Theory of the Wing Laitice Composed of
Arbitrary Airfoils.

By

Busuke HubiMoTo and Kézi HIROSE.

(Received July, 1949)

‘This paper deals with the problem of the two-dimensional flow of perfect
fluid through the wing lattice composed of airfoils of an arbitrary section.
Three methods being developed, the first one is an extension of Munk’s airfoil
theory, the second one using Fourier expansion and t_he third one an exact
method of conformal representation. These theories have been developed since
1945 and, in this paper, they are explained briefly and also chronologically.

1. Conformal Representation of the Wing Lattice of Flat Plates.

The wing lattice eomposed of flat plates in the z-plane with pitch d, chord
length ¢, d/e=4 and stagger Aangle v is transfarmed into a unit circle in the
¢-plane by the following well-known relation,

= —2‘-17—1_- {e“f log Atee | e log £15 } , (1.1
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where & is a constant determined by 4 and 7. ‘Expressing z=x+¢y and ¢=e*,
we get

X

Fig. 1
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y=md cos 7 ' .2
m=0, :tl) izy .......

X = —:ri—{cos v tanh }+md sin 7,

The trailing and leading edges correspond to ¢=e"r and e'®z respectively,
where
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tan 0,= tan 7, Op=0p+m, 1.3
2.1. The Boundary Condition on the Surface of the Airfoil.

In all the theories explained here, camber and thickness of the airfoil are
assumed to be very small.

The boundary condition on the surface of a rigid body is that the normal
velocity component of ' the
relative flow must vanish., In
the present problem, the uni-
fdrm flow of' mean velocity V'
passing through the wing lat-
tice has a normal component

v, and a tangentiall component
v: on the surface of the airfoil
as shown in Fig. 2. To satis-
fy the boundary condition we
must cancel ont this normal
component by some means.
In the first theory, a method Fig. 2

distributing sources and sinks of appropriate strength ¢ (x) on the surface of
airfoils is apblied. ‘ ‘
2.2. Flow due to Source Distribution and Circulation.

The complex velocity potential due to a source of strength @ placed at
point ¢=¢* is
= _g_« — pt0Y _. Q
Wi = log (¢—e**) 27!og;,
hence the velocity of induced flow « at a point ¥ on the surface of a flat piate

due to a soulce of strength @ placed at a point x is given by the following
equation assuming x and %y correspond to ¢=¢" and e'® respectively.
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w=(W . de))

d¢ dz
— @ k! —2¢2 cos 200+1
4d k J(1+£%) cos 7 sin §o—(1—«2) sin 7 cos Oo}
_sin (Go—0)
1-—cos (6:—8) - . .1

If sources of strength ¢(x) per unit length are distributed on the lower
side of each plate and corresponding sink distribution on the upper side, then
the velocity of induced flow #, at the point xo is given by eq. (2.1) as follows,

ttq (00)=—— £ -2 cos 200+1 |
e 2n{(1+«?) cos 7 sin By— (1 —£2) sin 7 cos bo}
Op+2n i g o~ . P
2C0 {(1+£*) cos 7 sin 8—(1—&?) sin 7 cos 6}

A £*—2¢% cos 20+1
Op

sin (Gy—8)
T=cos co—8y 27"

In the neighbourhood of the trailing edge i.e. fo=0,+20, where ¢ is a very
small angle, we get

' e Op4-2n
we pveay=—SEEE gy Lres =D 49, a2
I

where K=r*+2r* cos 27 +1 and K'=x*—2r cos 20+1.
Next we consider the flow due to the circulation of strength I" around each
. airfoil. The complex velocity potential in the ¢-plane is

L3 AP e
Wg-— dr log C":—]./'C? » " (2' 3)
and the velocity «, at the point xo due to ciculatioh T is as follows,

u (0 )= I‘ (1—54)
r 00 4d £{(1+£®) cos 7 sin Jo—(1—«2) sin 7 cos 0o}

and in the neighbourhood of the trailing edge

L A-t)

Ur (0T+60)= 4ad Ko /7{ .

.6

2.3. Circulation and Force acting on the Airfoil.
At the trailing edge, both #q and «,; become infinite in the order of 1/ep
and by the condition of Kutta-Joukowski, we get
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ug () +ur (0:)=0, (2.5)

and from this relation I is determined.

Let the velocity of mean uniform flow be V, the angle of incidence be «
and the ordinate of the airfoil be y, then the strength of source and sink dis-
tribution which satisfies the boundary condition on the surface of the airfoil is
given by the following relation,

2=V sin a—V cos a%'}:—. (2.6)

Hence from egs. (2.2), (2.4), (2.5) and (2.6) we get

O0r+2n ’
2d k(1—* 1+cos (B0
=200 [ g 2reonfle=D 49, @D
or

The force acting on the airfoil is perpendicular to the direction of V and
its magnitude is o VT, where p is the density of the fluid. Let the force be

P=—§— Vie CL’,

then, the lift coefficient C; is given by the following equation.

Cc,— 84k sina _ 42k cos a (1-£Y
g V'K T,/ K ’
i 6=
y . 1+cos (Op—
s 2 0 dé. 2.8)
Op

2.4. Examples.*

In the case of a flat plate y=0 and %%=0, hence

__ 84k sin «
Co= VK
‘In the case of the parabolic section of camber f-

YA T N "I Y

and after somewhat lengthy calculation, we get the following result.

C)— 8iksina | 324* f cosa
L

1+42
K + e log 1= -

* The definite integral in eq. (2.8) can be calculated by Simpson’s rule and diagrams .
which facilitate calculation were prepared but. they are not shown here.
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3.1. Flow satisfying the Boundary Condition on the Surface of the Airfoil.
Now we explain the second theory. We express the contours of the given
airfoils as follows,

x ___l_‘{ . 1 2x cos O . 1 2k sin (L}_ .
— =5 1¢08 7 tanh T+, + sin7tan 1o +tm A sin7y,
—2’~=ao+ i a, cos nb' + }oj‘ b, sin n@' +m2a cos 7, @G n

n=1 n=1

where 0'=0-0,.

The normal and tangential components v, and #: on the surface of the
airfoil are given by the following equation,

vn=V(sin %—COS & —33"—) ,

= dy )
v = ( —_) .
t =V |cos «+sin « %
The corresponding velocities vy and vy on the circle in the ¢-plane are

2dr /K sin 0’
z K'

2dk ,/K sin 0'

and ve=—v:
'] n_K, ’

Uy =Un

and after some calculation we get

vy =V sin a 21” {Z,x'-’" cos 7 sin (2r+1) @—>1 k2" sin ¥ cos 2n+1) 0}
+V cos ac (3} nb, cos n8'—>] na, sin n6'),
vo=—V cos a 2dx,/ K sin ¢’ (3.2)
n K'

+V sin ac (G nd, coé nf -3 na, sin n6').

To satisfy the boundary condition, we add a flow expressed by the follow-
ing complex velocity potential,
o0 oo, !
W= 31 En 4 55 Cn
n=1 § n=1 ¢
where ¢'=¢e r, C,=An,+iB,, C'yw=A'4+iB'y, and A,, B,, A', and B's are
constants, Normal and tangential components #* and vg* of this flow are

v¥=—31nd, cos n0—>) nBy sin s 0
_ > nA's cos nd’'— > nB', sin n ',
vt =—21nAn sin n0+>nBy, cos n

—21nA's sin 56+ Sl nB'y cos nl'.



Theory of the Wing Lattice Composed of Artitrary Airfoils 25

If C» and C's are so determined that o»1:v7=0, then the boundary condition
on the surface of the airfoil is satisfied. Determining in this way the tangential
component becomes as follows. )
2d k., /K sin '
T K'
_2d k{(1—#*) cos 6'+2#* sin 27 sin §'}
T,/ K K’
+V sin ac (OYnbs cos n6' -3 na, sin n6')
—V cos ac (3 nas cos nb'+>] nbn sin n6'). 3.3)

v +vyF=—-V cos «

+V sin «

3.2. Circulation and Force.

The velocity g, in the ¢-plane due to circulation T' is obtained from eq.
(2.3) and '

et

From egs. (3.3) and (3.4) and by the condition ve+vet+ver=0 at =0, we get

. 4dreV sina , 2mrcV (1-&*)
= Kk + 74

(sin a D) ndn—cos a > nan),

hence

Cr=4n {sin a (*-v—,‘ + _,,;{if > nbn ) —CcoS .« 1;{‘4 31 naa } .(3.5)

. n-’/K

The velocity w on the surface of the airfoil can be obtained transforming
v+ v¢* + vy into the z-plane and ’

1
'—I”,’—=cos « {1+7/T7:—,/Lt_]§§i—fﬁ'— (2] man cos n ' +33 nba sin n6")

m (1—st)?
TSIk KO s 6 = ??“_”}

.4 — ’
4-sin « {—11{-[ (A=) (1-—cos 6" 2¢* sin 2)']

sin 0’
]
ZE /"}?sm gi~ (2 nba cos n 0’ —3] nan sin #6')
 (1—gt)?
| + 2k ,/K's sin o M nbn} . (3 6)

4,1.. Method of Conformal Representation, *¥

" *% An improved method of conformal representation was developed by Assist. Prof. -
G. Kamimoto, recently, and it will be published in the near future.
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In the third theory, we apply the method of conformal representation.
Generally, the wing lattice given in the 2-plane is transformed into a unit
circle in the ¢-plane by the following relation,

Lz _ A [ gc+(1+e) | s+ (1+e)
c = on {e Tlog Ly et log T 0TS }
+Co+ 31 Cn 4.1
n=1 ¢

where ¢'=¢ e '"r and ¢, Co and C. are small gquantities if camber and thickness
of the given airfoil are small.

We take x-axis passing through the leading and tra'iling edges of one airfoil
as shown in Fig. 2 and express the contours of the given airfoils using para-
meter ¥ as the following equations in which #'=%#—#6,; and the trailing and
leading edges correspond to ?*=0, and #=0,+7 respectively.

_x___/l_{ . -1 2k cos ¥ : .1 2k sin @ }
e = x |co8T tanh g, tsin7 tan =
+ma sin 71, 4.2)
%—=ao+ i} @n cos nd' + i} bn sin 3 +ma cos 7. ’ >(4.3)
n=3 N

Putting ¢=e*® in eq. (4. 1), we get the following relations assuming ¢ and Cn=
An+iB, are very small.

_x____.L{ -, 2ccos 8 . 1 2 sin_@_}
e = lcos T t@h T T sin 7 tan R g

+ Ao+ i} An cos nf + i‘l Bu sin nb'+misiny, 4.4)
n=1 n=

Y2 Ry e {sin (7—(2n+1) 0] cos (2n+1) 6’
0

—cos (7 —(2n+1) 6] sin (2n+1) 0'}

0

+By+ 3! Bncos nl'— 3 Ansin v’ +mad cosv. (4.5
%=1 n=1

Now the angle € corresponding to the trailing edge may differ slightly
from 0, and we express it by #,+3dr and also at the teading edge we express
it by Or+n+0dz. And the geometrical conditions at the trailing and leading
edges are as follows, '
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=5 and 950 at 0=, v,

=._.%_ and %3’—:0 at 0-:-_—0’-1—71'-{'61;.

From these conditions and eq. (4.4), neglecting small quantities, we get,

Ap+3} An=0,

_ 2l vVK®
w (1-&*)?

Ap+33 (1) Ap=0, (4.6)

2k K3
7 (1—rt)?

61! +E’ an=0 ,

0r+2) (—1)" #Bn=0,

. Comparing eq. (4. 2) with eq. (4.4) we get, ¢ =68 and by further comparison
of eqs. (4.3) and (4. 5) together with eq. (4.6) and the following relations;

— = % 2" cos (2n+1) Oy cos 7.
K #=0

) k2% sin (2n+1) 07 sin 7,

1 ”li?‘ ne
we get

AD =2 b:m »

A‘.’.n = '_bEn »
— el 2n oo

Apnir= by +SETED K =@ +1) 0] S s,
V'K #=0

BO =ap,

Bay = “4.7D

e 2K &
s 2K g—-}o Benss s
7 (- e (1— &)

5T=W 2l nan 1, K8 Sin 27‘”2?) banss, |

- 4y _ o m (1-&) . =
W N(=1)" »na, 1, K¢ sin 27 E’ bons1.
2. Flow around Airfoils.

The complex velocity potential of the flow around the unit circle in the
plane is as follows,
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_Vd [ i ke +(1+¢€) - (1+&) ¢c+k
L= {ecre tog FGEI verte tog (TIEE e
- & \2
tl‘ g"_—(1—{-5)
+ie log +e 4.8

Py

The circulation is determined by the condition ‘fivr =0 at §=0r+0r and
the lift coefficient becomes as follows,

[ 2 oj y 4_ 0,2
Cz=%% {sin 73 (14-5,. 2 ls_uézf —e £ 26 1‘_:?:4 ar+1 )

—cos « (61 1{24 —€ 2”215_1.':4—2—7’—)}.

‘The velocity @ on the surface of the airfoil is also given by the following
relation, '

4.9

ST o

where

=TURER {(1+£2) cos (7+a) sin 6—(1—«2) sin (7 +«) cos 0}

_ T A-«YH
T 2nK'

+ 255 [V {2 (#4262 cos 20-3) sin (F+7+a)
+(3x* —2¢* cos 20—1) sin (07—}
~ T (s cos 20—2x*+cos 20) |,

Zf, __%%d!_? {(1+£2) cos 7 sin 8—(1~#*) sin 7 cos f}
—33n (A, sin n60'— B, cos n6") c,

d 2 )

dj(; "‘E;{‘/in {(1—&2) (k*+2x% cos 20+4x2+1) sin 7 sin 0

_ +(1+£2) (k*+262 cos 20—4x2+1) cos 7 cos 0}
—3'n (B, sin n8'+A, cos n8") c.




