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Synopsis.

The energy method is populary used in the calculation of the buckling stress
of a rectangular plate, but, although this method is very convenient when the four
sides are simply supported, it is not favourable in other cases. In the case when
a rectangular plate is simply supported on the two sides perpendicular to the
direction of normal forces and has various boundary conditions on the other two
sides, there are R. Barbré&s method based on the method of integration and K. '
N6lke’s method based on the method of energy.

According to the former, however, the number of lines and columns of the
determinant which represents the equaticn of buckling condition incresses to such
an extent that the calculation becomes very difficult. According to the latter, the
calculation is possible, but extremely complicated and laboursome., In an attempt
to simplify the calculation, the author has induced a formula by the slope deflec- -
tion method to be applied to such cases and has obtained very satisfactory results.

1. Introduction.

Concerning the problem of the buckling of a plate, ever since G.H. Bryan?
solved the buckling of a rectangular plate with four edges simply supported,
attempts have been made to solve plates with “various conditions of supported
edges as the case of the buckling of a column. The solution for the plate, how-
ever, are far less in number than the solution for the column. This is due to
the fact that, compared with the column, the boundary conditions in the case of
a plate are in many cases very perplexing.

Most of the studies in the past were made on the buckling of a simple rec-
tangular plate, but in order io resist a greater buckling load it is necessary to
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use a plate reinforced by stiffeners or a plate with various thickness such as the
thickness is increased step by step or changes gradually.

S. Timoshenko has studied some of these problems, but it is only recently
since scholars started to pay attention to most of them.

The method of solution of the buckling of a plate can be classified into the
following threes. '

a) Method of integration. This method is to solve the differential equation
of the buckled plate, derive the conditional equation of buckling by using the
boundary conditions and with this equation calculate the buckling load. But it
cannot be said that the equation of the buckled plate is always solvable. The
solution is possible in a particular case when the rigidity of the plate is constant
and when the forces acting on the plate is uniformly distributed. Therefore, we
cannot always derive the buckling equation of any sort of plate when the boun-
dary conditions and forces applied are arbitrary.

b) Method of energy. In this casé it is necessary to assume the equation
of the deflected plate. If this assumed deflected plate coincides with the true
deflected plate, the true value of the critical buckling load is obtained, but if the
assumption is not true, the obtained result is no more than an approximate value.
Also it is never easy to assume the deflected plate which always satisfies all
boundary conditions. ,

¢) Methed of difference equation. The solution is always possible according
to this method, but compared with the case of the column, the calculation is ex-
tremely laboursome.

In the buckling of a column longitudinally compressed, the slope deflection
method has been used by R.v. Mises and J. Ratzersdorfer®, S, Ban® and D.
Hiura®. Considering the benefit of this method, the author derived the slope
deflection method for the plate which is similar to that for the compressed
calumn, and applying this method to the problems which have been studied by
many scholars in the past, the author’s method was ascertained to be very effec-

tive.

2. The fundamental formula by the slope deflection method of
the uniformly compressed rectangular plate simply supported
along two opposite sides perpendicular to the direction of
compression.

In the discussion of buckling, both the .method of energy and the method of
integration of the differential equation for the deflected plate can be used. In



62 Masao NARUOKA

applying the method of integration, we use the following % -1
equation, which is for the case of uniform compression é\)
along the x-axis (see Fig. 1), with ¢ considered positive p =
for compression, , a % -
o'w +2 6‘w 64w —_a_ _0?_1:)_ (1) Fig. 1
oxt %°0 y> 6y N 0x*

where N is the flexural rigidity of the plate.

Assuming that the plate under the action of compressive forcés buckles in m
sinusoidal half-waves, we shall presume the solution of eq. (1) in the following
form

=Y (y)sin 2L (2)

in which Y(y) is a function of y alone, which is to be determined later. Ex-’
pression (2) satisfies the boundary conditions along the 51mp1y supported sides
x=0 and x=a of the plate, since

0w 0w _ _
w=0 and o -+ 557 =), for x=0 and x=a

Substituting eq. (2) in eq. (1), we obtain the following ordinary differential
equation to determinate the function Y (y):

po g e

Noting that, owing to some constraints along the sides y=0 and y=¥5, we

always have _qﬁ> (——mf—)“ and, using the notations

S LR L R O S IR AR TS
the general solution of eq. (3) can be represented in che following form;
Y (y)=C;cosh ay+ C: sinh ay+ Cs cos S8y + Cy sin By (5)
The constants of integration in this solution must be determined by the con-
ditions of constraint along the sides y=0 and y=b.

Now let us represent the boundary conditions along the sides y=0 and y=5
as follows,

w=2.048in manx sy M=23M 4sin _”_"g!i, for y=0

w=20p sin !%:ﬂ, M= Mjzsin m;x . for y=b
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Then, the four constants of integration can be determined from eq. (6) as
follows.

ﬁz+v( mrn )2 ) *

Ci= a _ MA 1
1 o>+ B N &+5
ﬁ”+v( mn )2 {Bg+v(m—’f)2} cosh ab
C.=4 a ) a '’ —
OB (@4 BE)sinhab A4 (a®+ 82) sinh ab
+‘_M'4 cosh «b _Mj 1
N  («2+#%)sinhub N  («2+p2)sinh b (7>
2 _ mr \*®
Camda— y( g ) +Ma 1
3=04 a®+ 32 N &+p
s =) food
Ci=8 a -8 2
T2 B%) sin Bb 4 (a-+a=)sin Bb
_ M, cos b My 1

N “(@+pDsinpp N  (£+B%)sin b

Next, we shall assume that the other boundary conditions are represented as
follows, '

§=204 sin ﬂ‘:x, V=2V .sin- m:x for =0 l :
) : (8
§=305 sin ﬁ’:i V=XVassin ”’;’?‘ for  y=b J
By using eq. (7), the slope and shearing force in eq. (8) can be written as
follows. ‘ . .
4=(u*+ %) sinh ub sin fb )
L My . . L Ms . .
d404= N (ucosh ub sin b— § sinh «b cos pb) + N (B sinh ab—« sin Bb)]
-4 [a{ﬁ +u(@a-—) } cosh b sin b+ B{u- —»("'a” ) } sinh a5 cos 85)
+0p [a{32+ v (ﬂa’i) } sin Bb+ ﬂ{a-—v(%—) } sinh ab]

40p= ——%‘i— (B sinh ab—u sin 86)— %‘* (« cosh ub sin Bb— @ sinh «b cos 35)

-84 [a{ﬁ"+ v (.'::"{ )2} sin S5+ B{a‘z - v(-m‘;@)z} sinh ub]
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+05 [a{ﬂ +v(”;”) } cosh b sin b+ B{u‘-’—u(%)z}sinhabcos Bb]‘

.—AVA:MA [a{a?_(Z—V)(L::l)B} cosh «b sin Bb+3{ﬁe+(2~y)(maz)z}

x sinh b cos 35
M (e —2-0)( %) }sin g5+ {82+ 2—»)(Z22) L sinh up)
—0uN a{w—(z-—u)(l”l)z}{éuu( »»»»» =)'} cosh ub sin g
- 8{g>+ (2 u)(’"") Hee=» (") Jsinh ub cos 5]
+8aN (o —(2—)(ZE) Hgrr»( 2% | } sin 88 | @
~ g+ 2-w)(" | Hae—v("2" )} sinh b)
= 4V s =M [fu—@-)("3" | } sin o+ B{g2 2-v)( % |} sinh a5

—-Mz [a{u -(2- y)/m") }cosh ub sin ﬂb+ﬁ{ﬁ +(2— V)(mn) } .

X sinh b cos Bb]

—0uN [a{aﬂ—(z--f)(lzl' ) e v (2R }sm Bb

_B{Bg+(2__,/)(;’215)2}{“2-]}(%—”‘)-} sinh ab] 4

+ 05N [a{a? - @2- v)(/maﬁ\)z}{[ﬁ%- u(?—)g} cosh «b sin 3b

~ {82+ @) % Hu = (™)'} sink b cos 85)

Taking into account the fact that the smallest value of ¢ is obtained by ta-
king m=1, i.e., by assuming that the buckled plate has only one half-wave, we
shall take m=1, and for the purpose of making the above equation resemble the
" equation of the slope deflection method used in the solution of a rigid frame and
continuous beam, we shall write M =M 5, Mz=—Mps, V=V 45 and also.
VB’_—VBA-

The sign of the slope expressed in eq. (8) must be determined in accordance
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with the rule adopted in the slope deflection method, (clockwise positive, counter-
clockwise negative,) but in this case the sign appearing may be taken as it is.
Therefore, taking m=1,

= ’; A, A=~/ 1+‘/z,‘;:.; , B:%B, B=\/"1+\/2‘Z:‘ ,

-where

G

. ab° *
2= nN »

thus the following equations are obtained.

:
‘Z"QA:- M N oDt s(z)+-—z~~{83d(z) 3412} -
R (10)
P A Ol Mas o)+ {Bate) - dad(2D}.
-V~ Z (M2t 1oy + Mot oy e T {one) - b2}
a1
mI;\J;A ___; [MAB diz)+—= MAA. 1(2)+ ’;;—{amz)—m e(z)}]

where
4=(A%+ B?) sinh «b sin 85
¢(2)4=A cosh ub sin 6— B sinh ab cos b
s(z)4= B sinh «b— A sin Bb
d(2)4=A(B*+v)sin 8b+ B(A%—v) sinh b (12)
1(z)4d=A(B*+v) cosh b sin fb+ B(A*—v) sinh «b cos b
u(2)d=A(B*+v)? cosh ubsin 86— B(A?—v ? sinh «b cos 8b
e(2)d=A(B*+v)? sin 8b— B(A®—v)?sinh b 4

P

From eq. (10), we can represent the bending moment M in terms of slope 8
and deflection 4, and also the shearing force V in a form similar to that of the
moment. The result thus obtained is as follows.

. - N
M an= m@ “a [C\Z)0A+S(2)03— "--{1(2)53 =T Z(Z)aA}]

(13)
M "c~(—2>1\is-“<5“a“ $(2)0u+ (dn— {2 )5 (2)04})

N
Van= = ysicey g [@0at K20 {1205~ H(2)34}]

(14
‘ N
Viaim = sty (Kt = {i2d0a= 1230.]
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where .
£(2)=c(2) 1(z)+ s(2)d(2)
#(2)=e(2)d(2)+ s(2) 1(2) (15)
h(2)=i(2) (2)+ j(2)d(z)—u(z){c*(2)—s*(2)}
1(2)=i(2)d(2)+ j(2) 1(2)— e(2){c*(z) —s%(2)}

This expression resembles the formula of a column subjected to compressive

force which is written as follows,

MAB-'—‘""E;] ?(—z_)l—gﬁ c(2)pa+s(2)gp— 63;6A {C(Z)+S(2)}]

\ 1= l'l 2y -5%2) ,[s(z)¢4+ 012)¢B"§'p—_l_£‘4—{0(2)+8(2)}]

Therefore eq. (13), (14) are called the formulae of the compressed plate
based upon the slope deflection method.
For spacial cases when M4 is equal to zero at the side y=0,

- N mr)=sK2) T oy 7
M= cX(2)—s¥2) a «2) O a 12057 (2)6“}]
(16)
N 2 o, , ,
Vpa=-- R ) 'Z;gr [l/(2)03~ ‘Z AW (2051 (2)&4}]
and when M4 is equal to zero at the side y=b,
- N n D=2 o w . _g
Mar= 22)-s%2) a [ «(2) Ou— 172201 (2)6“}] an
Var=— ey w (@ 10— K (2)a]
where
i'(2)=i(2)—s(2)[c(2)- j(2), K (2)=h(2)— j(2)[c(2)- j(2) ‘% as
7 (@)=j2)—s(2)/e(2)-i(2), V(2)=1(2)- j(2)[c(2)-i(2)

Among the functions included in the formulae derived above, those necessary

«

c s )
L, JEPS L R c""--sf’

in the calculation hereafter are the following 11, that is, - ]é
AN N S (U SR SRR

S gt PP g 2P 2 and P B
By rewritting these functions in a form. convenient for doing the calculation,

we get



} =1' ¢ 252 c2—-s? 2 —s2 1?—?2— i 252 I 3 52 c2—s? i | ci-w |
50 | 262408 | 263099 | 0.]3482 | 275196 | 0.11000  6.43624 | -0.04115 | 274632 | -0.03107 | 6.43164 | .
45 | 258375 1 259249 | 015048 | 264917 | 0.13650  6.07482 | 0.00009 | 264125 | -0.01726 | 6.06763
40 | 254094 @ 255198 | 036778 | 254221 | 0.16590 & 569424 | 0.04716 | 253131 | -0.00124 | 568345
o | 35 | 249534 251389 0.18694 | 243067 | 0.19893 | 530911 | 010077 | 241588 | 001781 | 5.29340
S |30 | 244637 246397 | 020825 | 2.31389 | 0.23609 | 491299 | 0.16234 489037 | -0.058
g |25 | 230368 241592 | 0.23195 | 2.19141 | 0.27783 450495 | 0.23320 | 2.16480 T 447312 |
- 20 | 233635 | 236461 | (.25849 | 206229 | 032504 : 408310 | 031434 | 2.02675 | 0.00960 | 4.03842 | T
15 | 227333 ' 231027 | 0.28819 | 1.92588 | 0.37834 0.40598 | 1.87885 | 0.13798 | 3.58451
1.0 | 220459 ¢ 225058 | 032173 | 1.78080 | 0.43907 | 051175 | 1.71804 | 0.18450 | 3.10575
05 | 213248 | 218185 | 035955 | 1.62617 | 0.50811 . | 063412 | 1.54398 | 0.23978 | 250921
—_— 0. 204879 = 2.10840 | 040272 | 145983 | 0.58754 | 221878 | 0.77675 | 134760 | 030870 | 2.05505 |
! 05 | 194609 | 2.03606 | 0.45186 | 1.28051 | 0.67860 | 1.69413 | 094183 | 1.11947 | 039367 | 1.47608
. L0 1 182433 | 1.95659 | 0.50872 | 1.08473 | 078473 @ 1.13620 | 1.13620 | 0.86030 | 0.50270 | 0.82146 @ |
g | 15 | 168735 186366 | 0.57427 | 087062 | 0.90777 | 054123 | 139473 | 0.58251 | 0.63696 | 0.10478 | O©.
@ 20 | 151599 | 175745 | 0.65142 ( 063214 | 1.05871 ' -0.10270 | 1.63549 | 0.24156 | 081940 | -0.73448 |
$ |25 | 131051 ' 163815 | 074120 | 0.36644 | 122534 | -0.78042 | 22022 | -0.17161 | 104762 | -1.69007 | 166188 |
&30 | 101651 : 149940 | 085015 | 0.06207 | 1.43409 ' -157702 | 235272 | -0.75105 | 1.39889 | -2.94865 | 2.2033
| § | 35 , 062095 133911 | 098065 | -0.28514 | 168406  -2.43835 | 282861 | -151830 | 189287 | -455622 |
I S 114474 | 114474 | -0.70000 | 2.00000 - ~3.43421 | 343421 | -270000 | 2.70000 | -6.92846
45 | -1.09120  0.90937 | 1.34879 | -1.19615 | 239551 --450159 | 419539 | -4.74922 | 4.16966 |-10.90199 | 7.34736 |
{ ] 50 1-361935 ;. 061400 | 161223 | -1.81114 | 290808 -598471 | 518919 | -9.44711 | 7.66373 |-19.75821
alb U N S s i i [ T R S R A R
; = I ¢ 1 €2 —s3 €2 —s2 c: —s? €2 - 52 c2—s2 f 252 1 c2-s2 ) 25z | st
{7 5.0 | 332062 | 350155 | 0.79596 | 511367 | 1.47356 . 1568242 ( 1.32827 | 477870 | 031114 | 15.06230
; 45 | 3.25836 Iﬁ 345565 | 0.82568 | 4.92088 | 1.56070 | 14.71059 | 157040 | 455697 | 0.38276 | 14.00573 | -0.
; _ 40 | 319309 | 340841 | 0.85667 | 4.74168 | 165182 | 13.72399 | 1.82503 | 432651 | 0.46004 | 1292346 | -
o |35 | 312455 | 335976 | 088898 | 454884 | 174714 | 1272185 | 2.09284 | 4.08658 | 0.54350 | 11.81340
PS8l 30 | 3.05237,,1 330951 | 092269 | 435107 | 1.84693 | 11.70329 | 2.37472 | 383616 | 0.63388 | 10.67261
| g __25 | 297626 | 3.25789 | 0.95789 | 4.34814 | 195143 | 1066753 | 267143 | 357443 | 0.73174 | 949879 |
= |20 | 289575 | 320450 | 0.99467 | 393972 | 206095 | 9.61350 | 2.98402 | 3.30000_| 0.83808 | 8.28800
» 15 | 281047 | 314936 | 1.03313 | 372554 | 2.17582 | 854031 | 3.31340 | 3.01184 | 095363 | 7.03728
1.0 | 271976 | 3.09234 | 107338 | 350520 | 220637 | 7.44669 | 3.66077 | 270811 | 1.07989 | 574140
! 05 | 262735 | 3.03334 | 1.11551 | 3.27838 | 242.95 | 6.33159 | 402653 | 238745 | 1.21723 | 4.39653
|l—I"_ 0. | 251975 | 297222 | 115987 | 3.04462 | 255595 | 5.19353 | 441402 | 204736 | 136804 | 299554
; 0.5 | 240804 | 290887 | 1.20598 | 280354 | 269584 | 403120 | 4.82259 | 1.68606 | 153341 | 1.53334
: 10 | 228947 | 284310 | 1.25460 | 255460 | 2.84310 | 2.84310 | 525460 | 1.80002 | 171582 0 -
g 15 | 216050 | 277480 | 130567 | 2.29734 | 299820 | 162749 | 571148 | 0.88716 | 197959 | -161134 |
| @ 20 | 202025 | 270374 | 135940 | 203112 | 316177 | 0.38237 | 6.19531 | 0.44142 | 2.14055 | -3.31501
8| 25 | 186752 | 262977 | 142188 | 1.75539 | 3.33435 | -0.89401 | 6.70781 | -0.04256 | 2.38805 | -5.12047
! & | 30 | 169959 | 255264 | 147556 '1.46936 | 351673 | -2.20419 | 7.25151 | -0.56893 | 2.66590 | -7.04913 |
g 35 | 151506 | 247216 | 1.53843 | 1.17240 | 370055 | -3.55026 | 7.82846 | -1.13210 )
P 40 | 130948 | 238802 | 1.60486 | 086353 | 391377 | -493533 | 844176 ) -1.76670 | 3.
45 | 107996 | 229997 | 167510 | 057194 | 433020 | -6.35206 | 9.09405 | -2.43615 | 3.71365 -13, 806
T50 | 082128 | 220768 | 1.74949 | 0.20656 | 4.35990 | -7.83387 | 9.78872 | -3.24847 | 4.19521 '-16.44416 | 9.3

-

-
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tension

compression

tension

compression

2 1 e ,A_..:‘;_“ ( IR 2 j/ W i & \[
c ‘ 22 2~ 252 2 —s2 c2— 82 c2—82 2 -2 c2—§2 c2—-s2 €z—52 |
50 | 400225 | 452220 | 153068 | 834942 | 433512 | 20.75350 | 7.26107 | 6.88207 | 150899 | 2559773 | -0.74294
45 | 393961 | 448310 | 156092 | 813083 | 4.45148 | 2815244 | 7.73500 | 6.58091 | 1.62049 | 23.73236 | -0.33848 |
40 | 387513 | 4.44339 | 158902 | 7.90937 f 457193 | 2654655 | 82344 | 627439 | 1.74343 | 2184236 | 0.08527 |
35 | 380869 | 440305 | 161770 | 7.68493 | 469438 | 24.92212 | 872208 | 596019 | 187090 |'19.91713 | 0.52957
~ 30 | 374019 | 436207 | 164702 | 7.45743 | 481970 | 2328328 | 9.23536 | 563761 .| 2.00394 | 17.95794 | 0.99557
__ 25 | 366950 | 432042 | 1.67696 | 7.22688 | 4.94790 | 21.62956 | 0.76085 | 530636 | 2.14279 | 1596305 | 1.48436 .
2.0 | 359660 | 427813 | 170762 | 699322 | 5.07909 | 19.95082 | 1630010 | 4.95590 | 228775 | 1393081 | 1.99760
15 | 352109 | 4.23504 | 1.73886 675598 | 521341 - 1827595 | 10.85299 | 4.61542 | 243949 | 1185817 | 253627
~ 1.0 | 344309 | 439127 | 177083 535086 | 16.57513 | 11.42041 | 4.25469 | 259806 | 9.74386 | 3.10235
05 | 336235 | 414674 | 180351 549156 | 1485762 | 12.00265 | 3.82806 | 2.76400 | 7.58509 | 3.69740
0. | 327873 | 410148 | 183698 | 6.02382 | 563579 | 13.12330 | 12.60053 | 3.49965 | 293783 | 5.37924 | 432328
05 | 319203 | 405540 | 1.87118 | 577247 | 578342 | 11.37123 | 13.21408 | 3.10400 | 3.11995 | 3.12357 | 498187
10 | 370205 | 400850 | 1.90617 | 551728 | 593465 | 9.60193 | 1384400 | 269517 | 3.31100 | 081468 | 5.67556 |
15 | 3.00861 | 3.96076 525816 | 6.08931 | 7.81219 | 1449082 | 2.27243 | 351149 | -1.55039 | 6.40639
20 | 291143 | 391215 | 107863 | 4.99495 | 6.24842 | 600410 | 15.15513 | 1.83473 | 372214 | -397577 | 7.17726
25 | 281030 | 386264 | 201608 | 472757 | 641119 " 4176207 1583747 | 1.38134 | 3.94363 | -6.46491 | 7.99058
30 | 270491 | 381220 | 205456 | 445583 | 6.57806 | 2.32784 | 1653849 | 091063 | 417663 | -0.02280 | 884983
35| 258309 | 3.76081 | 209450 | 417962 | 6.74918 | 0.45841 | 17.25881 | 0.42082 . 442144 -11.65356 | 9.75789 '
40 | 248019 | 3.70842 | 213526 | 389879 | 6.92469 | -1.43280 | 17.99912 | -0.08836 | 4.67981 |-14.36310 | 10.71895
45 | 236015 | 365501 | 2.17548 | 361319 | 7.10473 ‘ -334647 | 18.76009 | -0.61559 ‘ 495414 |-17.15689 | 11.73665
50 | 223447 | 360055 | 221780 | 3.32266 | 7.28948 | -5.28335 | 19.54246 | -1.16737 | 524285 |-20.04123 | 12.81558 |
2 r 1 c s i , j _ h i 7’ 1% v
| [ 2 — g2 c2—s c2—s2 | ¢2-s2 2 — 52 c2—st . (22 €252 c2—s2
50 | 475142 564078 | 2.24524 [ 12.68866 | 851346 | 50.76706 ) 2: 9.87662 | 346291 | 87.91797 | 1.05652
45 | 469085 \i 5.06849 | 226860 | 1245428 | 864446 | 4855640 895766 | 3.60678 | 35.23256 | 1.71319
40 | 7463353, 557589 | 2.29225 | 12.27804 | 877723 | 4633408 | 21. 62169 860972 | 375438 | 32.31751 | 2.38880
35 | 457485 | 554300 | 2.31623 | 11.97935 | 891185 | 44.10004 | £2.34495 | 825121 | 3.90584 | 29.77187 | 3.08398 °
30 | 451556 | 550979 | 2.34051 | 11.73991 | 9.04828 | 41.85301 | 23.07897 | 7.89328 | 4.06128 | 26.99464 | 3.79946
25| 445481 | 547623 | 236506 7 9.18644 | 3959527 | 24.25254 | 7.53039 | 4.22080 | 24.18494 | 453593 .
20 | 439284 ' 544235 | 238993 | 11. 25368 | 0.32647 | 37. 32416 | 2457941 | 7.15810 | 438458 | 21.34154 | 5.20417
15 | 432961 | | 540816 241514 [ 11.00761 | 9.46852 | 35.04062 | 2534684 | 6.77922 | 455280 | 1846331 | 6.07490
~ 10 | 426508 @ 537363 | 244069 1075048 | 961253 | 3274424 | % 6,39350 | 472561 | 1554904 | 6.87900
_ 05 | 419919 | 533875 | 246656 | 10.50921 | 9.75849 | 30.43470 | 2. 91653 | 6.00015 | 490314 | 1259759 |. 7‘7.7077277;
0. | 413189 | 530353 & 249276 | 1025680 | 9.90646 | 28711184 | 27.71934 | 560059 | 508558 | 9.60757 | 8.56067
05 | 406310 | 5.26796 ; 251931 |10.00223 | 10.05651 | 2577549 | 285343). | 5.19289 & 527311 | 657770 | 9.44010 .
1.0 | 399280 | 523203 | 254621 | 974543 | 10.20864 | 23.42534 | 20.36169 | 4.77730 | 546594 | 350644 | 10.34660
T 15 | 392101 | 519571 | 257345 | 948632 | 10.36285 | 21.06109 | 30.20164 | 435356 | 566424 | 0.39238 | 11.28114
0 | 334761 ;’7 515900 | 260105 | 9.22490 | 10.51922 | 1868256 | 31.05449 | 392135 | 5.86824 | -2.76616 | 12.24489
25 | 377248 | 52192 | 262903 | 895117 | 10.67782 | 16.28950 | 31.92055 | 3.48037 | 6.07816 | -5.97072 | 13.23803
730 | 369559 \‘54(@_%6 265738 | 869505 | 10.83868 | 13.83189 | 32.80002 | 3.03026 | 6.29425 | -9.22319 | 14.26456
35 | 361689 ' 504660 | 268611 | 842650 | 11.00i82 | 11.45916 | 33.69312 | 257068 | 6.51673 |-12.52528 | 15.32203 |
40 | 353630 \ 500833 | 2.71522"| 8155 1116730 | 9.02116 | 34.60015 | 2.10123 | 674588 |~1587906 | 16.41552 |
45 | 345374 | 495087 | 274475 | 7. 7| 1133518 | 6.56764 | 3552144 | 162151 | 698194 |-19.28647 | 17.54368 |
336913 493058 277457 | 7.60588 | 1150548 | 4.09829 |'26.45717 | 1.18120 | 7.92528 |-22.74968 | 18.70888 |
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cz—s2 c2—-s2 2—sr | c2-s2 | erosr 252 | c2-s2 2= | ezosz | TeresE
6.81280 | 293448 | 1820218 | 13.94500 81.04176 | 42.47842 ; 12.19535 | 6.30579 & 5249468 | 521879 '

678580 | 295429 | 17.95959 | 1408407 ; 78.22598 | 4340010 | 11.82789 | 626511 | 4899421 | 6.12461
6.75856 | 2.97430 | 17.71578 | 14.22355 | 7540051 | 4433101 | 1145630 | 642721 : 45.46663 8| 7.04770

673114 | 299447 7| 17.47067 | 14.36425 | 72.56496 | 4527090 | T1.08049 | 6.59212 | 41.91165 | 7.98849
| 6.70355 | 3.01480 | 17.22425 | 1450621 | 63.71928 | 4621990 | 10.70035 = 6.75992 ' 3832846 = 8.94740
667579 | 303531 | 16.97649 | 1464942 ' 66.86333 | 47.17820 | 10.31580 | 6.93065 : 3471654 ; 9.92452

I | 664785 | 3.05508 | 16.72738 | 1479388 | 63.9999 | 4814576 | 9.92672 | 7.10439 | 31.07524 | 10.92126
6.61959 | 3.07679 | 16.47678 | 1493948 | 61.11956 | 40.12224 | 953300 | 7.28118 | 27.40390 | 11.93990

7659142 | 3.09784 |-16.22501 | 15.08661 \ 58.23253 | 50.10909 | 9.13459 | 7.46117 | 23.70191 | 12.97789
6.56322 7| 3.11982 | 1597279 | 15.23599 | 55.33791 | 51,10885 | 873153 | 7.64456 | 19.95877 | 14.03212

65348071 3.14094 | 1571901 15.38655 ‘ 5243192 | 52.11784 | 832350 | 7.83142 : 16..0342 | 15.10654

7650580 | 3.16235 | 1546242 | 15.53706 | 4951014 | 53.13182 | 7.91017 | 802108 | 12.40480 | 16.20436
1647654 | 3.18387 | 15.20415 | 1568367 | 46.57645 | 54.15496 | 7.49161 | 821434 | 857247 , 17.32466

tension

6.44728 | 3.20576 |-14.94508 | 1584231 . ‘4357141 | 5519061 | 7.06785 | 841121 | 470603 : 1846738

" 6.41786 | 3.22789 | 1468470 | 1599750 . 40.68061 | 56.23707 | 6.63868 | 861175 | 0.80438 | 19.63319

638822 | 325018 | 1442275 | 16.15402 | 37.71558 | 57.29363 | 6.20394 | 881603 | -3.13343 i20.822507
635838 | 3.27267 | 14.15930 | 16.31197 | 34.73901 | 5836072 | 576350 | 9.02415 | -7.10820 | 22.03603
" 632835 | 320535 | 1389435 | 1647138 | 31.75080 | 59.43848 | 5.31723 | 9.23619 -11.12067 '.23.27445

6.20813 | 331824 | 1362786 | 16.63225 | 28.75078 | 60.52702 | 486498 | 9.45226 -15.17192 | 24.52837 |
|
-

compression

. 626079 | 334343 | 13.36887 | 16.80385 | 25.77802 | 6166618 | 440792 . 967465 -19.25845 | 2583588
50 | 447230 7623710 1 3.36463 | 13.09019 | 16.95844 | 2271465 | 62.73539; 3.94189 | 9.89580 -23.39472 | 27.14516

ab] . |1 c s i I i low b e T ow T v

: ——-6’ ; P c2—s2 c2—s2 | c2-s2 3 c—52 2~ c2—sz | i j 252 32— 52 282
T B0 [ 7633078 | 801562 | 360886 | 2491300 2061067 [122.90722 1 7638224 1563347 | 930411 : 69.91068 | 12.32306 |
45 | 634744 | 7.99245 | 362595 | 2466578 | 20.75310 1119.49266 | 7751913 | 15.25069 \ 9.56294 | 65.60539 | 13.47226

740 | 630371 | 706031 | 364316 | 2441777 | 20.89558 [116.07008 | 7866439 | 14.86482 | 9.73389 | 61.27581 : 1463697

o |85 | 625955 | 7.94583 | 366043 ,24 16863 ' 21.04072 [112.63814 | 79.81658 | 1447575 | 9.90688 | 5692191 | 1581755
S| 30| 621497 | 792236 | 367781 | 2391858 . 21.18578 (109.19759 | 80.97673 | 14.08348 | 10.08202 | 5254304 | 17 01419
8125 | 7616999 | 7 369533 | 23166779 : 2133198 10574895 ' 82.14565 | 1368798 | 10.25040 | 48.13860 | 18.22707
- 6.12458 371295 |.23.41604 ' 2147909 102.29156 \83 32258 | 1328916 | 10.43899 | 43.70847 | 19.45656
6.07871 ’7 3.73064 | 23,16313 : 1.62691 | 9882468 ' 8450674 ' 12.88694 | 10.62077 | 39.25257 | 20.70302 |

| 6.03240 7'7782748 | 374843 | 2290924 ' 21.77563 | 95.34884 \8569896 1248130 | 10.80482 | 34.77019 | 21.96666 |

. | 598565 | 7.80350 | 376635 | 2265451 | 21.92542 | 91.86443 1 8689993 | 1207221 | 1099123 | 30.26070 | 23 24767

— 7598845 | 7.77942 | 3.78430 | 22139885 | 22.07621 | 8837108 | 88.10931 1 1165960 | 10.98659 | 25.72381 | 24.546:

r 589076 | 7.75527 | 380256 | 2214223 | 22.22800 | 8481245 | 89.32709 1124339 | 11.37122 | 21.15922 | 25. 86’34’2’
g 0 | 534260 | 773099 | 382083 | 21.88455 | 22.38069 | 81.35686 | 90.55301 | 1089352 | 11.56485 | 16.56636 | 27.19876 |
Lg | 15 579396 | 7.70653 | 383914 | 21.62564 | 2253409 | 77.83490 | 91.78660 | 10.39989 | 11.76089 | 11.93908 128 55269
Ca 20 | 574482 | 7.68194 | 3.85755 | 21.36566 | 2268840 ;74 30338 | 93.02854 | 9.97248 | 11.95044 | 7.29393 | 29.92564
8 | 25 | 7569517 | 7.65728 | 387610 | 210476 | 22.84380 | 70.76279 | 9427942 | 954125 | 12.16059 | 261331 ,31 37798~
5 |7 307| 564508 | 7.63250 | 3.89477 | 20.84284 | 23.00020 \ 67.21271. 19553902 ' 0.10612 | 12.36436 | -2.09741 | 32.73003
'E “35 | 550444 | 7.60759 | 1391854 | 2057983 | 23.15756 | 63.65289 | 9680724 . 866700 | 1257079 | -6.83889 | 3436211
' © 40 | 554380 | 7.58257 | 393241 | 20.31576 | 23.31592 | 60.08337 | 98.08425 822384 | 12.77993 |-11.61158 | 3561461
i {45 | 549145 | 7.5574 \ 7395140 | 20.05066 | 2347529 | 56.50422 | 99.37018 | 7.77663 | 12.99182 |-16.42583 | | 37.08787
| 50 | 543918 | 753219 | 3.97050 | 19.78445 23 63566 | 52.91514 100.66500 < 7.32519 | 13.20652 |-21.25248 | 3858230

poygap uorpaiaq 94 OiS oz €9
2101 ADMBUDIINY D fo SSa41g FULYING Y] £0 UOOINIID)) oY) UO

69



.70 ; Masao NARUOKA

4=(A%— B2) sinh ab sin b+ 2(1--cosh ab cos Bb)AB

cﬁ(zcg(z 2..(2) 4=(A*+ B*)(A cosh ab sin 8b— B sinh «b cos #b)
__sCz) - B
C"(Z) $2 (Z) — A=A+ B?)( B sinh «b-- A sin 8b)
c'(zt)(zz‘z-(z;j 4=2A°B*sinh b sinh g6~ AB(A®*— B*X(1--cosh ) cos )
+vd
_c:%z—g—;‘f =AB(A*+ B*)(cosh b~ cos 8b)
c,(z’)’(i’,(z) 4=AB(A*+ B*)(B cosh b sin b+ A sinh «b cos 5b)
- (2)

H2)—si2y 4™ AB(A”+BXBsmﬁb+Asmab)
EVSVAY P TT=
TA A=y 1% p=Tp B=y-1ry)- 0

As can be understood from the above 6 equations, those other than

L a9

z'
r_ge are

the functions of z and --Z——. The numerical values of these functions for various

values of 2z and Z are given in Table, where Poisson’s ratio » is taken as 0.3,

3. The fundamental formula by the slope deflection method of
the uniformly tensioned rectangular plate simply supported
along two opposite sides perpendicular to the direction of

tension. a 5
In this case (Fig. 2), formulae similar to eq. (13)~ § §\)
(18) are obtained, and a form convenient for doing the [, :
calculation is as follows. 8 Z FJ
' Fig. 2
4= B?sinh® ub— A®sin® b
(zc)@z 5 4=2AB (B sinh ab cosh ab— A sin 8b cos 8b)
— 5404 B (A coshabsin B B sinh a cos 85
A(2)—s%(z2) : i
"c:(;)(fz_%g(;jd =A*sin® Bb+ B*sinh® ab+ A% B? (cosh? ub— cos® Bb)+vd
. 20
Fi€D) (203

) =52 4=2AB (A*+ B*) sinh absin #b
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h(2)

2 2)-s%2)

I(2)

4=2AB (A*+ B*)( B sinh ab cosh ab+ A sin 8b cos 8b) ‘

g 4=2AB (A*+ B*)(A cosh absin 8b+ B sinh b cos 3b)

c(2)—s%(2)

a=-T-A, A*=05(sec p+1), f=-7-B, B*=0.5(sec p—1),

L

tan”qp=z'z;~

L,

71

The numerical values of these terms are given in the precedent tables.

4. Representation of the boundary conditions by the slope

deflection method. "

The boundary conditions in the rectangular plate are classified into the follo-

wing two.

a. Conditions for end side, b. anditions for continuity.
The latter are such as those which exist at the position of stiffeners of a

rectangular plate with longitudinal stiffeners. In this chapter, assuming the thick-

ness of the plate, so that the flexural rigidity is constant, the following notations

are used.
a=¢eb, a=¢tphm, q_—_,Ef‘Z;Nv:E!”I;’E;ﬂ,, Bun=FkgyBe, Fm=Fch,
" .
B _Rutw’e . wBe  _ 1Fm _Entmpe  _ nFe
" Nb.~ e T Nb'HmT b e 2T
c _nCo_ r = TCn. a=-fq~=;‘”2N=M _— ( ¢ )2 f 2D
* Na'® "*'" Na' t bt b2t * U™ \ey,
cn(Zm)=Cmy  Sw(Zm)=5my, Em(Zm)=fm, jm(zfn):jm!
holzm)=lm,  In(zm)=Im, ' m(zm)="m Fm(zm)=F'm
h’m(?m)=h,m, l,m(zm)'——'l,m, p
én Fna Fal
where B, F, C represent the flexural rigidity, L b o F
cross sectional area and torsional rigidity respec- BosFra a7
tively, Values with suffix ¢ are considered to [ Ba— <
be the standard among those. { is the thickness | 3 2 B4
of the plate. ™~ a8 s . Hl
. . B Fo 2 o
a) Condition for end side. Several parti- Qm 8L = Bl .

cular cases will now be considered,

Fig, 3
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1. The sides y=0 and y=>b are simply supported. In ordinary cases, these
conditions are represented as ‘

..w 2w . =0 = -
6}"‘ *+V‘”a“§2*"—0, w 0’ for y 0

0w 0w _ 0 e
Byt +u—0x2 =0, w=0, for y=b

(22)

The representation for these is greatly simplified as follows, by using the
slope deflection method. '

N 7 T .Y
Mﬂ,l"—W —;;{coﬁﬁ—soﬁ,—71--106]}—0
(23)
Mpyn-1= e IV;“’;:" {Sn i1t Cn-1ln+ - fnl10p- 1} 0
In this case, for y=0, )
N TEB__ €y~ — Sy” T .y .
MI)O" Cl)“—so?' ag'{ o ‘91 o 61}
24)
N (., B ,
Vie=-- cEosE & {Z ofh—~>hy 31}, ,
and for y=p,
- N w5 T y
Mu-1,0= G151 @ { Cnr 001 a 7/ 105
‘ N , (25)
' - e ® g T
Va-1,n= P 7,_1—-8"” , & {l n-10n-1 a b y10n-1 ]
are favoﬁrably used.
2. The sides y=0 and y=>56 are built-in. In this case,
0.=0, 84=0, for =0
A 4 y } (26)
0z=0, 05=0, for y=>b

3. The sides y=0 and y=>b are free. In this case, the following represen-
tation is usually used.

0w 0w Pw

_aj,:‘Jf oz =0 By -+(2- V)a ﬁx =0, for y=0 and y=b

But, in our case these conditions are zs follows.

© Myi= Vi1=0, for y=0 } 26)
Mnm—l'——‘Vnm—l"_—O, for y=b )
4. The sides y=0 and y=5 are elastically built-in®. In the previous

discussions, two extreme assumptions for the constraint along the sides have been
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considered, namely, a simply supported edge and a built-in edge. In practical
cases, we will usually have some intermediate condition of constraint. Take,
for instance, the case of compression member of a T cross section. While the
upper edge of the vertical web cannot be assumed to. rotate freely during buck-
ling, neither can it be considered as rigidly built in since during buckling of the
web some rotation of the horizontal flange will take place. We consider in this
case the upper edge of the plate as elastically built-in, since the bending moments
that appear during buckling along this edge are proportional at each point to the
angle of rotation of the edge. ’

The conditions of elastically built-in edge are represented by the following
equations.

N (G r ) =—Co 5z (azgy )y for =0
WL E ) o &) oo

These equations can be expressed as follows by the slope deflection method.

c So n iy 7o :
—5———a— T |00+ 55— 0 +‘—( =00 =)
(602—802 0) s 1 @ \ef—se* 0 ot 8o %
Spn-1 g ( Cn-1 '
e |, — Ty 1) 0, 27
Epor—8o1 ! Cuo1—8% i ) . ( )
LA jn—l in-1 |
RES S Y
@ \Cao1—Pu1 MV Cpai—S% "

Furthermore, when we can neglect the small deflection due to the large
iexural rigidity, do and .d, in eq. (27) can be made into zero.

5. Both sides y=0 and y=0 are supported by elastic beams™. Along
‘he sides y=0 and y=5, the plate is free to rotate during buckling,‘but deflections
f the plate at these edges are resisted by two elastic supporting beams. The
:Qnditi_on of freedom of rotation requires that

. 0*w o*w _ -
a—y2—+u oy =0, for y=0 and y=b,

To get a second expression for this boundary, the deflection of supporting
yeams must be considered. Now, if we assume that these beams are simply
supported ‘at the ends and have the flexural rigidity of By and B, and are com-
rressed together with the plate so that the compressive forces on each side are
)qqual to Fo, the differential equations for the deflection of the beams. are as
‘ollows.
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4 2 4 2
Boggi=t-Fougli  Bugt-=tn—Furgy-,

where # is the intensity of the load transmitted from the plate to the beams.
From the expression for shearing forces, this intensity p is

ay- -~ ”)ayax} n=N{T% oys @y >ayax }

From these equations, the following equations are obtained by the slope de-
- flection method.

n=-N{T%

€ & g T io jo '
S Bo— 81)=0
PRl -5 " a (-002-‘502 O ot —s¢? 1)
A N L R (e Pk (0t 2 01} =0
Co "So” Co 802 a . Co*— So° Lt 0 "‘So?' !

_Se=a Cn g T v_iz»—,x B ol )=
C"n 1"’3"7;— 0” ]+ S" 0n a \ ) ‘,n— 37}—1 2 ] 611' —0 (28)

]n -1 ) - ln 1 T { luy
e e B /7 Lt S e CE L -
C 1 — S"”_ n-1 S" 0n a 3 675 1

4

where it is assumed that m=1, Z.e., there is only one half-wave formed by the
buckled plate.

b) Conditions for continuity®. In the case of a large number of equal and
equidistant stiffeners parallel to one of the sides of a coh:pressed rectangular
plate, we usually consider the stiffened plate as a plate having two different flexu-
ral rigidities in two perpehdicular directicns, but in our treatmeént, we consider
the plate as a plate having equal rigidity except for the lines reinforced by the
stiffeners where, since the rib is rigidly connected with the plate, a portion of the
plate must be taken in calculating the flexural rigidity of stiffeners.

As the conditions for continuity, several cases may be considered, but we will
consider only the case where the plate is elastically supported by stiffeners, i.e.,
deflective beams. In this case we have the following four conditions. -

1. The two parts of the plate separated by a stiffener have the same deflec-
tion curve at the position of the stiffener.

2. The same can be said about the slope of the plate.

3. The bending moments of both parts of the plate and the torsional moment
of the stiffener must be equivalent.

4. The shearing forces of both parts of the plate and the compressive force
acting on the stiffener must be equal to the load intensity applied to the stiffener.
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Of the above four conditions, the former two which are necessary in the case
of the method of integration are not required in our slope deflection method, so
that the latter two must be written as follows.

Sm-1 / Cm-1 Cm ) Sm
- R CI hd + - T—_m o 7v" T }’AA *“;‘~4> ";_
C'm-1—S"m-1 Om-1 ( C'm-1 s"m-l * C'm " S"m O+ C'm— 8 Omsa
4 Jm-1 tm-1 tm
eSS A RS T
g LPpa—$%ua 1 Fm 1—33,,,_1 C'm—Sm Om
cgm sz 6m+1 0
. N . (29
 Jm- =1 ( zm_—J e tm _ Jm
Cm-1—5%m 0m vt 21— S¥m—1 Cm—Sm )0’. Cm—5%m O
lm 1
N S
a1 mor -
Am-1 Am T'm I
(\ 2 1’-5" Cm—Sm <mﬂm*m+ ) % — o 5m+1}——0 ‘

‘In a plate girder, for example, L, 1 and Z sections are often used as stiffe-
ners, but their torsional rigidity is so small and therefore “t” is so negligible
small that we can neglect them in our calculation®>. If there is no supporting

m

beam, we can put that the term z,,./.z,.e,,.—{— is equal to zero. If there is a
m

rigidly supporting beam, the 4th. condition is not needed and in the 3rd. condi-
tion we can put ¢,=0. '

5. Buckling of a uniformly compressed rectangular plate simply
supported along two opposite perpendicular to the direction
of compression and having various edge conditions along
the other two sides.

In the solution of this problem, both methods, the method of energy and the
method of integrétiori of the differential equation for the delected plate, can be
used. When we use the method of integration, the following soluticn of the
fundamental differential equation is obtained._

w=(C, cosh uy+C:sinh ay+ C3 cos By + Cz sin 8y) sin mg&

SHE N NNE A ST
where “F_(a)'i—‘/N(\a)’ g (a)+ N a)
Putting the boundary conditions into the above solution, we get the same

number of equations as that of integration constants. Equating the determinant
of these equations thus obtained to zero, the equation to determine the critical
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value of the compression is obtained. Whenever a different boundary condition
is given, we are obliged to repeat the calculation from the beginning, and there
seems to be no relation between the buckling equations thus obtained, but by the
author’s slope deflection method, the buckling equation hitherto studied can be
- represented very simply.

In the following several lines, many cases which give the clearer contrast
with the method treaied in S. Timoshenko’s “The Theory of Elastic Stability ”
will be explained. ’

1. Both sides y=0 and y=b are built-in'>, In this case the boundary con-

ditions are
04-=HB=0 and 04=05=0
From eq. (‘10),
Mup-c(2)—Mps-5(2)=0, —Mup-5(2)+Mp4-c(2)=0

Therefore, we can derive the following equation to determine the critical
value of the compressive force.

c(z)— 32(2)=Q

This equation coincides with the one reduced by S. Timoshenko as follows.

(cos Bb—cosh ub)?*= --(sin Bb-- 8 sinh ub)(sin b+ 7?9" sinh ub),

-
when m in « and 8 is taken equal to 1.

2. Side y=0 is simply supported and side y=»b is free'. In this case
‘the boundary condition are

Mipg=084=0, for y=0; Mpa=Vp4=0, for y=b.

From eq..(16), we have

S, T a0, i [ ()00

Equating the determinant of these equations to zero, we get
X(z)—5%(z)
«(2)
This equation seems very complicated at first sight, but using eq. (15) and
(18), we obtain

B (2)—i"%(2)=0

u(z) = 0

In this case, according to S. Timoshenko, the following equation is given
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/ 202 ¢ 222 )
B '\a" -y %’}—)tanh ab=a( B +v mé{,f 'f-}tanh Bb

By substituting m=1 into this equation, it becomes «(z)=0.
8. Side y=0 is built-in and side y=5 is free'®, In this case the edge con-
ditions are

04=04=0, for y=0; M=V p4=0, for y=b.
- From eq. (13) and (14), we have
c(2) 05— —Z—~ i(2)65=0, 1(z) 05— —34- h(2)0,=0

Equating the determinant of these equations to zero, we get
c(2)h(2)--1%(2)=0

This coincides with

215+ (£2+5%) ccs Bb cosh ab= a._,l g (22— %) sin 8b sinh ub,
1=y ey m;ln ,

when m is equal to 1.

From these results we can see that by the methed of integration of the diffe-
rential’equation, the necessary buckling equation is generally complicated and to
get the numerical value, we must calculate in each case. On the contrary, by
the slope defection method, the buckling equation is represented in a -very simp-
lified form and the numerical calculation is very easy, because the coefficients
necessary for the calculation are given in a table. The benefit of the ‘slope de-
flection method will be displayed in the calculation of a rectangular plate with
stiffeners which will be explained in the next chapter. ,

6. The buckling of a uniformly compressed rectangular plate
with longitudinal stiffeners.

The stability of a rectangular plate reinforced by stiffeners has been solved
by S. Timoshenko!®, E, Chwalla*’, R. Barbré®> and other scholars.

S. Timoshenko solved by the method of energy the uniformly compressed
rectangular plate with 1~3 longitudinal or transverse stiffening ribs when the
plate is simply supported at four edges and also E. Chwalla used the same
method to solve such problems. R. Barbré solved such problemrs by the method
of integration, and the advantage of his method is that the problems with any
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edge conditicn such as simply supported, free, built in and .etc. can be solved
similarly. On the contrary, the case which can be solved by the method of
energy is almost limited to the case of four simply supported edges, but the solu-
tion of other cases is also possible by the method of energy as can be understood
from K. N&lke’s solution. His solution, however, becomes very complicated, but
resorting to our slope defection methcd we can remove the disadvantage as will
be known later.

In the plate which we are now discussing, we shall number the stiffeners as
1, 2, -, m, -+, n-1 and both edges as 0, #». In this chapter, we shall use éq.
(22)~(28) as the condition for end sides and eq. (29) as the condition for con-
tinuity derived in chapter 4. Equating the determinant of these equations to
zero, the buckling equation can be induced, but this determinant consists of many
lines and columns. Therefore, a great labours is required in doing the calcula-
tion, so we shall resort to the means mentioned below. V

If both sides are simply supported or fixed, the unknown terrrs are Onm=1,
2, s m, -+, #—1) and On{m=1, 2, ---, m, n—1). If 7. is suitably assumed,
can be represented by terms of d., only from the equilibrium equations of the
bending moment. This calculaticn is easily done ¢nd the general soluticn is as

follows.
6 =101 ey A +1mOm e +1yn-10n-1
O: =us,101 Huappfa A cereeeen +dnymOm  Feeeeee +“‘3’”.‘16”‘1
: : : : : (30)
O =’lm,1_31 + Uypy2fs  Areereees +am"-”5m OO +bim,q—13n—1
On-1=tty—3,301+ 3,282 +<+eeeneee -1y mOmt e +tn-1,m-10n-1

where « represents numerical values,
Putting these equaticns into the other equilibrivm equations of the shearing
force, we obtain the next equations,

B0 B0z Aeeeeeees + Brymbus A eeeeeenes 4 Bino1bns =0

Beadr +Pels e + Boymdm Ao +Bon-idur =0 )

Bty BBy et B et fmaBas =0 @D
ﬁn—:l,131+ﬁ,,_;,232+ ......... +Bn—;|m3m+ ......... +B"_;m_13”_1=0

where 8 represents numerical values.

The determinant consisting of B which is expressed by 4(B) is easily cal-
culated. If the value of z. assumed first coincides with that of the buckling force,
4(B) must be equal to zero, but generally 4(8) is not equal 'cd zero for the
arbitrarily assumed value of z.. So when we calculate the value of 4(B) for seve-
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ral values of z, we can determine the root of 4(3)=0 by means of interpolation.

Example. k

Several examples dealt with by R. Barbré®> will be solved by our slope delec-
tion method. In R. Barbré’s treatise, the buckling equation generally represented
is that of the case of the edge conditions of elastically supported, and the buck-
ling equation of the case of both edges simply supported or built-in is derived as
a special case of the edge condition. On the contrary, by the slope deflection
method, the edge conditions can be represented very ecsily, so it is better to
obtain the buckling equation respectively for all ccses of the edge conditions.

As shown in Fig. 4, 5, 7, let the rectangular plate reinforced by étiffeners
which is simply supported at the two edges ¥x=0 and x=a be subjected to uni-
formly distributed compressive forces on these sides.

Case I (Fig. 4). Two edges y-=0 and y=b are
built-in and a stiffener is placed at by=b6,=b/2. In
this czse the boundary conditions are Oy=0:=0, 6y=
0:=0. This plate being stiffened in the middle,

£

JEEREEREE M

IIEERIITY!

§
o
o

Fig. 4
en=C Sm=S, im=1, jn=j ha=h, ln=l, zm=2, (m=0, 1)

are obtained, and the equilibrium equaticns are as follows.

‘*22'__652‘ 0:+0-6,=0
T . 2h T
0-0,+ -‘T{—“ (\"&e pCy —2/154“6'—)61} =0

Therefore, the following equation is obtained as the buckling equation.

2h .. T _
gog ek =0
. e " B
In this case, bo=b=>b/2 and gy=¢,=3. Taking y=10nr, (3ﬁ=5>; /1=_0.2 T
F :
(-5 =01),

—_2r 10x _
f(@D=-a” g —06mz+ 3 =0

The root of the above equation is obtained by the trial method, By use of
the table (-£-=3), taking z=4.0, we get /(4.0)=0.067 and also z=4.5, /(4.5)=

-1.357. Thus by the interpolation z=4.02 is obtained, and then we get g=
16.1#°N /b°. ] :
The above calculation is for the case when the plate buckles in the form of



80 » Masao NARUORKA

one half-wave. To compare the result with the case of two half-waves (m=-2),
\

we must slove the case of 'Z -=0,75 and m=1. This case is solved by either of
the next means; ( '
1. ‘Using the table of the case of f%—=1.5 and m=1.
2. Assuming the two parallel lines y='~2~~ and y=~%ib—~—, and using the table
of the case of —g~ =3 and m=1. '

If the value of z, obtained by either of the two methods mentioned above is
larger than the value obtained before, the value of z, corresponding to the critical
~force is decided as equal to 16.1. For the simplicity, the calculation for the case
m=2 is omitted here.

The other buckling equation is %

This equation corresponds to the case when the plate buckles without the de-
flecticn of the stiffener. This case is for the case when j=co, that is, the plate

is supported by a rigid beam in the middle.

L

Case II (Fig. 5). Two edges y=0 and y=b = =
are simply supported and a stiffener is placed H /E\»
at 5y=>56/3 and b;=26/3. In this case the boundary OE
conditions are My =0,=0 and Ms=0:=0. As ¢= 0 Q=2¢
2, =6 and €;=3, we get zy=2./9, z1-=42./9 and 1= Fig. 5
37e/2, m=3pe/2. The equilibrium equations are as follows.

1 .1 S R 3 TR A TR Y
( Cp + Gy ,)01 a ( 602—502 612—312 )ﬁl—o
i N _m ( Ke. Ky T ) -
(602—5‘02 c® -8 .) b, a (Cn'“"‘so‘“' * 62—t amart & 81=0

Therefore, the buckling equation is obtained zs follows.

BRI S VU F Y 4 U £V S A 14 TR ke W S
f(h)_(. o /)(002_39‘: aiss Thtat 61) (002__802 01'3—5‘12) 0

Taking 7e=5.0m, pe=0.17, the above equation becomes
ey=( L AN A Ay .
Flad=( 4o /(002_902 gy 04521+ 2.507)
(Ee i
(Cog —s? st ) =0
Assuming 2z;=3.0 and z=0,75, we get f(3.0)=12.498. Next assuming z;=3.5
and zp=0.875, f(3.5)=-34.750. Obtaining z,=3.16 by the interpolation, we get
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g=7.11*N /b®, because ze¢=9z;/4=T7.11. )

The section of the possible buckled form of the plate is shown in Fig. 6. In
this figure, I shows the buckled form ha- _
v.ing two nodal lines at By=by=b=b/3 and ‘ ;‘ g ‘
the value of 2 corresponding to this form is " YA
36, (q=—€!’b§g.;=36n‘3N /b?). I1a corresponds . . Fig. 6 tle B

to the above calculation and 1Ib to the case of 7e=o0, and the buckling equation

of the latter case is f(2)= ——i; +~~1—— =(),
: (5]

The above calculatjon lS the case of one half-wave. As explained in case I,

we must consxder the case of more than two half-waves, but such calculation
be omitted as in case 1.

will

Case III (Fig. 7) Two edges y=0 and y=>b are simply supported 'and
two equal stiffeners are placed at by=b,=b:=b/3. v -

In this case, the boundary conditions are Mu=38y=0 = 2H
“and Mj=03=0, and the coefficients can be simplified as - ,Ew'
cm=C, Sm=5, im=%, jw=7j, hm=h, In=1, Zm=2, Em=E, Tw=T ] a'.‘.
and gm=p (M=0, 1,2). Therefore, the equxhbnum equa- ‘ F‘a‘-“i

ig.

tions are as follows,

/g £ \p_ T {__( 4 R T ) l }
s c"——sz)ﬂ1 Ll G5t g Y Ot m—al _0.
S S I— ) {2 ( L _
Foshtlazet ()0t por L Ve 02_52)5. 0

- 5

If we assume, at first, the symmetrical buckled form, we can put fy=--0:

and 01=0:. Therefore, the above equations can be simplified as follows.

s

(o) atdn (6ot st
{(’czisz_czisz)+c‘z.j_s-‘z}ﬂl“z—{(c,ft_s,—l—**h— g,u°+J~—)——~ }51_0
Thus the following buckling equation is obtained.

=L o) e M e L) )

-st U\ ogt P-s? B & —-s?
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. . . £y
z i Jj ¢
- = - + = o0 ==
{(cu_s- cd___sd) ct—8° 0

\ F \
5) and #=03, (—W=0.1},

In this case, ¢=3. Now taking 7=15m, (TBW

f(z)={(¢1:— c*—-s" -c }{ Foptz —-097rz+507r) }

The root of the above equation is obtained by the the trial method as follows,
f(15)=6.646, for z=15;  f(2.0)=-24.429, for 2=2.0.
Therefore, by the interpolation, we get z=1.61 and then ¢=14.57N /b°, because
ze=1.61x3>=145,
‘ " The possible buckled forms are shown in Fig. 8. The above calculation is for
the case of the symmetrical buckled form, corresponding to Fig. 8-IIb. Fig. 8-1la
shows the symmetrical buckled form ha-

ving the nodal lines at the position of =

stiffeﬁers.' In this case, we can consider /

this problem as that of a rectangular 3k . \_ J
plate of a/b=3 with four simply suppor- Fig. 8

ted edges. Therefore, the critical load is

gg/é\g; 367;‘,N . Fig. 8-1 shbws the unsymmetrical buckled forms, and 15

corresponds to case 1I, whose critical load is four times as that of case 1I, that
is, ze=4x7.1=28.4. The value of z. corresponding to Fig, 8-Ia is four times as
that of Fig. 8-1la. The cases when there are more than two half-waves will be
omitted as before,

R. Barbré’s solution ! based on the method of integration is as follows.

Obtaining the solution of the fundamental differential equation, we have four
equilibrium equations of deflection, slope, bending moment and shearing force at
the position of stiffener. Adding the boundary conditions to these, we have eight
equations for case I and case II, and twelve equations for case III (Fig. 9).
Equating the determinant of the coefficients of these equations to zero, we get the
buckling equation. However, as can be understood from Fig. 9, it is hardly easy
to develope the determinant which consists of eight lines and columns or of
twelve lines and columns, and to obtain the buckling equations. On the contrary,
by the slope deflection method, the determinant consists of two lines and columns
for cases 1 and 11, and also for case 111, using the symmetrical relation.
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Fig. 9

7. Buckling of a rectangular plate simply supported along two
opposite sides perpendicular to the direction of compression
and having various edge conditions along other two sides,
when subjected to combined bending and compression.

In the discussion of this problem, which is necessary to design of plate
girder, the method of energy is favourably used, because when distributed forces,
acting in the middle plane of the plate, are applied along both simply supported
sides x=0 and x=a, their intensity being given by qz=q¢(l—a%~), we can not solve
the differential equation, so we are obliged to solve it by meané of a different
method such as the method of energy. For example, S, Timoshenko 18 and E.
Chwalia® treated this problem about the case of four simply supported edges
by the method of energy. This method is favourably used in such a case, but
if the sides y=0 and y =5, are not simply supported edges, the method of energy
is so complicated that the calculation is very hard as can be understood from
K. Nolke’s treatise®®. 1In such a case the slope deflection method displays its
merits.  In solving this problem by the slope deflection method, we must adopt
the following procedure. )

Fig. 10 shows the rectangular plate of which the buckling forces shall be
obtained. Now, the plate is divided into #z strips, # being arbitrary but larger
the number of division is, the more difficult the calculation becomes. It is
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necessary that the point of non-stress comes at the dividing line.

If the value of # is suitably chosen, the next process is to find the average
force (tensile or compressive) of the varying force of each section. We shall
consider the given rectangular plate as a plate in which the average normal force
thus obtained is uniformly distributed in each section. Therefore, in the given

plate the acting normal force varies step by step.

He e 72
// r _____ Ul '___‘S”N
— S —o—
IR
o E T = T
NI T ] —
h e __.3 s
2 52 N
———— /_'L S 8§
g 2. %
Q
Fig. 10

In the calculation of a rectangular plate by the slope deflection method, the
given plate is substituted by 'a rectangular plate which is subjected to normal
force varying in a stepped form and the substituted plate is solved. As a matter
of fact, the result obtadined is not for the former subjected to a given normal
force, but for the latter subjected to stepped varying normal force. But choosing
n suitably, the result obtained is sufficiently correct in practical use and the larger
the value of # is choszn, the more accurate the result becomes.

The dividing lines of the adopted substituted plate will be numbered as 1, 2,
<oy m, -+, #—1, and the edges as 0 and »n.

Notations used here are the same as those in chapter 4, except for the follow-

ings.
' zet*N B> e \2
Gn = R qc, Qe = ﬁb—z; Zm = %’; m,ZC('E;n“ ) 32

The method of calculation is the same as that of chapter 6 and will be
explained by the following examples.

g g |9 14 r Example a.
\i 7 As shown in Fig. 11, let a/6=0.75
o © T and the two edges x=0 and x=a be
/é simply supported. When these two
x x  edges are subjected to combined ben-
6 a ¢ = ding and compression, we will obtain
Fig. 11

the buckling force of the rectangular
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plate by changing the boundary conditions of the edges y=0 and y—b variously.

Case I (Fig. 12). Pure bending is applied and two
sides y=0 and y=b are simply snpported‘. :

In this case, the plate is divided into four equal plates
by the lines parallel to the two sides y=0 and y=5b. There n -t
fore ey==e;==¢;=6€3=3 and as can be understood from Fig, 12, \ 2
by =k{=3/4 and ky'=ky/=1/4. Fig. 12

If we assume that z.=19.2, that is, zp=:3=0.9 and 2;=22=0.3, the equlhbnum
equations of the bending moment and shearing force -are as follows,

0, 8, 0y & 8y 33
7.55538 1.81690 200300 | -554933 = 0
1.81690 820238 1.85750 5.54933 s 0.29935 | -572437 | =
1.85750 7.19379 5.72437 -3.09507 | =
- é.OO300 —5.54933 - 2347600 12.24180 =
5.54933 0.29935 . | —572437 12.24180 | —-26.23595 | 12.96866 | ==
5.72437 3.09507 12.96866 | —13.34857 | ==

By the method explained in chapter

6, the equations consisting of é only & ‘2 %

become as follows. -19.42014 | 10.46389 | — 3.42548 0
In the above equations, the terms 10.46389 | —17.58627 10.80453 0

are symmetrical about a diagonal line. 342548 10.80453 863717 0

This is a essential fact to check the

error of the calculation. The value of the determinant of abqvé\eveation is

—19.42013 10.46389 —3.42548 : E
4(19.2) =+ 19.46389 —17.58627 10.80453 | = -316.856
| — 3.42548 10.80453 —8.68717

Next, if 2¢=25.6 is assumed, the result obtainéd by the same method is
4(25.6)=132.462. Therefore, we can decide the value of z. to be equal to 23.7 by
interpolation. Then the critical value is ¢=23.77°N /b,
of S. Timoshenko, who solved this problem by means of the method of energy,
ze is equal to 24.1°D,
deflection method.

According to the solution

which is 1.3% larger than the value obtained by our slope
In this solution, it is considered that m is equal to 1 and

that the plate buckles in the form of one half-wave, If it is necessary to know
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the critcal value when the plate buckles into two half-waves, we must solve the
case of ¢/b=0.375 and m=1, This case is solved by either of the next means.

1, Dividing the plate into eight plates whose ratio of side length is 3.

2. Dividing the plate into four plates whose ratio of side length is 1.5.

If the value of ze obtained by either of the two methods mentioned above is
larger than the value obtained before, the value of ze corresponding to the critical
value is taken as equal to 23.7. The calculation of the case m=2 is omitted.

Case II (Fig. 12). Pure bending is dpplied, and the side y=0 is fixed
and y=>b simply supported. The method of calculation is quite same as that
of case I. If we assume zc=19.2 and 25.6 respectively, 4(19.2)-=-461.66 and
4(25.6)=162.47 are obtained. Therefore, we can decide the value of 7. as equal
to 23.9 by interpolation. According to the solution of K. Nélke based on the
method of energy, z. is equal to 24,91® which is 3.9 % larger than the value
obtained by the author’s slope deflection method.

Comparing with case 1, the error of case 11 is larger than that of case L.
This is due to the fact that in the case of the clamped edge the number of di:
vision must be chosen larger than the case of the simply supported edge. In this
case, #=4 is a little smaller than a suitable number to be adopted in such a case
of clamped edge.

Case III. Bending and compression are applied, and stress diagram is
triangular as shown in Fig. 13. Two sides y =0 and y=b are simply supported.
Dividing the plate into four plates, the following results are obtained.

(6.4)=-173.037, 4{12.8)=316.26.
Thereforé, we get z.=8.6 whichis 2.6% larger than value

obtained by S. Timoshenko??,
Case IV (Fig. 13). The stress diagram is the same

as that of case IIl, and two sides y=0 and y=b are
clamped. The result is as follows.
4(12.8)=—88.943, 4(19.2)=931.158.
Therefore, z¢=13.4, which is 4.0% smaller than K, Nélke's value z.=13.9139,
The reason is quite same aé that of case 1I.
Case V (Fig. 14). Pure bending is applied and the plate is reinforced
z\gj =5, —£—=0.12> in the middle point of the compressive
side, that is, at y=——i’-» b. Two sides y=0 and y=50 are simply subported.

o
Fig. 13

by a stiffener (

The method of calculation is quite the same as the above examples, except that we

4 b2l

must consider the

—zps+ % in the equlibrium equation of the shearing force
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at the dividing line 3. 4(57.6)=—944.73 and 4(64.0)=254.22, therefore we get
ze=62.6 by interpolation.

E. Chwalla solved such a problem by the method of energy, %
and the value of z, in the case of a/6=0.8 seems to be -
equal to 65 from his diagram®’. According to S. Timo- é
shenko’s solution®? in the case of non-stiffener, when a/b=
0.75, we get 2,=24.1 and when a/6=0,8, zc=24.4. Therefore, Fig. 14
if the plate is reinforced by the same stiffener at the same position, we can.obtain,

without making a large mistake, the value of zc of case V as 65.0x24.1/24.4=
64.2. Thus the value 62.6 obtai- Y

ned by the author’s slope deflec-

. y 9}.4

tion method is almost correct.

Example b. ® I ®

As shown in Fig. 15, let a/b R A
=1.0 and three edges ¥=0, x=qa [ a 15 = @ x
and y=0 be simply supported, Fig. 15

and the edge y=b5"supported by elastic beam. When the edges x=0 and x=a are
subjected to combined bending and compression and the stress’ diagram is trian-
gular as shown in Fig. 15, we shall obtain the buckling force®”, In this case,
the plate is divided into two equal plates by a line parallel to the two sides y=0
and y=>b. Being by=5b=5b/2, the equilibrium equations are as follows. '

( :tl: — )0’+ =0 +_{ ( c—s ¢:'3f-s2 )6’_ c'-’zs2 6"’}=0
—z._ri—?-ﬂri-——'—*ﬂo-i-—#(—z; Lo —t ) =0
(jziisz - c‘-"is'-’- )01'“ cz_{si‘g‘-!"' Z {_( cz}i,se + h )31"’ ! —s? 32 =0 .

&

it gl b -t o (Gl e a0

Equating the determinant of the coefficients. of these.equations to zéfo, the
buckling equation will be obtained. When the flexural rigidity is -given by
“11\37:1_ =4,0, that is, 7e=4.0r, the numerical examples will be.calculated, assuming
/lc=0. 4 . S - i . .
Case I (Fig. 16a). In this case, z =3—(-1——)zzc=3—zc-z ‘—'=1_'<'c and 7=

) P2 16 °» 1716
8.0z. Assuming ze=4.0, that is, 20=0.75 and z:=0.25, the determinant 4(4.0)
which consists of four lines and columns is 36.167. Next, for z.=8.0, 4(8.0)=

~6.745 is obtained. Therefore, we can decide that the value of z. is equal to 7.4
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by interpolation.

Case II (Fig. 16b). _In this case, zp= 116 .?c, = 71%"2': and 7=8.0x, and the
result is as follows, . - .
4(4.0)=445.767,
4(8.0)=--192.954, , ,
2c=6.7 Y o« i ot I W
Therefore, the critical force 0
is g=7.4n*N/a® for case 1 and (0 _ 6
Fig. 16

q=6.7n%N /a® for case Il. These
values are quite same as that calculated by S. Ban*.

8. Conculsion.

In the calculation of the critical force of a rectangular plate simply supported
along two opposite sides perpendicular to the direction of force and having various
boundary conditions, the relation between the author’s slope deflection method
and the other two methods can be understood from Fig. 17. That is, by the slope
deflection method, for a rectangular plate with the given ratio a/b, the critical
force can always be easily obtained for any kind of boundary condition. On the con-
trary, by the method of energy and the method of integration, for a rectangular
plate with the given boundary conditions, the critical force can be calculated for
any kind of ratio 4/b after inducing the buckling equation. But, the induction
of the buckling equation and the numerical calculation for any given .ratio a/b are
hardly easy as can be understood from many treatises in the past.

Simpl o - | Erasticaliy|supported
a/d supported Free Buitt in | B R Y| IRk € Dedn
-
ois —|— —— —|— —i— — | *‘i
jof —]— —|— —|— —|— —|— ’:E
— —— —_— — | — RN [S—— e { imem— b )
1‘5 —— — — | —— — ] — — | — — || c— -o§
T e gy ey ey ey ey [ — gppe— p— MR
2.0 s ——y—— e hes - _— >
S == ————1—1.)
1]

Method of Integration or Methed of energy
Fig. 17

From the above several examples, we can ascertain the following points.
1) By the auther’s slope deflection methed, the boundary conditions can be
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so easily expressed for any kind of conditions that the solution is applicable
to any kind of edge conditions. But on the contrary, the application of the
method of energy is limited to a great extent by the boundary conditions.

2) By the slope deflection method, the number of equations necessary to
determine the critical value is decreased to half as compared with the method
of integraticn, Therefore, the number of lines and columns of the determinant
is decreased, making the calculation far easier.

3) The values of functions necessaray to the calculation are given in the
table beforehand. This results that the root ofk the buckling equation can be
easily found by the trial method, using the table. A

The auther is greatly indebted to Dr. T. Ishihara and Dr. 1. Konishj, Professors
of Kyoto University, for many precious instructions which they offered in this
investigations and wishes to express his gratitude to them.

References.

1) G. H. Bryan, Proc. London Math. Soc., 22 (1891), p. 54. .

2) R. v. Mises und J. Ratzersdorfer, Z. A. M. M., 6 (1926}, s. 181.

3) S. Ban, Journal of the Institute of Japanese Architécts, 45 (1931), p. 1629. .

4) D. Hiura, Journal of the Civil Engineering Society (Japan), 26 (1940), p. 931,

5) S. Tomoshenko, Theory of Elastic Stability, 1936, p. 337.

6) Ibid., p. 342.

7) 1Ibid., p. 345. .

8) R. Barbré, Ing.-Archiv, 8 (1937), s. 117.

9) G. Erlemann, Jb. Schiffbautech. Ges., 34 (1933), s. 514.

10) S. Timoshenko, Theory of Elastic Stability, 1936 . 344.

11) 1bid., p. 338.

12) Ibid., p. 341.

13) Ibid., p. 371.

14) E. Chwalla, Stahlbau 9 (1936), s. 161.

15) R. Barbré, Ing.-Archiv, 8 (1937, s. 117,

16) See foot-note of 15).

17) See foot-note of 15).

18) 8. Timoshenko, Theory of Elastic Stability, 1936, p. 350.

19) E. Chwalla, Stahlbau, 9 (1936), s. 161.

20) K. Nulke, Ing.-Archiv, 8 (1937, s. 403.

21) See foot-note of 18).

22) See foot-note of 20).

23, See foot-note of 18).

24) See foot-note of 20).

25) See foot-note of 19).

26) See foot-note of 18).

27) S. Ban, Knickung der rechteckigen Platten bei vemndhcher Randbelastung, Inter-
nationale Vereinigung fiir Briickenbau und Hochbau, Ziirich, 1935.



