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Introduction

Surge propagation phenomena along a smgle phase transmission hne have
been studxed theoretlcally as well as experlmentally by varlous authormes
for a long time. The present author has "also devoted himself to the same
investigation for more than 20 years. On the other’ hand the studles on tra-
velling waves along polyphase transmission lines are comparatlvely few, and
the"analysis for such phenomena is so difficult and comphcated that you may
fail to give rigorous 1nterpretat10ns for polyphase phenomera by the direct
application of the theoretical results already obtained for a smgle phase line.
‘The actual overhead transmission lines, however, generally consist of 3,6,7
or 8 conductors according as they are composed of a single c1rcu1t or double
circuits, with one ground wire or two. " But usually, field engmeers seem to
discuss polyphase problems by the theoretical results already »ot‘)ta'mecvl for
travelling wave phenomena in a single phase line. It is verified 'experimen-
tally that such reasoning is erroneous. In conclusion, the surge propagation
phenomena in polyphase lines should be discussed” by means of "r'igo'fogs
analytical formulas established for the very polyphase transmission lines them-
selves, but never conventionally by means. of those for a single phase line.
The same thing may be said as to the principle of the measurement.

Of course, the polyphase transmission line problems have been discussed
theoretically by several authors such as K. W. Wagner; L. A. Pipes,' S. Bekku
and the present auther. -But such investigations either contain some unfaver
rable assumptions or can only discuss the problems in some particular cases,
and the courses of calculation become very complicated and tedious.

The present report deals with such pelyphase problems by -a newly -esta-
blished analytical method quite- different from those .already  published, by
means of which we .can discuss the -phenomenasmore'r simply and‘systematically,
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By the application of the so-called Sylvester’s theo¥em "in the theory of
matrices as well as the new type of ' operational calculus which ‘was already
extended by the present author, LWe can deduce’ a new analytical method, by
means of which travelling wave phenomena along polyphase lines with concen-
trated impedances or unifom lines at their terminals can be analysed rigorously
and systematically.

In the present report, theorems concerning the new analysis are interpreted
with some simple examples, by means of which the readers may aquire the
actual knowledge of application.

1. Sylvester’'s Theorem for Fractional Power Matrix of a given Matrix

We know the so-called Sylvester’s theorem in the theory of matrices, by
means of which we can reduce any rational function of square matrix (AJ to
a calculable form by finite times multlphcatlon and addition of square matrices
whose degrees are the same with those of [A] By means of this theorem, the
,present author has already derived a new analyt1cal method for periodically
mterrupted electrlc circuits. Moreover, the calculation of circuit constants of

ascadely connected recurrent four terminal electric network numerncal solu-

txon of rational algebraic integral equatlon of hlgh degree, and the deter-
mmatlon of natural frequencies of osc1llatmg system can also be easnly carried
out thereby ' .

But in the above mentioned cases, the functlons of [AJ under conS1dera-
Ation are assumed ratlonal funetlon_al matrices, and . the verification has been
established for such cases. o »

» NOW, let us consider another case where F. (EAJ) is a funcuonal matrix of
Afractlonal power of (Al Fortunately, such-a case has also been d1SCussed by
Frazer, Duncan & Collar, and a conclusion. has also been got that Sylvester’s

theorem $till holds for fractional powers of a matrix. such as EAJ". We can
easily extend this conclusion to the general case, where F (({A)) represents a
functional matrix of fractional powers of {A). '

“Nevertheless, so far as I know, there is no: technical or physical applica:
tion: of Sylvester’s theorem in the latter case. The present author has recently
found that transient as well as steady currents and voltages of polyphase
electric transmission lines can be analysed pure-operationally by Sylvester’s
~ theorem for fractional powers of a matrix. ‘Aceordingly we "can possibly esta-
blish.a New Operational Calculus for Boundary Problems, which likely corres-
ponds to Heaviside Operational Calcuius for Initial Value Problems.
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In the first article, a brief interpretation of ordinary Sylvester’s theorem
and its extended form for the case where F ([A)) denotes -a mere fractional
power of (Al such as EAJ%, is given; and a rigorous verification for the gene-
ral case is left to the readers untouched.

Again, we shall explain the sb~called Sylvester’s theorem in the ordinary
form. Let ay, as, .... un be distinct characteristic roots of finite square matrix
(A]; then, by Sylvesters theorem, any ratwnal functlonal matrix F(EA]) of
a given square matrix [A] is given by

F (EA])== E}F(ar) (K (ar)l, -

T @y Y a
where (K (ay)] = , ,

e em -
7 (!ls '—ar)
skr J

L]

and (U) denotes a unit matrxx At the same time, we must notice the follo-
wing relations. :

CK (unICK (an)I=C0), 785 BN
(K ()t =(K Car)], R o 1.3
SIE @)=, | (1.4

where #z is a positive integer, and m the number of degrees of (Al

By a slight modification, we ¢an extend the above theorem to the case,
where (A) has multiple characteristic roots. Let a; be an s-ple characteristic
root of (AJ of m-th degree, and suppose that the other .characteristic roots
are distinct; then, any rational functional matrix of [A] can be expressed by
the following: : : '

F(CAD= ACY)

(as+1"al)(a:+z"a1) v (@n—m)
x ((AH»\EU] _EAJ) .s (anEUj —EAJ)

~) (d F (a) -
* 1! ‘{dlZ)' (a,+1—al)(a,;2';al'1)..;(a”—4a1’) }'X

(@lU) —CAIN s +1 (UI-CAD) . . . (U =LA

p (= { art F (&) . }
‘ G- Udal™t Casni—a)Xassz—ar) ... (an—ad)
X (alUI—-CAYY ! Car iU -TCAD). .. (a(UI-CAY)
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This formula is valid for the case, where F ({A)) is a rational -functional
matrix, as aiready described. But we have not verified yet, whether this
theorem holds in the case, where F (CA)) is an irrational functional matrix of
(A). Again we shall prove this theorem in the latter case.

For simplicity, suppose that (A) is a square matrix «of the second degree,
and let it be required to find the value of EA]%. _ Provided that (AJ has
distinct : characteristic roois a; & a», and if Sylvester’s theorem should still
hold in this case, the following relation must hold. ‘ Co

(K (e +al (K (@dp=a). (1.6)

¢
- -..Again, we shall discuss whether this relation should bold or not. Now,

the left-hand side of the above formula will be calculated by direct multiplica-
tion as follows.

fa CB I+ e (R (o) o=l ()P onPad {CK (o)) O ()
+CK Ca) CK ()} +aslK (a2 an
Since we have (K (a)) (K (4))=(0) ' '
by (1.2), and (K (a)P=CK () and (K (u)P=CK ()]
by (1. 3) the above relation may be reduced to

{a; (K (a)d+a’ (K (pedPP=wlK (a1)3+a~£K (). (1.8)

The right-hand side of the above formuia- is! nothmg but TA). itself. Thus we
can: verify the relation (1.6).. o R 4

Evidently by the foregoing method, four pOSS1b1e square roots of {A) can
be obtained, namely,

(4 = 2o K ()t at Cr (a»)l L BER)
the signs being here associated in. all possxble combmatlons More generally,
if LA) is a square matrix of order m with distinct, charactenstlc roots then

CAYr= 2 w} CK () ‘ (1.10)

L1 C I
Now since ," has » distinct values and there are m characteristic roots, it
will be possible; to construct %™ such -roets; The foregoing arguement, of

#
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course, requires some modification by the aid of (1.5), if some of the characte-
ristic roots are repeated. )

2. Boundary problems of General Polyphase Transmlsslon Lmes

Let the voltages and currenits of m-—-phase transmlsswn lmes belong to
the elements of the column matrices (7] & (»), and then the- differential
equations in this case are expressed by the followmg equatlons

-8l {EL]-@T+ERJ} @,
: @1 -
WS 1> {ECJ 26} s RRTTS
Where EL], ERJ, ECJ and (G) denote m—th degree matrices whose elements
are composed of 1nducta.nces, resistances, capacitances and’ leakances of the
t;ransm1ss1on lmes , per unit length reSpecuvely The matrlces m the above
equatlons are expressed as follows

. u.n.—-( 2 ) (o) = ( vs ) :
.l.m . bm ’

2.2)
/ Lay Lygeeevrenes Lim S
N Lm) ete

J

(L)=

' Again to solve equations (2.1), we introduce the folllowing Laplace transe
formations :

() =D, % -
(2.3

() =9V, _ , ~
where the symbol § denotes that
e+ Joo '
_ 1\ L o
oD _3”73 o aai T A « DR
c~Joo

and, if we assume that the. initial values of the first kind for currents and
voltages are all zero throughout the whole lines, equatmns 2. 1) may ‘be
reduced to ' '

_ E 3 - {[Ljp+ER3} EiJ,

dEI]

: - 2.5)
~—#D__ lcerp e} o, e

Lo
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Or for simplicity, if we put
(Z(P)I=C[LIp+(R), }

(Y (pI=(CIp+(G), (2.6
then equations (2.5) are replaced by
awy _
~Car =z, |
- 2.7

-4y, l
Again let us consider the simplest case, where it is required to solve steady
phenomena when the complex alternating electromotive forces proportional to
e gre nnpressed to the hnes and then we get the complex vectors [V] and
EI J cori espondlng to the steady values of (v) and (¢) by putting’ p-— ]w in
EVJ and (I ] in the above equations. ‘But when ‘the transmnt phenomena are
to be dlscussed we must reserve p in the above equatlons as it is, in order
to obtain operational functions. Hence for both cases, it may be enough if
we discuss equation (2.7) only. )

Now, to solve equations (2.7), eliminate EI J from both equatiions, and we

have

Bz O es
Compare this equation with that for a single phase line, which is expressed
as. follows: ‘ ‘ ‘

BV 2V, @9

where Z($)=Lp+R and Y($)=Cp+G. s

The solution of (2.9) is given by the well-known formula, viz.,. .
V=Acosh,/ Z(p)V(p) #+Bsinh,/Z(p)V(p) *- (2.10)

In equations (2.9) and (2.10), V', Z( p) and Y(P) never mean matrices of course,

and A and B represent integration constants which are to be determined by

the termmal or boundary conditions of the lines,

Now, we. can prove by direct Substltutlon that the SOIutlon of (2 8) has a
form similar to that glven by (2.10) and is expressed by

(VI=cosh v/ (Z($)ILY(p)] * * (Ad+sinh /{ Z(FIY (P % - (B,
2.1

where (A) and (B) are column matrices whose elemenis consist of integration
constants and are given by the'following : ' ‘

¥3
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A] Bl 4
cAj=(,A? ) (B)= (1?2), N ¢ B b))
Anm Bm
or for simplicity, putting
QI=V(ZPNY (P » X2.13)
we can reduce equation (2.11) to the form
(V)=cosh (Q)x - (A)+sinh (Q)x - (B). 2.14)

To obtain (I], substituting (2.14) for (V] in the first equation of 2.7), we
have

(I =(Z(p)I 1L Q){cosh (@1x - (A} +sinh (Qux -(BJY}. - (2.19
Equations (2.14) and (2.15) possess 2m integration -constants that are given
as the elements of [A] and [ B), which can be determined when the currents
and voltages are given at the line terminals x=0 and x=/. For instance, let
us consider the case where the voltages and cucrents at =0 are given. Let

tVI=(Val, o : C Ll

(D=L - at x=0, . R
then, comparing the first equation of (2.16) with that obtained by putting
x=0 in (2.14), we have _ o .

(A)=(Va). o 217
In like manner, from (2.15) and the second of (2.16), we have

—(Z(p)) QI BI=(Io),
or (B)=-(@) ' Z(pIUI. =~ . . (2.18)

Substitute (2.17) and (2.18) for (A) and (B) in (2.14) and (2.15), we have
finally .

(VJ=cosh (@)x - (V) —sinh (Q)x - (Q)"YZ (1’)] ),

=C(Z(PIIQI{cosh (@x - (QI'LZ(H)I o] —sinh (@x - (Vi]}. }
.19
These are the required solutions : -but as they stand, they ‘contribute to
nothing, since they contain hyperbolic-functional matrices of ' fractional power
matrix (Q)=v(Z(p)JCY(p)). Hence it follows that we have ‘merely suc:
ceeded in the deduction of formal solutions of (2.7). We must transform these
formulas  to other different forms whose calculation is practically possible.
This question is answered by the application of -Sylvester’s théorem already
explained 'in the praceding article. It is enough for us to apply this theorem
only to the terms containing (@) in equations (2.19). By such procedure, we
have finally
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V3= SHCKCar)cosh gk - (Vo) ~sinh grs [-Z%f’—)—]uoj} _'

(D = $1(Z(#) 10, K g3 cosh gri—1-(Z(pY) (L) —sinh 4% |
- xtVo} : | .20
" -1 RS
= 3[EL] crcam{cosh g - [ZSP-Jr-sinh g
x(Vol}, - ‘

where g¥'s (»=1, 2, . ... . m) are characteristic roots of
QF=(Z(PN Y ()]

or in other'WQrds, gi's safisfy the value of ¢* in the following equation:
Mg U ~(QY} ={g*CUI ~(Z($)) (¥ ()T} =0, @2.21)

where (U] denotes a unit matrix of m-th degree. And provided that g¢i, g¢.,
..., dm are all different, (K(g3)]) as interpreted in the preceding Article, is
given by .~ . '

‘17 "(EUI-Q)

(K (g)=——

H ,“ "Pv 9 »
Ir (g:—aq¥)

‘13 "GV~ CZ(HIY (DY)
— - : . (2.22)

3=10110_om 9 9
skr (ql_qr)

The value of [K(gi)] thus derived should be substituted in both formulas
of (V] and (I) of equations (2.20) and then the voltages and currents may be
determined in calculable forms.. The procedure of calculation of (K(g:)) by
relation: (2. 22) is easily carried out practically by (m—1) times multiplication
of matrices and then m-times addition of the results. It is necessary for us
to notice that m is finite, and is not greater than 8 in our case, since it is the
number of the phases of the transmission lines inh question. Therefore it must
be easy and simple' to calculate. the matrix (K(g?)) for actual transmission
lines. Hence the substitution of this formula for (K(g?)] in (2.20), will
make the calculating procedure of (V] and [IJ more practical and systematic.

In the above mathematical treatment, the readers may find something akin
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to Heaviside Operational Calculus, since the calculation is carried out puvely
symbolically. Hence it comes about that here we have found another tyi)e of
a symbolic method qulte d1fferent from, but similar to - Heaviside Operational
Method, f)y means of Wthh boundary problems of polyphase transmission
lines can be gnalysed purely operationally and systematically..

As another example, we shall again consider the case, where the values of
(V) and CI) are given at x=[ as follows : ‘

VI=(Vy, (D=Ug : . v 2.2

Putting these relations in (2.14) and (2.15), we can derive the equations to
determine integration-constants-matrices {A) and-CBY as follows :

cosh (@)1 - CAJ+sinh - (Q) 1" (B) = V1), }
(Z($))"*(Q){sinh (Q) L - (A)+cosh (Q) I - (B =~—(I). S 20

To determine (B), transform the above equations to

CAJ+ {cosh Q) -1 sinh (Q)7 - (B)={ cosh (QI I} ~! (V1)
CA)+ {sinh CQJ”,“ cosh (Q)}-+ [BJ=—{sinh (@)1}~ (Q) (Z($(L:).

Subtractmg the second equation from the ﬁrst we obtam finally

t

¢B1={ feosh CQI 4} ~* sinh QD 1 - {sthQ]l} 1coshEQJl]
x (feosh (QI1}- lcva+{SmthJz} 1(Q)- ch(mcm], (2.25)
and to find CA), transform (2.24) to -

{sinb (@11} *{cosh (@I I}(AJ+(BI={sinh (QI I} '(V.],
{cosh(Q] 1} ~* {sinh (Q) I} (AJ+(BI=—{cosh (QI I} [Z(p)I(L:] .

Subtiacting the second from the first, we obtain finally,

CA)=({sinh 0@ 1} ~* cosh (@) L — {cosh (Q) 1} ~* siph (Q) 1 ]!
% ({sinh CQ) 111V I3+ {cosh (QU 2} QI MCZ(#)I (1) ). - (2.26)

We can, finally, deduce the values of (V) am'iA‘EI ] at any given point x,
by substituting the values given by equations (2.25) and (2.26) for (4) and
(B3] in equations (2.13) and (2.14) or into the following relations :

(V)=cosh(Q) % - (AJ+sinh (@) x - (B), } 0. 275
(I3=—(Z($)1"'(Q){sinh (Q] % - CA+cosh (Q)x - (BJ}. 2.
But thus: established form_ulas for (V3 and (I}, may contribute to’ nothiﬁg as
they stand. To- ultilize these results for numerical calculation, we must
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transform them into other practically calculable forms by applying -Sylvester’s
theorem which has been already shown. And accordingly, we have

(V)= 2 0K(g){cosh(QDx - (AI+sinh (@)x - (B} , -

@>q,

(9=~ (25 (K | (@) {sinh Q) - C4)+cosh (@)

x(BJ }] )

(Q>q,

(2.28)

where the values of (A) and (B) should be replaced by (2.25) and (2.26)
respectively.

On the contrary, from (2. 25) and (2.26), we have

. -1, -~ : -1, -t
Ugwq, =[{smh qu} éosh g,! {cosh qu} sinh q,-!]
x[{sinh 44} "0V +{eosh gt } ' Lezconna] |
ik aul (2.29)
—=cosh g - (V1) +§—mq—"—EZ(p)JEIxJ ,
— [si . (V4 coshagrl
E%jz»q, [smh arl - Vi + 250 cz<p>3cla].

Hence, substitute (2.29) for (A) and (B) in (2.28) and we have finally

V3= 3} (K@ cosh g:(l ~x) - (VI +sinh g, (-2 - [ Z22 en)
r=1 . qr - .

=3[P cxcanfeosh gr-a) - [EL N

—sinh g (1 —x) - (V1)}
) (2.30)

where, as has been already shown, in the case where @, ¢:;, - gm are all
different from each other, (K(gs*)]) is given by

I etoa-cem }
EK(ng)j: E=] e s em
sgr (g*—gr*)

1. num 2.3D
8135 (g:*LUI~CZ(PIY (D

8=1 o

cem .
17 (gs® er)z

s 7

Comparing the results obtained in equations (2.20) and (2. 30) with those
for a single phase transmission line, we reach the following very interesting
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and important conclusion. : .

In our polyphase lines, each g- corresponds to propagatxon constant ‘of ‘a
single phase line; but in our case, the number of lines is », and'accordingly
there should exist m vatues of ¢,»'s (»=1,2,---m). It is worthy of remark that
each (Z(p)/qr) corresponds to characteristic impedance of a single phase line.

But, in this case, we must notice that there exists essential difference
between these two quantities, In a single phase line, if Z(p) and Y (p) denote
impedance and admittance per unit length of the line, its charactenstlc impe-
dance z shoud be given by

4
2=y ZCD) Ygg « @ 32)

On the other hand, in case of polyphase lines, as has been already shown,
a matrix with elements corresponding to characteristic impedance of a single
phase line appears, which is given by ’ '

% 4 (1’) i (2.33)

Hence mathematlcal as well as physxcal meaning of the characteristic
1mpedance maty fix in polyphase lines is quite different from that of the cha-
racteristic 1mpedance of a single phase line, only their d1mens1ons comc1d1ng
with each other. The number of values of EZ (p)/qrj should be notlced to
be min this case.

3. Travelling Waves in General Polyphasev'l}‘ransm!ission Lines

In the preceding ‘Article, dssuming the lines to be of finite length, we have
established general formulas for c¢urvents and voltages at any point ', when
the terminal conditions at ¥=0 and x¥=!/ are given. - ‘Making use- of these for-
mulas, we can calculate the transient as well as stéédy values of (¢J and (i),
But in that Article, we have -been restricted to the case, whe_lje the voltages
or currents at the terminals are known. Such assumption ﬁéY“ be well in
actual steady conditions: but as for transient phenomena, YOu had better give
another form of terminal conditions. It is surely so, 1n the case where surge
propagation phenomlena are taken into consideration. Travelhng Waves along
transmission linés, as has been discussed by various authorities, are ‘composed
of two groups of travelling waves, 6ne of which propagates forward, while the
other backward, and when the voltages or currents.of one group are given,
the corresponing currents or voltages belonging to the same group are uniquely
determined. At the same time, we must notice thaw the voltage or. current
waves belonging to one group stariing from the sending terminal are deter-
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mined solely by concentrated impedance or admittance as well as E. M. F,
inserted at the very terminal.

In the present Article, we shall analyse these travelling wave phenomena
in polyphase transmission lines by means of Sylvester’s theorem.

Consider m-phase transmission lines, and then the voltage and current
matrices (¢]) and (¢]J at any point x and at any instant /, are given by the
following equations. i

_8w) _r, @ o
ox =L o +RJD. b
i) _y_0 )
5% =LC 5 +C]m.
Eliminating (] or (v] from the above equations, we have
Cv) _r, 0 _0
5 =L o +R| € 6],
i) (.2)

2= C el e )

By the special analytial procedure which was adopted by the present author,

we can establish the formulas of currents and voltages at x and ¢ before

reflected waves come about. Assume that the voltage waves which propagate

forward (or in the right direction) possess the value (v)s.o=[voJH(#) at the
sending end, where H () denotes Heaviside unit function given by

HO={}> 155:} : X))

and them, provided reflected waves have not reached yet, the voltages at x
will be expressed by the following matrix form:

o= PV I=Pe-0Vy)
e+ Joo
— 1| ertomert
znjg p Yoldp, 3.4
e—Jjoo
where
(V)=e-@(V,], J

and (Vo) denotes p-functional matrix corcesponding to [(V), or in other words,
the elemants of (Vo) are operational forms corrasponding to those of [wol,

namely
€+ Joo .
CIH (D=DV0) = -21;].8%“%“ dp. (3.5)

€ Joo
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And (@) is given by, the following fractional power matrix,
(Q)=v(Lp+RICCH+G) »
or for simplicity, if we put

CZ(p)I=[Lp+R], }

Y (pI=(Cp+GT, | (360,
then the va.lue of (@) shown above is replaced by

CQI=v(Z($ITY ()] . an
To find the currents at x, put -

(=%, : : 3.8

where, of course, (I] represents p-functional matrix corresponding to (i].
Substituting (3.4) and (3.8) for (#) and [ z] in the first equation of (3.1, we
can determine (I) as follows
EIJ=EZ(p)J‘th]e"““’EVoJ : (3. N
Now, you find functional matrices .containing the {ractional power matrix in
both expréssions of (V'] and [I) given by (3.4) and (3.9). Hence (V] and (I],
as they stand, have no practical applicability, To make the results practically
calculable, we must, again, apply Sylvester’s theorem that was mterpreted in
the first Article.
Since the number of transmission lines is s, the matrix

(QP=(Z(pILY(P)] (3.10)
is a rectangular matrix of m—th degree; hence it should possess m charactér-

istic roots g3, ¢, - &% respectively, or in other words, qi, ge, - ém should
satisfy the following equation : T '

o {U-@r}=o0. . (3.11)
And consequently applying Sylvester’s theorem to (3.4) and (3.9), we have

VI=e= @V )= 31e- K (@) Vo, |
" (3.12)
(1) =((Z(P QI @ (V) = E;Jf""’“[_('&]tlfmm e,

where
i G -em
(K(g*))= . ’ (3.13)

8=leeem

S:IFI’ (g:*—q)
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where qi, ¢», - gm are assumed all different from each pther. Provided some
of them are equal, or in other words, if [@J® has multiple characteristic roots,
another expression should be substituted for 'EK(qr?)], applying equation (1.5).

EXAMPLE 1.

Travelling Waves along Symmetrical Two-phase No-Loss Lines.

For simliciiy, assume ihe resistance and leakance of the lines tc; be neglec:
ted, and suppose that E.M.F.s E, and E. are impressed ai the sending termi-
nals; then, provided that the lines are same-shaped and symmetrically arranged,
we may put '

| , .14
rem=-p(& %) )
Accordingly we have
(QE={Z(PY (P
[ ' ' ‘ ' (
=p (m, m) - (3.15)
where e
m=LC+MC' ,,l‘ , i
m'=LC' +MC .} @6
Hence the characteristic equation of (@) is
0 (*CUI—p*(m3)=0,
or .
q* —2mp Q>+ (m* —m")pt=0. L (31D
Therefore the characteristic roots of (@)% are given by
N q‘f‘l . ](L+M)(C+C’)P2,,
¢ ="\ ey | (2.18)
N o (L-MYC—-C"Hp~
Or the above equation may be arranged in the form:
a1\ [9%/g}
LY = WY M : » (3' 19)
gl ‘p*/egil o
where
1= L
V(C+M(C+CD)
XC+CED (3.20)

- 1
E= =M c=cy
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Hence potential waves at the point x may be obtained by putting m=2 in
equation (3.12), and substituting (3.19) in the result thus obtained; viz.,

(VI={e” " (K (gI+ <™ " (K (g} (3.21)
Putting m=2 in (1.3), we have

EK( 3)] _— q'zEUj [Qj 'pg(m - m{l[g] —'p""l:m]_

G-q T p(m—m')—p(m+m')
____hl__(m—m'—m —m' )
- 2m —-m' m—m' —m
- 1/11

Similarly we have

oo 1(1 1

cran=—(1 ).
On the contrary, in our case, we have
va = (5. (3.23)

Hence putting (3.19), (3.22) and (3.23) in (3.21), we have

—-px/g —px/ge

& 1 1 E1 € 1 ’1 El

2 (1 1) (E) t— (—1 1) (E)

=£‘1,:42;1;?; b 2041 (1) + B

(V=

Q.20

1 ~E; -px/g: ( 1) .

2 -1

Similarly we have

' - px/ - —px/g: - — ,
o=l M) () (B) <t G0 D (B

—px/ _ -px/g - R
sl ) BIE) tainltu )R

"‘M .L :E1+E2 2g2(L2—IW§_ "M L '—E1+E3
_EtE _—px/g (1 B -pxjg 1
=55 ¢ (1) 2za (—1)' (3.25)
where
=y LtM - ) 3. 26)
A=Y cyc' = */ Cc— c‘ ¢

Hence, from (3.24) and (3.25), we have finally
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- (BB o +£1;2—E2H(g2,~x) }
- (WI=9V 3= , o,
Bt By ea—n) - ZE"'H(ggt—x)
N\ 3.27)
E’Z:IE"H (gt —x) + B Expy (g:t %)
(1=HU)1= B ,
\ 2 H (g —x) — =5 Ezpr gt -1 )
N 21
where _‘
0, gt<x; } C
H(gt—x =§ . . v (.3.28)
(g ) 1 ’ gt>x . -, * )
EXAMPLE 2

Travelling Waves along Symmetrical Three-Phase No-Loss Lines.

Again, putting

L MM c c'c ,
(Z(pI=p M L M) , Y(pl=p|C C C', - (3.29)

M M L C"C' C BN

we have ' ‘ ‘

CQI=CZ($)] (Y($N=1* (m)
Lym om omy 4 ‘
::p‘: (m' m m’) , ‘ } y (3. 30)
\m' m' m

where wm=LC+2MC', -
m'=LC'+CM+MC'. } (3.3D

The characteristic roots of (@J? namely ¢° can be determined from the follow-

ing- equation,

»q‘:_mpz _m"p‘:‘ __m'p‘.! '
~m'p? @-mp*  —m'p*| =0,
_m’p‘.’. _m’p? q‘.’, -mp‘:

or simplifying this, we have
{@—(m-—m") p*}* {@—~(m+2m’) p*} =0. (3.32)
Hence the characteristic roots oi (@)® are given by

a*=(m—m') p* : double root, }

g>=(m+2m') p* : single root.. G. 33)
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Accordingly, to find (V) and (I), we must use the general formula‘ 1.85).
Putting s=2 in the same equation, we have :

dF (al) Fla)

as —dy

F (can={ F (> 0~ (@ WUI-CAD -

X (s (UI-(AN} 2= “f*EUJ EA] LA | ) (alccgz;()_,:aj)e

3.34)

where & represents a double root, and «; a single root of third-degree matrix
CAl. ' R .
On the contrary, from (3.4) and (3.9) we have

(VI=¢e"@7 (Vo,
(3.35)

(=0(Z (P)I 1 (QIe~@= (Vo).

Hence taking into account the relations given by (3.33) and (3. 34), we can
transform (3.35) as follows. ’

V ($))= 6@ % (V)
: d (¢~9%) ~qp2

={ e~ (U)- @ (g ) —p* Cm:l)—;?:q—l

| x(ar W3- oy ELEEI

+"(—i:q—z"7“ (g (U —p* (m3)* (Vo)

£~

= (g’ EU’ 52 (m)) (Vo)

qn-—q
x o 4
o q; q._q» (@:* U= p* m]) (g2* LU —p* (m)) (Vo)
e . 0
(q“__q»)» (qr EUJ P0mY) (gt (UI—p° Em]) (Vi)
P ey @I F V. 338

On the contrary, cofactors corresponding to the elements belonging to the
first column are respectively calculated as follows.

q':__mp': _.m'p‘.: .
B P emp? ={qz—§m--m')p‘~’} {¢—(m+ml)p*},
__m'pz _.m'pz ‘ . ‘

-t __mrpg qg_m'pg =”¢’P’ {qs"(m"m’)ﬁ?'} »

' __m'p‘.‘. qz_.mpe ‘

e J— =m'p* {g—(m-m)p*}.
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Hence these cofactors have a common factor,

The same thing may be said about the cofactors corresponding to the
second and third column.

Now evidently ¢:*=(m—m')* is a double root of (3.32), namely & (¢g*> (U)—
P* (m))=0, and ¢.* a single root thereof: and accordingly, by the aid of the
extended Cayley-Hamilton’s theorem, ¢’ we have

(@i® LUI—p* (md) (g° CUD—* (md)=(0]. (3.37)

Hence the second and third terms of the right-hand side of equation (3.36)
vanish, and only the first and fourth terms remain, and consequently we have

(V= g (@ (UI=4° (md) (VD+ (q__"f; 5
x(q1 [UJ £ ) V). | (3.38)

Substituting (3. 33) in the above equation, we have

(VI=5 o {(m+2m!) (UI-Cm) } (Vo)

g%

YT {(m m’) (UI--0md}® (Vol. (3.39)
On the contrary, since

m—m' 0 0 ) (m m m'
!

(m—m') (U)—(mI= ( 0 m-m' O m m m'
0 0 m—m m m' m }
111
=—m' ( 111 ),
111
and
m+2m' 0 0 m m' m'
(m+2m') (U)-(mdl= ( 0 mi2m 0 ) - (m’ m m’)
0 0 m+2m m m' m

. 2 -1-1
=m-’(—-1 2—1),
V-1 -1 2

equation (3.39) is reduced to

4 Va, _q_)a; 11142 Vo

(Vm)-;- eg". (111_)(Vnz)
Vs 111 Vs

2-1-1
_q] (

(Vi= -1 2 -1

-1 -1 2

1) Cayley-Hamilton’s theorem was extended by the present author.
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em 2Va— Ve— Vau —a, Vat+VetVea
=1 31 ~Vu+2Ve— Ve )+ f ( Va+Vet+Ve
' -‘Vm_—-‘ Ve+2Ve Va+Ve+Ve
(3.40)
Provided that
E,
(vod)=| E, : ’ (3.4D)
E;

is a constant matrix independent of time, and if we put

a=p/g\, a:=plg:,

where
| N 1
s=(m-m') *= TaRralEy
vV {L-M) (C-C' '
. L ¢ | 1) (1 ) (3.42)
== ( +2m' = —
g=mt2m) =TT M) (CH2C)
the t-—matri_x corresponding to (V] becomes finally ; s
i{ ) 2E,— Eg" Ejy H 'E1+E2I+E3
=480 | _poE- E3)+~—(5§-11£) (E1+E2+Ea - (3.43)
—E - E2+2E3 EI+E2+E1 ‘
Conclusion

In the present paper, the author has only introduced a hew analytical
method of steady and transient phenomena in general polyphase transmission
lines, and dealt with some ideal simple examples thereof, in order to interprete
the new mathematical method, various other actual problems of polyphase
transmission lines being abbreviated for the sake of simplicity. Suth problems,
however, are interesting and really important for electrical engineers, and, at
present, assistants and students of my laboratory are studying such problems
by means of the above mentioned new method; the results may be published
on some occasions in future.



