magnitudes of mutually op-
posite signs. Let @y, 0:,, and o3, be the static

components of gy, 6, and g, respectively, and also

let 0y, 05 and s, be _the stress amplitudes of ay,
o, and g;; then
0, =01p+ 014, O2==034+ Opq, O3==03,,+ 03
Now similariy as in equations (28) and (29), we put
Un =€(0'1m - ":m)? + [("lm —Oom)
+(Osm— O30 )+ (Gam— 1 N ] oo (30)
Ua=E(01,— 0sa) + [(o'la_dza)2
+ (02— 0'3,,)2 + (”:m'" ala)z]
Vm"—"’idﬁn'*' [(Uxm_ Uzm)2 + ("'21»“‘731»)2
_ +(Fsm—1m)] ---(32)
V= 7‘-71?.4' [('71'.""02«)2 + ("'2«:“'0'3«:)2
+ ("aa— g 1a)2]
*And we regard these values {/,, and U,, or V,, and

V,, also as factors exerting an influence upon the
occurence of fatigue failure.

Now we apply equations (30), (31), (32) and
(33) to the case in which direct and shearing stresses
are combined, Let ¢,., be the maximum direct
stress, and ¢,, and a4, be the mean stress and the
stress amplitude. Similarly let 7,,,, be the maximum
shear stress, and 7, and 7, be the mean stress and
the stress amplitude, then

Omaz=Om + Ouy Twmaz=Tm + Ta

Therefore, if direct and shear stresses are in phase,

we obtain the following relations similarly as in
equation (14):

I 1
1 =‘5‘(0'm +a,) + > V(Ont+6x) + 4(Tn + Ta)ﬂ

0'2_—"0

(34)
0= (On+00) = Von T 0) T 4wt fa-)?J

1 I -
alm—?am-*'_z"\/a,: +4?,:
Oy =0 [ e (35)
Oy =—"Cp,—— (7"+4T,,.
2 2
I I
G1a=—"0, + '? au2+47u2
03,=0 ) seeeseeeieeinieeen (36)
I 1 ———
0‘3“—?0“ - ? G, + 47,

Substituting these relations in equations (28), (29),
(30), (31), (32) and (33), we obtain
Umaz=($ + 2)(0',,.4‘ O'a)2 -+ 2(25+ 3)(‘—7"_*_ f'a)2
U, = +2)on+2(26+ 3)7m

} (37)
U, =(E+2)0s+2(25+3)7s

V= 1l(0n+ 0| £ (- 02)

+ % ‘\/(am "".‘7?:)2 + 4(7m + “-a)z}
+ Gt 7]+ 2{ (Gt 0) + 3(Emt o)}

Vo =ilonl owt Lvazraedf 42l | 69
. + 2(0m +37m)
Ve =ifodLoat Lot a4
+2(02+375)

As above mentioned, we consider U, and U, or
V., and V,, to have also an influence upon the
occurence of fatigue failure.

Consequently we can represent the conditions
of fatigue failure by the following equations :

for ductile materials
Uaztf(Umy U)=p oovvieeieineiiiianinn, (39)
for brittle materials '
Viaatf(Vay Va)=29
The second terms of the left sides of these equations
represent the influence of alternation of applied
stresses, and are a certain function of U, and U,,
or V, and V,. If we omit these terms, equations
(39) and (40) become the same as equations (26)
and (27), namely of the case of static failure. How
should the form of the function f be determined ?
Of course it should be determined applicable to

experimental results. Now we adopt the following
form as the function f:

U U)=—aUpn+ U~y VU, - Uyeoooo-(41)
S(Vny Vi)=—aVout BVa—y V'V, - V- ---(42)

where «, B and y are constants which should be
determined by experiments, and the sign of each
term in these expressions is chosen as above for
convenience. Substituting equations (41) and (42)
in equations (39) and (40), the conditions of fatigue
failure become as follows:
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for ductile materials
U= U+ BUa—7 VU, U, =p - (43)
for brittle materials
Viai— @V + BV =1 V'V« V=g o, +..(44)

Thus we obtain the conditions of fatigue failure
under combined bending and torsional stresses.

But in the above representations, the values of
constants &, 7, «, # and y are yet unknown. Let
us now consider the values of these constants.

1. Determination of constants § and 7).

First we consider the case in which only direct
stress alternates between two equal magnitudes of
mutually opposite signs, e.g., the case of rotating
bending tests or the case of alternating tension
compression tests with zero mean stress. Let o,
be the endurance limit in this case, then

Oy==0yy Op=T,=1,=0

Applying these relations to equations (37) and (38),
we obtain

Une=Uy=( 4+ 2)é%,, Un=o0
Viea=Vi=(g+2)0%, V,=0

Then: applymg these relations to equations (43) and
(44), we obtain

(U+B)E+2)a0=p oo, (45)

(+B)@+2)0=q oo (46)

In a like manner, we consider the case in which
only shear stress alternates between two equal
magnitudes of mutually opposite signs, e.g., the case
of reversed torsional tests with zero mean stress.
Let 7, be the endurance limit in this case, then

-

Ta=Ty

s =06,=0d,=0
Applying these relatlons to equations (37) and (38),
we obtain

Una=Us=2(26+3)7%, Un=0

anz = Vll=(7 -+ 6)130, Vm =0
Then applying these relations to equations (43) and
(44), we obtain

2(1 4828 +3)T5=2 oo, (47)

(I+HDG+6) =g ceeeeeriaeiaeranannnn.. (48)

Eliminating p, ¢ and @ from equations (45) and
(47) or equations (46) and (48) respectively, we
can determine the constant § or 7. And putting

¢=—a ....................................... (49)
in the results, we obtain
for ductile materials
_ E+2 _,1—3¢
o= 2GEry 3 24502—1 ......... (50)

" ductile materials when ¢=%,
3
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for brittle materials
__7 +2 or =23¢2-— LS 1
Now let us consider in what case we should
use the equations for ductile materials, and in what
case the equations for brittle materials. Constants
§ and 7 are always greater than or equal to zero,
so that from equations (50) and (51) we can derive
the following relations :

p°=

1
$<V3

for ductile materials

1

3
So it is known that we should use the equations

for brittle materials o>

for ductile materials when ¢ < VI__., and that we

should use the equations for brittle materials when
1

| Edvare
- V 3 . .
tile and brittle materials become the same, but it
is of course the better to use the equations for

When ¢=—— ‘/_, both equations for duc-
3

because . of sim-
plicity.

As we have noticed at the beginning of this
chapter, we assumed that constants § and 7 in
fatigue cases are equal to those in static cases.
According to. this assumption, we can derive the
following relation from equations (22) and (50) or

(23) and (51):
Sp=¢ or S T (52)

O O

Therefore it can be seen that the above-mentioned
assumption is appropriate, if we can prove the
relation of equation (52) to be true, and we have
already shown that the relation of equation (52) is
very likely to be true, because both static and fatigue
failures are essentially the same, as mentioned in
introduction. Therefore it is quite proper to regard
that constants ¢ and 7 in fatigue cases are equal to
those in static cases.

2. Deternmination of constant a.

Let us consider the case in which only the
direct stress is working and its amplitude g, becomes
infinitesimally small. To bring about fatigue failure
in this case, the mean stress g, must be equal to
breaking tensile strength ¢, of the material. Hence
in this case

On=0p Gy=T7,=7,=O0
Applying these relations to equations (37) and (38),
we obtain
maz=Um=($+2)a%" U =0
Vmaz - V —(7—'-2)0%'; V =0

Applymg these relations to equatlons (43) and (44),
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we obtain
(I—a)(E+2)02=p oeveeeeeininiiininiininnn. (53)
(1—a)(p+2)02=g .ocoveviiiiiiiiiiniinn, (54)

In a like manner, let us consider the case in
which only the shear stress is working and its
amplitude 7, becomes infinitesimally small. To bring
about fatigue failure in this case, the mean stress
7, must be equal to breaking shear stress 7, of the
material. Hence

Tm=Tp Ta=0,=0,=0
Applying these relations to equations (37) and (38),
we obtain

U =Up=2(2€ %3)7"’,, U,=o
Vmax = Vm=(‘?+6)“—21" V;_—"'O

Then applying these relations to equations (43) and
- (44), we obtain

2(1——a)(2$+3)r§,=p ........................ (5%)
(1 ——-a)(y + 6)T§.=q ...................... e (56)

Substituting for p or ¢ in equations (53) or (54)
values from equations (17) or (18), or substituting
for p or ¢ in equations (55) or (56) values from
equations (19) and (20), we can determine the
constant «. And putting

S beaaaed e (57)

Oy Ty
in the result, we obtain the following relation for
both ductile and brittle materials :

I—u=1" or u=1—7"

Here we should use the former value in equation -

(57) as the value of z when direct stress acts

statically, and we should use the latter value in

equation (57) when shear stress acts 'statically.
The constant « is thus determined.

3. Determination of constant .

The value of canstant B is considered to be
different according to whether the combined direct
and shear stresses are in the same phase or not.

(i) When combined direct and shear stresses
are in the same phase.

Substituting for  or ¢ in equations (45) or (46)
values from equations (17) and (18), or substituting
for p or ¢ in equations (47) or (48) values from
equations (19) and (20), we can determine the
constant 8. And putting

1)
W=
Ow Tw

=T
in the result, we obtain the following relation for
both ductile and brittle materials:
1-{-‘8='w2 or ﬂ:wz—l .................. (60)
The constant B is thus determined.
(ii) When combined direct and shear stresses
are not in the same phase.

In this case, constant 8 cannot be given with
equation (60), because § is considered to be influ-
enced not only by mechanical progerties of materials,
but also by the phase difference of applied stresses.
So we should determine the value of # by the
combined fatigue tests with phase differences.

It must be noticed that U, and V. cannot
be given by equations (37) and (38) in this case,
because those equations correspond to the case in
which direct and shear stresses are in phase. When
direct and shear stresses are not in phase, let

é =angle of phase lag of shear stress to
direct stress '
w =angular velocity
¢ =time
then U, and V. become as follows:
Upex=[(§+2) {6, + 0, cos w }* +2(2§ + 3)
{tmt7ecos (02—08)}]pes ... (61)

Vs = [77[(o'm+ G, COS wt){—;(a,,,+ 0,COS w!)

+ —é" V(0,u+ 04 cOS )+ 4], + 7,4 COS
(@i —3) }2} + {Tm+ 74 cOS (02— )]
+2[(6,,+ 0, cOs wt)? + 3 {t,, +7, COS
(wt—0)} 2]]

We regard that U,, U, V, and V, in this case
are also the same as given in equations (37) and (38).

may

4. Determination of constant y.

We regard 7 to be a constant which depends
not only on material, but also on the kind of com-
bination of stresses, stress distributions, methods of
experiments, and others. Therefore the value of
should be determined by experiments in each case.

In the above, we have derived from the author’s
theory of failure the method of calculation to obtain
the fatigue limit under combined alternating stresses.
Let us now apply this method of calculation to
various special cases and compare the results of
calculation with experimental results.

IV. When direct or shear stress alternates
between certain maximum and
minimum values.

1. When only dirvect stress alternates between
certain maximum and minimum valucs.
In this case
T =t,=0
Applying this relation to equations (37) and (38),
we obtain
Umaz=(5+2)(gm+du)2n
Un =(5+2)op,
U, =(+2),

Vinaz =)+ 2)(0n+ 0a)
Ve =(n+2)a,
Ve =(q+2)a;
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Applying the relations to equations (43) and (44),
we obtain

for ductile materials
¢+ 2[(1—a)a, +(2~7)on0,+(1+P)oi] =2
for brittle materials
(7 + 2)[(1 '—'(A)G'f,,-l- (2 _r)dm"'a"" (I +:3)0i] =9
Substituting for p and ¢ values from equations (17)

and (18) respectively, we obtain the following rela-
tion for both ductile and brittle materials:

(I _a)‘ﬁn-“ (Z*T)ﬂm”a'i' (I +ﬁ)a§=0§

- Substituting for @ and 8 values from equations (58)
and (60) respectively, we obtain

Tt (2—1)0u0+ W'l =0}

The constant y should be determined from results
of experiments. Now let us determine the constant
y from the following experimental results of the
authors : that is, *“ In the endurance limit diagram
taking mean stress as abscissa and stress amplitude
as ordinate, the three points, i.e. the point of
endurance limit with zero mean stress, the point of
endurance limit with zero minimum stress, and the
point of breaking static strength, are always on a
straight line.” Let o, be the endurance limit, when
the applied minimum stress is zero; by putting

we can represent the above-mentioned condition by
the following equation : :

2u=v+w

In equation (63), when g,, is equal to —;-'au, a, should

I , .
also be equal to - % hence we can derive

P+ 2—y+wt=44

Substituting for # the value from equation (65), we
obtain

r=201—v-w)

Thus 7y is determined. Applying this value of 7 to
equation (63), we can obtain the following relation :

V0, t+wo,~=ao,

Therefore the relation between g, and o, becomes
linear.
w=1.1 in equation (67), the relation between o,,
and .g, becomes a straight line as shown in Fig. 3.
Thus the result of calculation agrees with the fol-
lowing experimental results, previously obtained by
the authors: that is, “If we take mean stress o,
and stress amplitude o, as both coordinate axes, the
endurance limit can be represented by the straight
line through the two peints, i.e., the point of en-
durance limit with zero mean. stress and the point
of breaking static strength.”

For example, when we apply v=0.4 and

[
S

Anmplitude of Direct
Stress, dq/dw
)
o

0 10 : 70
Mean Direct Stress, gm/dw
Fig. 3.

When Only Direct Stress Alternates Certain
Maximum and Minimum Values. .

7 30

2. When only shear stress alternates betwecn
certain maximum and mintmum values.
Iu this ‘case .
0, =0,=0
Applying this relation to equatlons (37) and (38),
we obtain
ma:u"—z(ze-*' 3)(‘m + Ta)g;
'm '—2(25+ 3)‘1m Vm =(7+6)‘:§n
U, =2(2i+3)%, V., =@+6)i
Applying these relations to equations (43) and (44),
we obtain

Vyaw=(q +6XTn+ 7o)’

for ductile materials

2(2§+ 3)[(1—a)h+ (2—7)rata + (1 + P)rc]=
for brittle materials

7+ 2[(1 — )7+ (2—7)rata+ (1 + Al =¢

Substituting for 2 and ¢ values from equations (19)

_ and (20) respectively, we obtain the following rela-

tion for both ductile and brittle materials :
(1= @)t + (= r)tntat (1 +B)ra=7C .
Substituting for « and f values from equations (58)
and (60) respectively, we obtain
v+ (2—7)Tat. + T

The constant 7 should be determined by results of
experiments, Now let us determine the constant 7,
using the fatigue limit of the case in which minimum
stress is zero. Let 7, be the endurance limit, when
applied minimum stress is zero; by putting

“"“'s

and applying the condition, that r,,=%7,,, for 7,

=%ru, to equation (68), we can derive the value
of y as follows:
7 r=v'+w—4u' +2 ,
Thus y is determined. Applying this value of r
in equation (68), we obtain
v+ (4 — P — ), =1t . (70)

This is the relation between z,, and 7,, When we
represent equation (70) in a diagram, taking 7,, and
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7, in the two coordinate axes, it generally becomes
an: ellipse having its center at the origin and prin-
cipal axes generally inclined to the two coordinate

axes. For special cases, when u= —('u+'w) equa-

txon (70) becomes a straight line, and when #
—7 VI ur, w?, it becomes an ellipse with its prin-

cipal axes parallel to the coordinate axes. For
example, when we apply =04 and w=1.I in
equation. (70), the relation between 7, and 7, be-
comes as in Fig. 4. That is when #' = 0.75, it
becomes a straight line, and when # = 0.58s, it
becomes an ellipse with its principal axes parallel
to the coordinate axes.

-
S

Stress, T4/tw
o
&

Amplitude of Shear

0 10 20 T30

' Mean Shear Stress, tm/tw
Fig. 4.

When Only Shear Stress Alternates Certain
Maximum and Minimum Values.

Vmaz =V, aﬁ?[”u(%"a + _;_ «/m)
+72]+ 2(00 + 372)
Vi =0
Applying these relations to equation (44), we obtain

@ +Dlyto Lo+ L varT ) |
+e3 +2(a+ 3] = ¢ (74)

Substituting for ¢ and 8 values from equations (18)
and (60) respectively, equation (74) becomes

n[a(—a+ «/¢r+4 )+ —ay] ‘
+ 2(o% + 3t2—a3,)=0...(75)

Substituting for 7 value from equation (51), we
obtain the following equation :
(1+¢)0+(3¢°—1)a, Vol + 472
+475=4¢"0,,...(76)
Equation (76) is the required relation between direct
and shear stresses at fatigue limits of the combina-
tion. _
But it is somewhat tedious to calculate the
values of g, and ¢, from equation (76). So let

us derive an approximate equation for equation (76).
Considering equation (75), it is seen that an equa-

" tion obtained by putting the first term of equation

V. When both the direct and shear stresses
alternate between two equal magnitudes of
mutually opposite signs and are in phase.

In this case

1. When ¢ <

Applying the relations of equation (71) to
equation (37), we obtain

U,,m_ U,= ($+ 2)ai+2(28 + 3)'

U, =o ,
Applying these relation to equation (43) we obtain
(1 +BE +2)at +2(28 +3)]=p ... (72)

Substituting for p, § and B values from' equations

(17), (50) and (60) respectxvely, we can derive the
following relation :

O T =0 i,
¢ (73)

Equation (73) is the required relation between the
direct and' shear stresses at fatigue limits of the
combination.

2. When §0>

«/—
3
Applying the relations of equation (71) to
equation. (38), we obtain

(73) equal to zero corresponds to the theory of
constant maximum principal - stress, and that an
equation obtained by putting the second term of
equation (75) equal to zero corresponds to the
theory of constant shear strain energy. Because the
former gquation can be obtained by squaring both
sides of the equation

et VAT =G (77)

which shows the theory of constant maximum prin-
cipal stress, and the latter equation becomes

o,+3ti=
which shows the theory of constant shear energy.

Then substituting equation (77) in the first term of
equation (75), we obtain

20+ a—0n) +2(00+ 3ti—0u)=0  ...(78)

Similarly as in equation (75), there exists the fol-
lowing relation in equation (78): that is, an equa-
tion obtained by putting the first term of equation
(78) equal to zero corresponds to the theory of
constant maximum principal stress, and an equation
obtained by putting the second term of equation
(78) equal to zero corresponds to the theory of
constant shear strain energy. Therefore we can use
equation (78) instead of equation (75). Then sub-
stituting for 7 in equation (78) value from equation
(51), we obtain the following equation ;
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(1—¢%0e+ (3¢ — Doy, + 203=2¢°0;, ...(79)
We can use equation (79) approximately for equa-
tion (76).

For example, substituting ¢=0.5 in equation
(73), and ¢=0.6, 0.7, 0.8, 0.9 and 1.0 in equations
(76) and (79), we obtain curves which are shown
with thick lines in Fig. 5. Curves which are shown
with full line in Fig. 5 correspond to exact equations
(73) and (76), and curves shown with broken lines
correspond to approximate equation (79). As seen
in Fig. 5, approximate equation (79) is always in

~—= Equations (73) or (76)

. total strain euergy

06! . max. shear stress

Amplitude of Shear Stress, ra/dw

02 03 04 05 06 07 08
‘Amplitude of Direct Stress, ga/dw

Fig. s.
When Both Direct and Shear Stresses Alternate Between
Two Equal Magnitudes of Mutualy Opposite Signs
and Are In Phase. (The Authors’ Theory.z

[ 09 10

the safe side of exact equation (76). Now there is
no need to compare these curves with results of
experiments, because equations (73) and (79) are
the same as the equations previously proposed by
the authors and shown to be fairly applicable
to experimental results.” For comparison, we
showed also in Fig. 5 those curves, with thin lines,
which correspond to theories of constant maximum
principal stress, constant maximum principal strain,
constant total strain energy, constant shear strain
energy, and constant maximum shear stress (where
we put Poisson’s constant as 10/3.) When we put

I ‘ ’
¢=0.5, —— or 1.0, the authors’ theory agrees

V'3
with the theory of constant maximum shear stress,
constant shear strain energy, or constant maximum
principal stress, respectively. :

The case of chapter V, i.e, the case when both
direct and shear stresses alternate between two
equal magnitudes of mutually opposite signs and are
in phase, is quite analogous to the case of chapter

(9) See foot-note (2).

===== Approximate equation (79)

. max. principal stress
. max, principal strain

. shear strain energy

Toshio Nishihara and Minoru Kawamolo.

I, i. e. the static case. If we put w=1, § becomes
zero from equation (60). Then equations (72) and
(74) become the same as equations (15) and (16)
in the static case. Therefore if we regard o, and 7,
as static stresses and let o, =g, then equations (73),
(76) and (79) will represent the condition of elastic
failure under static stresses.

Now let us for reference apply Matsumura’s
theory of static failure previously mentioned in in-
troduction, to the case of fatigue. Regarding ¢ and
7 in Matsumura’s theory as the maximum values of

the stresses, which alternate between two equal
magnitudes of mutually opposite signs and are in
" phase, and letting ¢,=a,, the equation (4) becomes

(2¢—1)o,+ Va2 4 4t =290,

.........

For example, substituting ¢=o0.5, 0.6, 0.7, 0.8,
09 and 1.0 in equation (80), we obtain curves
shown with thick lines in Fig. 6. In Fig. 6 we
also show for comparison the curves of the various
other theories with thin lines.

«— Equation (80)

Const. max. principal stress
Const. max. principal strain
Const. total sirain energy

Const. shear strain energy

Const. max. shear stress

£
N
o
3
hard
n 06
B
o
& 05
0
S
< 04
[}
£
= 03
£
< 0'2*

01

0 0L 02 03 04 05 06 07 08 09 10
" Amplitude of Direct Stress, do/ow
Fig. 6.

When Both Direct and Shear Stresses Alternate Between
Two Equal Magnitudes of Mutually Opposite Signs
and Are In Phase. (The Matsumura’s Theory)

In equation (80) the relation between g, and 7,
1
v
its center at origin.

for ¢ = does not coincide with an ellipse having

While in the authors’ theory

—L_ becomes
V'3

simply an ellipse with its center at origin, it is in
accordance with the theory of constant shear strain
energy. As can be seen in Fig. 6, the curve of

I

V'3
of the theory of constant shear strain energy. But

the relation between o, and 7, for ¢=

intersects with the curve

equation (80) for o=



A New Criterion for the Strength of Metals under Combined Altcrnating Stresses. 75

according to the authors’ experiments on various
metals under combined alternating bending and

torsion, the relation between g, and t, for 50_?
must be properly represented with ellipse having 1ts
center at origin.

VL. When both direct and shear stresses
alternate between two equal magnitudes
of mutually dpposite signs and are

' not in phase.

In the preceding chapter we considered the
case in which both direct and shear stresses are in
phase. In this chapter let us consider the case in
which those stresses are not in phase, that is, they
reach their maximum and minimum values at dif-
ferent instants. .

1. When ! ¢<

1
Vi3
In this case we should use equation (61),
instead of equation (37), for the value of U,
Therefore applying the relations of equation (71) to
equations (61) and (37), we obtain
Unaa=[(§ +2)a5, cos® we+2(25 + 3)z%
cos® (W~ 0)] ez
U,,, =0
s =(F+2)ai+2(2i+3)s
Then applymg these relations to equation (43), we
obtain
[(§ +2)a] cos® we+ 2(28 + 3)z2 cos™(wl—0) ez
+B[E +2)o%+2(2 +3)7i] =2

Substituting: for  and § values from equations (45)
and (50) respectively, we obtain

9) Jmas

+ﬁ[aa+-——; =14+p)o, ... (81)

where ¢ should be determmed as the first term of
the left side of this equation to be maximum. Now
let the time, when this first term becomes maximum,
be as follows:

.0

F
- (82)

+Ta cOs™(w!—

Putting the expression obtained from differentiating
the first term of equation (81) equal to zero and
substituting ¢ by equation (82), we obtain the fol-
lowing relation :

Ta _ e - Sinid-cosid

ot~ ¥ Sin(1—7)d cos (1—7)8
Also substituting ¢ by equation (82), equation (81)
becomes

Ta

%

. rZ cos® (1—17)d

+ﬂ("2 + ‘a) (l+ﬂ)aw

From equations (83) and (84), ¢, and ¢, are ob-
tained as follows:

EETY
/n+(1 +/1,F ......... ceerenen (85)
Ta=Vl @0,
where
= cos® {0+ sin £é cos mcos(:___—-_:%g
in ( ...(86)

fry== sinid -« cos?d
sin (1—2)d - cos (1—17)8

Considering ¢ as a parameter in these equations, we
can obtain the relation between o, and 7, at the
fatigue limit of the combination for an arbitrary
value of 8, when ¢, and ¢ are given. But in above
equations, B is a constant which depends not only
on materials but also on the’ phase difference of
applied stresses and must be determined from ex-
periments in each case. '

It must be noted that we cannot derive the
relation between ¢, and 7, from equations (85) and
(86), when angle of phase difference 8 is equal to

90 degree. In this case, the value of ¢ becomes as
follows : '
=0 when o,> Te
; -
=1 ” da< ¢ ta
.. . 1
i= indeterminate ,, Op= ” Ta

Consequently the relation between o, and =, for
8=090 degree becomes as. follows:

O, —_— Ta—0uw ‘e
t8 ¢
g . I o @ I _
— a Ta=0, M ﬂ'a< Ta . 8
1 1
Og = Ta=0y w 0= Ta
14 ¢

It is needless to consider the cases in which phase
differences are more than 9o degrees or less than
o degree. Because those cases can be reduced
always to the similar cases in which phase differences
are between 0 and 9o degrees.

- Thiis the relations between o, and t, at the
fatigue limit of the combination are made clear for
every case. Then, as an example, we made cal-
culation on the case in which ¢ is equal to 1/2,
i.e., the case of maximum shear stress theory.
Figs. 7 and 8 show the results of calculation for
d=90 and 60 degrees, respectively. Of cqurse,
when B is infinity, the results of calculation agree
with the case in which direct and shear stresses are
in phase, i.e. =0 degree. Asseen in these figures,
values of o, and 7, at the fatigue limit become
large, as B becomes small or 8 becomes large. When
d=90 degrees and f=o0, values of g, or 7, at the
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On Ductile Materials of ¢p=o0.5, when Both Direct and
Shear Stresses Alternate Between Two Equal
Magnitudes of Mutually Opposite Signs
and the Phase Difference §=060°

fatigue limit become constant, independently of the
stress applied in addition.

1

2. When ¢> 73

In this case we should use equation (62), in-
stead of equation (37), for the value of V,,,,. There-
fore applying the relations of equation (71) to
equations (62) and (38), we obtain :

Viaz = [y [a, cos w? {-;—a,, cos w?

1
+ Y V62 cos’ wt + 472 cos® (wt — 5)}
+72 cos® (wt—0) |+ 2{a}. cos® w?

- + 37 cos® (wt —J) }]

V, =0
Ve —v[aa{ Lot Vit 4 }
+ 2]+ 2(a% + 372)

Applying these relations to equation (44), we obtain.

Toshio Nishihara and Minoru Kawamoto.

[(7 + 4)d2 cos® wt+ 70, cos w?
Va2 cos® wt+ 47 cos® (wt—0)
+ 2(p +6)% cos( @~ 0) Iz -
+Bl(g+ 4A)et 19V & + 47
4 2(p+6)%)=29
Substituting for ¢ and % values from equations (46)
and (51) respectively, we obtain
[(¢* + 1)6% cos® wt + (3¢°— 1)a, cos w?
Va2 cos’ wt + 47 cos® (w2—9)
+ 472 c0s? (08— 0) ez + BL(¢° + 1)0%
+(3¢"~ 1)o.V o, + 475+ 47]
‘ ' =4(1 + P’ ... (88)
where ¢ should be determined as the first term of

the left side of this equation becomes maximum.
Now .let the time ¢ when this first term becomes

maximum be ii similarly as before. Then putting
@

. the expression obtained by differentiation of the first

term of equation (88) equal to zero, and substituting

¢t by i, we obtain the following relation:
w ;

[(¢%+ 1)a2 sin £8 cos 18 — 47, sin (1—2)0
cos (1—17)0]v g% cos® i3 + 47% cos® (1—12)d
+ (3¢°—1)a,[o% sin 10 cos’ 19
+ 2c2{sin £0 cos® (1 —7)0—cos 10
sin (1—4)d cos (1—~£)d}]=o0......(89)

Substituting ¢ by z'—Z—, equation (88) becomes

(¢* + 1)a2 cos® i 8+ (3¢% — 1)a, cos 70"
- ¥'g% cos® 10 + ATE cos® (1—20)
4472 cos? (1—2)8+ Bl(PF + 1)os
+ (3¢ = 1)0u v % + 475+ 4]
= 4(1 +8)¢. .-(90)
Considering # as a parameter in equations (89) and
(90), we can calculate values of g, and 7, at the
fatigue limit of the combination for ‘an arbitrary
value of 8, when @, and ¢ are given. B must be
determined from experiments in each case.
It must be noted that from equation (89) we
know

2
~i=o0 wh 0=90" and 6,> ———
: when 90" and ,> prr
Therefore the relation between o, and 7, b¢comes
as follows
ag'o+ Bl(9* + 1)+ (3¢"— 1), Vol + 4t
+4ta]=4(1+ B)gol,
2
when  0=90° and 6,> =7,
? : Vgt
Thus we can calculate values of @, and z, at the
fatigue limit of the combination in every case. As
an example, we made calculation for the case which
¢ is equal to 1, i. e., the case of maximum principal
stress theory. Figs. 9 and 10 show the results of

-

ta
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calculation for 5=v90 and 60 .degrees, respectively.
‘ I

«/}"

and 7, at the fatigue limit become large, as # be-

Similarly as in the case of ¢ < values of g,

77

B=o0 in Fig. g9, the value of g, at the fatigue limit
is constant independently of the applied shear stress,
when ¢,> ~ 2 7,, but the value of 7, at the fatigue
limit is not constant, when ¢, <+ 2 7.

The authors are now carrying out fatigue tests
on several metals under combined alternating bend-
ing and torsional stresses with phase differences.
Comparing with the test results obtained till now,
the authors are convinced that the above criterion
of the strength of metals under combined stresses
with phase differences is surely applicable to'the test
results on every metal. As for the applicability of
the above criterion to practical test results, we shall
discuss fully in the forthcoming report.

VII. When direct stress alternates between
two equal magnitudes of mutually opposite
signs and shear stress acts statically.

Let the amplitude .of direct stress at the fatigue
limit be ¢,, when shear stress 7, is working stat-
ically. In this case - - '

1. When

Applying the relations of equation (92) to
equation (37), we obtain

Unia=( +2)0; +2(25 +3)7°
U, =2(25+3)7,
U, =E+2)a,
Applying these relations to equation (43), we obtain

(1+B)E +2)a—7 v 2(E + 2)(28 + 3)0uTee
+2(1—0) (28 + 3)7" =2

Substituting for 2, §, « and 8 values from equations
(17), (50), (58) and (60) respectively, we can derive
the following relation : 4

P —1¢0Tet V0, =g
From this equation, when the applied static shear
stress 7, is given, we can calculate the amplitude
of direct stress g, at the fatigue limit. Taking g,
and 7, in rectangular coordinate axes, equation (93)
can be represented with an ellipse having its centef
at origin and the principal axes generally inclined
to coordinate axes. :

Then let us examine whether the results of
calculation from equation (93) agree with experi-
mental results. Fig. 11 gives the results fatigue
test carried out by Ono"” and Lea-Budgen®? under
the combined rotating bending and static torsional
stresses.  In these results, we see that the fatigue

comes small or & becomes large. In the case of limit of rotating bending becomes rather higher, as

(10) A. Ono, J. of the Society of Mech. Eng., Japan, Vol. XXIII, Ne. 62, (1921), p. 201.
(r1) F. Lea and H. Budgen, Engineering, Vol. CXXII, (1926), p. 24z C
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Test Results on Ductile Materials under Combined
Rotating Bending and Static Torsion.

the applied static torsional stress becomes larger, so
far as the torsional stress is under a certain limit,
The curve shown in Fig. 11 is that which was
drawn from equation (93), where we put ¢=o0.5,
7=0.32, v=0.4 and w=1.1, as in the previous
example. As seen in the figure, the curve calcu-
lated from equation (93) is in good accordance with
the experimental results,

2. When ¢>T/I:

Applying the relations of equation (92) to
equation (38), we obtain

I ) G
Viae = Z[Ua(-;o'a + > Vol +4r,,2>
+ 7’1+ 2(05+ 374%)
Vo =(7+ 6)t,
Vo =(y+2)a;

Then applying these relatxons to equation (44), we
obtain

ol Sou+ 2 vaTas)+ea]
+2(0%+ 3t.°)—u(p+ 6)7,°
B +2)i—r V(g +2) (7 +6)
A
Substituting for ¢, 7, « and 8 values from equations
(18). (51), (58) and (60) respectively, the following
relation can be derived :
(406"~ 39" + 1)os + (3¢° ~ 1), vV a% + 47,7
— 47907+ 4770, = 49"
~This is the required equation which represents the
relation between static shear stress r, and the am-

plitude of direct stress g, at the fatigue limit.
To examine whether equation (94) is applicable

Toshio Nishihara and Minoru Kawamolo..

to results of experiments, let us compare the results
of calculation from equation (94) with the fatigue
test results made by Dr. Ono for cast iron under
combined rotating bending and static torsional
stresses.®™ Fig. 12 shows the test results. As seen
in this figure, the limit of cast iron at rotating
bending decreases gradually from the start, as the
applied static torsional stress increases. In this case,
7p=20.7 kg/mm® and ¢,=7.49 kg/mm’. Now let
w=1 and ¢=0.8 (according to the authors’ ex-
periments under combined alternating bending and
torsion, ¢=0.808 for cast iron"®), then v becomes
0.29. Value of y should be determined from the
results of experiments in this case. Adopting the
condition that ¢,=7.0kg/mm® for r,=75.25kg/mm®,
7 becomes 0.232. Using the above values of the
constants, equation (94) can be represented as the
curve shown in Fig. 12. We see that the curve of
equation (94) is in good accordance with the results
of experiments.

4 : Equation (94)

@
5 1
a e o=
WweL 6 Lt ¢=08
g E \o‘\,r:mz
'g ~ N° ¢
% .4 X
8 = N
b 8 ™.
£ S 2L N
: , ™
2 [ 6 8 10 12 W 16 18 20 2

Static Torsional Stress ty, kg/mm?

Fig. 12

Test Results on Cast Iron under Combined Rotating
Bending and Static Torsion.

VIII. When shear stress alternates between two
equal magnitudes of mutually opposite
signs and direct stress acts statically.

Let the amplitude of shear stress at the fatigue
limit be r,, when direct stress o, 'is working static-

ally. In this case
O =0y, Ga=Tm=0 .iiiiriiiiiriiaiirinn. (95)
1. When

Py .
Applying the relations of "equation (95) to
equation (37), we obtain
Unpaz= (€ +2)0.*+ 2(26 + 3)72
=+ 2)a,’
U, =2(26+3)c;
Applying these relaiions to equation (43), we obtain
(1—a)E+2)0."—7 v 25 + 2)(25 + 3)0 " Ta
+2(1 + 8)(25 + 3)ma=
Substituting for 2, £, « and B values from equations

(12) A. Ono, Trans. of the Society of Mech. Eng., Japan, Vol. 6, No. 25, (1940), Part 1, p. 30.

(13) See foot-note (2).
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(19), (40), (58) and (60) respectively, the following
relation can be derived:
PP~ rpoyT. i =1}
This is the required relation between static direct
stress g, and the amplitude of shear stress z, at the
fatigue limit. Taking 7, and o, in the rectangular
coordinate axes, equation (96) can be represented
with an ellipse having its center at origin and the
principal axes generally inclined to coordinate axes.
In order to examine whether the equation (96)
is applicable to results of experiments, let us com-
pare the results of calculation from equation (g6)
with the fatigue test results made by the authors
with 0.1% and 0.34% carbon steels under combined
alternating torsion and static tension."? Fig. 13

15
L :
eE \ :
E—: E Equation (96)
° g w=11
o i
R =13
T =016
«
0 5 10 15 20 25 30

Static Tensile Stress gy, kg/mm?

Fig. 13.
Test Results on 0.19 Carbon Steel under Combined
Aliernating Torsion and Static Tension.

shows the test results for 0.1% carbon steel. From
the test results, it can be seen that the torsional
fatigue limit undergoes a little influence of the
applied static tensile stress, or it shows a tendency
to become rather higher as the applied static tensile
stress increases. In this case ¢,=83.4 kg/mm® and

Tw=12kg/mm’. Now let w= 1.1 and go=:/l:_;,

then # becomes 0.274.. The value of 7 should be
determined by the results of experiments in this case.
Adopting the condition that t,=12.44 kg/mm® for
0. = 20.49 kg/mm?®, y becomes 0.16. Using the

Equation (96)
w=11
5 ¢=1V3

] =016

0 9 1 15 20 25 3 . 35
Static Tensile Stress dur, kg/mm?

Fig. 14.
“Test Results on 0.342 Carbon Steel and Combined
Altérnating Torsion and Static Tension.

~

Stress 14, kg/mm?

Amplitude of Torsional

79

above values of the censtants, equation (g6) can be
represented as the curve shown in Fig. 13. As
seen in this figure, the curve of equation (96) is in
good accordance with the results of experiments.
Fig. 14 shows the test results for 0.34% carbon
steel. In this case also, we see that the torsional
fatigue limit has a tendency to become rather higher
as the applied static tensile stress increases. In this
case o,=8I. zlxg/mm and 7,=12kg/mm’. Now

let zw=1.1 aud ¢=—~—, then » becomes 0.28. By

V‘_‘,
determmmg v from thg condition that ©,=12.4 kg/

? for 6,=30.7 kg/mm?’, it becomes 0.168. Using
these values of constants, equation (96) can be
represented as the curve shown in Fig. 14. As
seen in this figure, the curve of equation (96) is in
good accordance with the results of experiments
also in this case. :

2, When ¢> «/?

Applying the relatlons of equatlon (95) to
equation (38), we obtain

Vma:¢= / [aal('—z"dst -+ —2— "/0',3 + 47: + Tg]

+3(0i + 372
Vi =(p+2)a;

=(y+6)7;
Then applying these relations to equation (44), we
obtain
7 [0,,(%0“ + ~;~ Vel acl)ti]+ 2(04 + 3%
—a(n+2)ag+P(n +6)i—7rV(n+ 2)(n+6)
OyTq™ q )
Substituting for ¢, 7, « and 8 values from equations

(20), (51), (58) and (60) respectively, the following
relation can be derived: -
(47°¢* —3¢" + D)ou + (3¢°— 1ou Vo +47;
— 47§07, T 4WT=47,
From this equation, when the applied static direct
stress o, is given, we can calculate the amplitude
of shear stress 7, at the fatigue limit.

To examine whether equation (97) is applicable
to results of -experiments, let us compare the results
of calculation from equation (97) with the fatigue
test results made by the authors for 0.72% carbon
steel and cast iron under combined alternating
torsion and static tension.”® Fig. 15 shows the test
results for 0.72% carbon steel. From the test
results, it is seen that the torsional fatigue limit
decreases “ gradually as the applied static tensile
stress increases. In this case o,=102 kg/mm* and
Tw=20 kg/mm’. Now let zw=1.1 and ¢=0.68, then

(14) T. Nishihara and M. Kawamoto, Nippon Kinzoku Gakkai-Si, Vol. 6, No. 6, (1942), p. 316.

(15) See foot-note (14).
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Test Results on 0.7295 Carbon Steel under Combined
Alternating Torsion and Static Tention.

7 becomes 0.317, According to the author’s ex-
periments under combined alternating bending and
torsion, ¢=0.667 for 0.62% carbon steel. Value
of ¢ has a tendency to increase with the carbon
content in steel. And by determining y from the
condition that 7,=16.3 kg/mm* for ¢,=35.5kg/
mm?, it becomes —o0.153. Using these values of
constants, equation (87) can be represented as the
curve shown in Fig. 15, which is seen to be pra-
ctically in accordance with the results of experi-
ments,
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Fig. 16.

Test Results on Cast Iron under Combined
Alternating Torsion and Static Tension.

Fig. 16 shows the test results for cast iron, in
which we see that the torsional fatigue limit de-
creases rapidly, as the applied static tensile stress
increases. In this case, o,=15.55 kg/mm® and =,
=5.7 kg/mm’. Now let v ==1 and ¢ = 0.8 as in
the previous case for cast iron, then v becomes
0.458. And by determining 7 from the condition
that 7,= 4.5 kg/mm" for g,=2.5 kg/mm®, it becomes
—o0.83. Using these values of constants, equation
(97) can be represented as the curve shown in
Fig. 16, which is seen also to be practically in ac-
cordance with the results of experiments.

IX. Summary.

(1) The authors have proposed a new criterion
stating that “the elastic failure occurs in ductile

Toshio Niskikara and Minoru Kawamolo,

materials when the maximum shear stress induced
by combined stresses reaches-a definite value de-
pending on shear strain energy, and the elastic
failure occurs in brittle materials when the maximum
principal stress induced by combined stresses reaches
a definite value depending also on shear .strain
energy.” From this criterion, the conditions of
elastic failure have been derived for ductile and
brittle materials.

(2) Applying the above criterion to the case
of fatigue, the authors have also proposed the cri-
terion stating that *the fatigue failure occurs in
ductile materials when the greatest maximum shear
stress induced by combined repeated stresses reaches
a definite value depending on shéar strain energy
at the instant, and that the fatigue failure occurs
in brittle materials when the greatest maximum
principal stress induced by combined repeated
stresses reaches a definite value depending also on
shear strain energy at the instant.” From this
criterion, the conditions of fatigue failure have been
derived for ductile and brittle materials.

(3) When the new criterion is applied to the
case in which only the direct stress alternates
between certain maximum and minimum values, the
results of calculation agree with the experimental
results previously obtained by the authors: i.e.
“ If we take the mean stress o, and stress amplitude
g, as the two coordinate axes, the endurance limit
can be represented by the straight line through the
two points, i. e. the point of endurance limit with
zero mean stress and the point of breaking static
strength.” :

(4) When the new criterion is applied to the
case in which both direct and shear stresses alter-
nate betweén two equal magnitudes of mutually
opposite signs and are in phase, the results of
calculation become the same as the equations which
the authors have proposed in the previous report to
be fairly applicable to experimental results.

(5) The conditions of fatigue failure have been
calculated also for the case in which both direct
and shear stresses alternate between two equal
magnitudes of mutually opposite signs and are not
in phase. But we cannot compare the results of
calculation with results of experiments, because no
experiments have ever been made for this case.
The authors are now carrying out fatigue tests on
several metals for this case. Comparing with the
test results obtained up to now, the authors are
convinced that the new criterion is surely applicable
to results of experiments. As for this case, we
shall discuss fully in the forthcoming report.

(6) Further when the new ctiterion is applied
to the case in which either direct or shear stress
alternate between two equal magnitudes of mutually
opposite signs and the other stress acts statically,
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the results of calculation are also applicable to the
following experimental results; i. e. the fatigue limit
of ductile material becomes rather higher, as the
applied static stress increases, and the fatigie limit
of brittle material becomes lower, as the applied
static stress increases,

X. Appendix.

As previously mentioned in Chapters VII and
VIII, according to the results of experiments made
by Ono, Lea-Budgen and the authors on the case,
in which either direct or shear stress alternates
between two equal magnitudes of mutually opposite
signs and the other stress acts statically, the effect
of static stress upon the fatigue limit is very dif-
ferent according to whether the material is ductile
or brittle. That is, in ductile materials the fatigue
limit becomes higher as the applied static stress
increases, and in brittle materials the fatigue limit
becomes lower as the applied static stress increases.
And the results of calculation froi the new criterion
are in good accordance with those results of ex-
periments. That is, the curves of equations (93)
and (96) for ductile materials take the form in-
dicating that the fatigue limit becomes higher as
static stress increases, and the curves of equations
(94) and (97) for brittle materials take the form
indicating that the fatigue limit becomes lower as
static stress increases.

But attention must be paid to the fact that
shapes of the curves represented by equations (93),
(94), (96) and (97), can take either form according
as the fatigue limit becomes higher or lower as
static stress increases, according to an appropriate
_choice. of the value-of 7."® Therefore the new
criterion is indeed a proper means to represent those
experimental results in all cases. However, to our
great regret, the reason for those results of ex-
periments cannot . be fully explained theoretically
from the above criterion.

In explanation of those results of experiments,
Ono™ and Bailey™ have reported their theories
for the case in which direct stress alternates and
shear stress acts statically. The authors have also
reported a theory for the case in which shear stress
alternates and direct stress acts statically.™ Bailey
has also recently reported a similar theory for
ductile materials.®® ‘

Here the authors wish to state the fact that

the above-mentioned experimental results can well

be explained on the basis of the following two

assumptions : ‘

(i) Taking mean stress o, (or t,,) as abscissa and
stress amplitude: ¢, (or 7,) as ordinate, the
fatigue limit can be represented as the straight
line through the two points, i.e. the point of
endurance limit with zero mean stress and the
point of breaking tensile strength (or breaking
shear strength.) A
In ductile materials, fatigue failure is deter-
mined only by the shear stress acting in the
plane of the greatest maximum shear stress,

" and in brittle materials, fatigue failure is deter-
‘mined only by the direct stress acting in the
plane of the greatest maximum principal stress.

(ii)

I. On ductile materials.

(1) When direct stress alternates between two
equal magnitudes of mutually opposite signs and
shear stress acts statically.

Let 7/ be the shear stress which acts in the
plane inclined at angle « with the cross section of
a specimen, then

) SO .
ol = 0asin 20+ Ty COS 20

Therefore, let the mean shearing stress in this plane
be ., and the amplitude of the shearing stress be
7., then R

.
T =, 0. sin 2u

Thy =Ty COS 244

From the above-mentioned assumption
~, -' «
fa 4T oy or o4-Ltl=1,
Tw Ty w
Substituting for 7, and 7, in this equation values
from equation (98), we obtain

74 COS 2U=Ty evvrrennn. (99)
w

I .
70’,, sin 2¢ +

Whereas we know that the greatest maximum shear
stress occurs in the plane of
1 Oa

2T e

1 -
u=— tan

Substituting this value of @ in equation (99), we
obtain

-2
T =0y ‘/aga'*' 47;‘;

(16) But there .are some reporls which give the resilts of experiments, that the fatigue limit of ductile materials becomes

lower from the fiist as static stress increases.

For example, for the case of combined rotating bending and static torsion, Davies,

Inst. of Mech. Eng, Proc., Vol. 131, (1335), p. 66, and for the case of combined alternating torsion and static tension, Hohenemser-

Prager, Metallwirtschaft, Vol. 12, (1933), p. 342.
(r7) See foot-note (10).
(18) R. Bailey, Engineering, Vol. CIV, (1916), p. 8I.
(19) See foot-note (14).
(20) See foot-note (7).
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This is the relation between static shear stress and
the amplitude of direct stress at the fatigue limit.
Fig. 17 shows the relation of equation (100) in a
diagram. From this diagram, we understand that
the amplitude of direct stress at the fatigue limit
becomes higher as static shear stress increases, so
far as the latter is under a certain limit.
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Fig. 17.
The Case of Combined Alternating Direct and Static
Shear Stresses on Ductile Material.

* (2) When shear stress alternates between two
equal magnitudes of mutually opposite signs and
direct stress acts statically.

In the similar manner as in the preceding case,
we can derive the following relation in this case:
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Fig. 18.

The Case of Combined Alternating Shear and Static
Direct Stresses on Ductile Material.

Fig. 18 shows the relation of equation (101) in a
diagram. From this diagram, we understand that
the amplitude of shear stress at the fatigue limit
becomes higher as static direct stress increases, so
far as the latter is under a certain limit.. But the
degree of increase of the fatigue limit is smaller in
comparison with the preceding case. Especially when
w/v is small, the fatigue limit does not increase.

2. On britile materials.

(1) When direct stress alternates between two
equal magnitudes of mutually opposite signs and
shear stress acts statically.

Let o’ be the direct stress which acts in the
plane inclined at angle « with the cross section of
a specimen, then

g 10 -
5]
Q{? %\ .
w & ~J 2,
£7 05 e
] N \
23 \ \\\
0 05 10 15 20 25 30

Jd= %a,,(l + cos 2¢)+ Ty sin 2¢

Therefore, let the mean direct stress in this plane be
o, and the amplitude of the direct stress be o;, then

a,',=%0,,(l + cos 2a) }

o), =7, sin 2«

From the above-mentioned assumption
4 ’ ’
Ta y Om

G, Op

’
G =0y,

Substituting for ¢, and o), in this equation values
from equation (102), we obtain

TSin 20=0,,

1 [d

—0a,(1+ cos 2¢

2 « )+ 0
Whereas we know that the greatest maximum

principal stress occurs in the plane of

-1 2T«

1
=—tan
2 g,

Substituting this value of « in equation (103), we
obtain '

t4=(20,—0,)Va + 472

A4

This is the relation between static shear stress and
the amplitude of direct stress at the fatigue limit.

Static Shear Stress, ds/tw

Fig. 19.
The Case of Combined Alternating Direct and Static
Shear Stresses on Brittle Material,

Fig. 19 shows the relation of equation (104) in a
diagram. From this diagram, we understand that
the amplitude of direct stress at the fatigue limit
becomes generally lower as the static shear stress
increases. But it can be seen in Fig. 19 that the
fatigue limit increases slightly at first, when /v is
large. The matter is quite similar as in equation
(94) or Fig. 12.®
(2) Wheén shear stress alternates between two
equal magnitudes of mutually opposite signs and
direct stress acts statically.
In the similar manner as in the precedmg case,
we can derive the following relation in this case:
1 v

‘a+: 70}:'——(2‘10

v
2 )

e N (105)
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Fig. zo.

Ther Case of Combined Alternating Shear and Static

Direct Stresses on Brittle Material.

25

Fig. 20 shows the relation of equation (105) in a
diagram. From this diagram, we understand that
the amplitude of shear stress at the fatigue limit
becomes considerably lower from the first as the
static direct stress increases.

(21) The matter is also analogous to the results of calculation made by Dr. Ono, that static shear stress exerts no influence
upon the amplitude of direct stress at the fatigue limit, even when the fatigue failure is considered to be determined only by direct

stress.  See foot-note (ro0).



