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Synopsis

A statistical study was made on dura’ciop curves mainly of hydrological data,
such as rainfalls and river discharges, which are the basis of waterworks plan-
ning. New propcsals were made cove'ring?.varic,us feelds suth_as application ard
reliability as well as fundamental thecry ard methcd of estivmation, and many
theoretical and practical results were obtained. ’

1. Analysis of LogarithmieNormal Distribution

In Germany, France and America, Grassberger, Gibrat ard Slade devised and
developed many theories as the statxstxcal asymmetnc d1str1but10n to which
duration curve belongs, almost at the same time about 20 years ago, but with no
mutual connection. Upon examining these theorles, it was found that they cculd
all be reduced to the Logarithmic Normal Distribution, namely distribution
obtained by regarding the logarithmically trarsfcrmed variable of the origiral
variable as the probability vériable of Gausg: nermal distribution”. As the
various distributions were represented by cornplic'ated forms in various countries,
analogy between them could not be reccgnized ar\d it was difficult to ccmpare
them. These distributions, however, were syste:matlzed as follows cccordmg to
orxgmal contrivance. »

These Logarithmic Normal Distributions can be divided into two types,
namely, partly bounded type and totélly bounded type. ‘The former is divided
again into a distribution in which originﬁ zero of variable is the lower limit,
(represented by suffix E), and a distribution with Tower limit ( —by), (represented
by suffix I), while ‘the latter is a distribution m which the upper limit is g and
the lower limit (—b), (represented by suffix S). In each case function W which
represents the duration curve can be shown by the following expression as an
" integral function of function V which represents the frequency curve,
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In these equations, ¢, and @, are symbols indicating Gauss’ error function
and error integral, respectively, which are given as follows.*
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In each of the above cases, limits and median, %o were expressed as constants
in the frequency function V' and, therefore, in the duration function W. Further-
more, the following theoretical equations were successfully deduced for the mcde,
hst (%), deflection point, wnd ( z) and mean, m(y), of the frequency curve and
for the moments of the ¢ th. degree‘about the mean, g2

*These values are easily obtained from adequates tables. For example, from Table V,
pp. 456, 457 of ““Probability and its Engineering Uses’’, Thornton C. Fry, D. Van Nostrand,
1928, giving the relation between y and ¢ (3D, we can get the relation between 0 and g (0)
by substituting y=,/2 0 and ¢ (00=2,/ 2 ¢ (3). Also from Table IV, pp. 454-455, giving
the relation between y and ¢ (»), we can get the relation between 0 and ¥ (9) or W(6)
by putting y==,/2 0, 4 (0D=1-® (3D or W(BD=>b (3)/2,



For partly bounded type, V; and W;;
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If the lower limit (-—b,) in equations frcm (6) to (10) above is put zero,
they will naturally become equations for Vy and Wy.
For totally bounded type, Vs and Wy; To make it simple, if §” in equation
(3) is represented by &, then we get equation (11) which is a general equation
. for arbitrary variable yx. If suffixes h, 0, m, 1 and 2 are attached when the

values of x are hst (%), %o, m (%), wndy(z) and wndz (%), then we get equations
from (12) to (17).

Y=z-A=(X-1)/(X+1), where 2z=2x/(g+b), A=(g-b)/(g+b),
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If we put,
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Fig. 1. Frequency Curve and Duration Curvel of Fartly Boimded Type
(Vg (0 and W (x) by equations (1), (1) when xg==-1.5 and ,/ 2 k==3.0)



Upon investigating the above relations, it was found that the order in which
the mode, median and mean were located was always the same in all of the
above cases and, furthermore, that these three characteristic values were always
located on either the left or right»side of the middle point between the upper and
lower limits. Fqur characteristic coefﬁéients, namely, of position, of variation,
of skewness and kurtosis were obtained, and upon determining the criterion, it
was verified that partly bounded type belonged to Pearson’s Type VI and totally
bounded type belonged to Pearson’s Type I ar 1L
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Fig. 2. Frequency Curves and Duration Curves of Partly-
and Totally-Bounded Types
(Vi (®) and W;(x) by equations (2), (2’) when xp==0.5, ,/2¢y’==3.0 and
by==1.0, Vs (%) and Wy*(x) by equations (3), (3’) when xy=0.5, ./ 3¢;==3.0,
b=1.0, g==5.0 and ,/ 2 A==1.43136 and also V3# (x) and WP (x) by equations
@), @) when %,==05, /2 €=10, b=10, g=50 and ,/ 7 A==047712)



‘In Fig. 1, V3 and Wy curves are shown when Xy=15 and /2 k=3.0, the
procedure of ‘calculation being shown by the broken lines in the figure. In Fig. 2,
Vi and W; curves are shown when 2,=05, " 2¢/=3.0 and B,=1.0. These
curves are the same as the two curves in Fig. 1, only the origin being shifted to
(—=1.0). Vs®and Ws® curves represent the case when %,=0.5, /2 ¢,=3.0, =10,
£=5.0 and /3 4=1.43136, while Vg* and W® curves, when Z,=0.5, 1/ 2¢=1,
5=1.0, 2=5.0 and "2 A=0.47712.

It is an interesting new fact that even in the case of totally bounded type,
if particular values are given to the various constants, then even though it may
be similar to Vs* in that it produces a frequency curve with one peak, contra-
verse skewness appears on the oposite side (not illustrated), and also that it
sometimes produces a frequency curve with two peaks as in the case of Vs* (as
illustrated).

Each characteristic value in each figure is the value calculated by each of
the equations above.

2. Methods Estimating Duration Curves

Besides the two semi-empirical methods of Fuller (V) and Hazen (¥ used in
America to estimate flood discharges, the method by Goodrich’s Skew Frequency
Paper (3-5> and Foster’s method ¢ ¢"> based upon Pearson’s Type Distribution,
many methods based upon this distribution type have been proposed in many
countries. First, Gibrat’s semi~graphical trial method (®-(1) pased upon equation
(2) and (2') was examined, then Grassberger’s methods (12-Q%)*  in which
asymptotic Bruns’ 0-Series was adopted with no modification, were concisely
corrected by applying Charlier’s Type A Development to Vp of equation (1) and,
furthermore, it was possible to propose the following new method by using the
above-mentioned analytical results.

If the values of samples for variable x; are represented by x,;, then the equa-
tions proposed for the totally bounded type and the order of calculation are as
follows.

As median %o, the value of x, located in the middle of the serial numbers of
the values of samples arranged in order of their magnitudes, was taken, then the
values of g and b were assumed. Then X, in equation (3) was calculated using A
these values.

Yo=Xo, £ and b are assumed, Xo=(X,+b)/(g—%0) .cocoerrnn. (18)

* Furthermore, Grassherger proposed a new method, which was proposed in the
Reference No. 16. Some other References are No. 17-19.



On the other hand, if symbol I (%) is determined as thdkfollowing equation
and, first, its mean value [, and next, the standard deviation ¢ () are calculated
by all of the N sampled values, we get ¢, and K simultaneously, and also 2 is
calculated by X, obtained above.

N
1(x)=log {(x+D)/g-5}  lo= Y ECKOIN,

=1

,,(,)ﬂ/ E{(z @) ~B}N,  a=1/(/F o)),

=1 .

K=2.30259/Co, A =Co log Xo /

Thus it was tested whether the mean, m(x) obtained by calculating equation
(15) contrarily from bottom upward using the above determined values of 4, K,
g and b, is the same as the mean value m(x) of the values of samples. If it is
not, the trial calculation is repeated until this condition will be sufficed by
changing the initially assumed values of g and b.

N
m(yx) of equation (15)=m(x)=2x/N ............... (18)3
=1
If satisfactory constants are finally found, the duration function can be esti-
mated by the following equation with these constants. '

WeCO=—7-{1-00(D},  &=co 1CD)+4,
I(x)=log {(z+b)/(g—-z)}

In the totally bounded distribution, suffice it to determine four constants,
hence several different kinds of solution are produced in accordance with the
various combination of xo=x, and equation (12), (14), (15), (16) and (17).
Among these, however, thé above method seems to be the best one. This method
should be appreciated as a precise method which is superior to Slade’s
method (29, (213 ysing the analogeous equation of standard deviation and Kimball’s
method ¢*¥ by Ratio Test.

Also for partly bounded type, various methods of solution were studied using
various combinations of y,=x%, and equation (6), (8), (9) and (10) as was done
above, and it was found that the solution by using equation (9), and mu2, mis
in equation (10) was the same as that of Slade’s method of moments 23,

Now the following method based upon an absolutely different principle from
the above is proposed for partly bounded -type.



In P it is suficient to detertnine the three constants %, by and ¢,’. First,
an approximate value of 'y, is obtained from the following equation.

-Ny.

log xo=2x‘/N C rrereeeerevnans SUUTUT (19
-]

In this case it is more theoretical to put %o=2x, as in the case of equation
(18), but better results are obtained by the above equation. If x: and x: are two
sampled values which come in the same order when counted from the beginning
and end of the serial ﬁumbers, respectively, hence we get the following relation
from equation (2) and (2’).

&7 =cq’ log {Caa-+5)/Cto+b0D} = —co’ log {Ce+ 86D/ o+ b)) =~
By solving this, b, is obtained from the following equation.

bo=Cxuxe—~ 23 /{220~ Ca+ 2D},  where SN2, t=N—(s—1)

( suffixes s and f are both the orders in the serial
numbers when counted from the beginning )

Otherwise, b, may be determin(;d as the arithmetic mean value of the values
calculated by the above eqﬁation, by taking several pairs of x, and ¥: within the
parts of the duration curve in which a better fittness is wanted, for example,
according to Kimball’s principle, the upper and lower ten percent may be adopted.

Thus ¢, is determined as follows by the formula of ordinary standard
deviation.

e =1/ 1/ zi [xog {redinrid}] /-1 e (193
i=1 ‘ )

Otherwise ¢,’ may be obtained from,

co’ =28+’ [{log (xe +Bo)~log (xi+ 50D} , }
wherein & is given by Wi (& )=(2s—1)/2N
Lastly, duration curvesv can bbe deduced from the following equations.

W (o=1-{1-04e},  &=af log {(x+8)/Cto+5d} - (19

This principle can be effectively applied also to totally bounded type.
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In all of the above calcujations, ratios of x-and x to the mean of x, m(x),
were used instead of x and x respectively, and by utilizing adequate tables, the
calculations becomes very easy, . :

3. Several Examples of Appliéatio_n

First, the results of the application of the above methods to the records of
annual flood discharges of Tone River at Kurihashi, from 1917 to 1941, will be
explained as an example.
these 25 years and arranging them from the maximum to the minimum in the

After picking out the yearly maximum discharges of

order of their magnitudes, we get @, given in Table 1. The arithmetic mean
value of these @/s, m(Q), is 4 000.8 m3/sec and the ratio of @ to this m(@)
gives the values of @,/m(Q) in Table 1. We may proceed with the estimation
taking the original sampled value @, as x;, but in the following, @./m(®Q) is
taken as x; in orter to simplify the calculation. Hence, in this case, the variable
x should always be measured also in the unit of 1/m(@).

Table 1. The Record of Maximum Annual Flood Discharge of
Tone River at Kurihashi, 1917-1941
Serial A o | K e, | o Serial | harger | Mean,
! Q¢ Qi/m(Q)==x, ! o) Qi/m(Q)=x;
m?/sec m3/sec | -

1 10692 2.67246 14 3341 - 0.83508
2 9433 235777 .15 3203 0.80058
3 6866 1.71615 16 3076 0.76884
4 5569 1.39197 17 2081 0.74510
5 5569 139197 . 18 2530 0.63237
6 5309 1.32698 19 2057 0.51414
7 5289 132198 20 - 1993 0.49815
8 4792 1.19776 21 1923 0.48065
9 4358 1.08929 22 1665 0.41616
10 4333 1.08303 23 1177 0.29419
11 4210 1.05228 24 950 0.23995
12 4209 1.05203 25 917 0.22920

13 3568 089182 | Arithmetic Mean, m(Q)=4000.8 m3/sec

Totally bounded distribution;

Since N=25, the median in the sampled values of x; becomes x;;=0.89182
and according to equation (18), this value is immediately adopted as the value
of %o,  the median in this population. Next, the values of g and (—5) are
assumed with reference to the values of x; and x5, the maximum and minimum
values in Table 1 respectively, Upon putling 2=6.85 and (—5)=-0.05, we get
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X0=0.15807. Then calculating each value of the 25 ! (x,)s by equation (18)g,
we get [,=—0.81202 as the arithmetic mean value of them and also ¢ (I)=0.3000,
¢o=2.35702 and K=0.97691. Finally A=1.88832 is obtained from log X,=-0.80115,
the logarithmic value of X,, and the value of ¢, ~calculated above. In this case
it should be l,=logX, theoretically, and this relation is tolerably satisfied by
these values of /, and logX,. Next, we check whether the value of m(%), ob-
tained by putting the above calculated values of K and 4 into equation (15), wili
become 1 or not, since the value of m(x) in equrtion (18); is naturally equal to
1. In this procedure, values of A-r and Br in equation (15) can be calculated
with the help of proper general mathematical tablw; but we should calculate the
asymytotic values of them separately because the rates of convergence of these
alternative serieses are not the same. In this example, we get m (x)=1.038~1.021
after obtaining ¢¢(4)=0.03202 and calculating the value of Ar up to its 18th
term and Br up to its 10th term.

This value of m(y) is very close to 1. But in many cases it is necessary to
repeat such trial calculation procedure, changing the assumed initial values of g
and (—b) in equation (18);, in order to make the value of m (x) approach 1 to
this extent. But if we get accustomed to this procedure, the calculation would be
accomplished merely upon a couple of trials. The above obtained values of the

constants were' found as the best values after such trial calculation and with these
values, we can represent the duration curve as follows in the form of equation
(18);.

We(=3{1-0,(8)},  §=2.35702 1 (x)+188832,

.. (20)
1 (x)=log {(x+0.05)/(6.85— ) }

On the other hand upon obtaining the values of g and (—3) by Kimball’s
Ratio Test ¢?, we also got the same values of 2=6.85 and (—b)=—0.05 as the
most suitable values. Hence the duration curve in this case will be obtained by
substituting 4= —¢oly=1.91393 into the above equation instead of A==colog (X )~1=
1.88832. Besides, upon following Slade’s Method 2%, we obtained £2=7.10, (—b)=
—0.01, ¢,=2.24950 and A=1.94002. _

Fig. 3 shows the duration curves obtained by the above three methods drawn
on Hazen’s Logarithmic-Probability Paper. In this figure the black points illust-
rate the relation between x; of Fig.1 and its probability on the samples, (2:—1)/
(2N), and from this we can investigate the goodness of fit of these presumed
duration curves. Of the three curves, the curve obtained by the newly proposed



method coincides with the -

curve obtained by Kimball’s F—F = i_.%
Method. However, a slight 1= - _ 5”5«\;'; 113
difference between the two '/'fsfd 3
results is recoghized when the V 4( 1 ) v 2 )
values of 10, 20, 50, 100, 500, gt | /8
1000 and 10000 years flood §§ ®
discharges are calculated ac- - |[{1» = 0s
curately by each method as | [ ' ::
shown in Table 2.

In this table the column  gg%) s eINUN2010 5 2 1 QI 40T 0007 aaooaoa/( :

marked with 3%, on the con- W x100%
trary, represents flood years Fig. 3. Duration Curves estimated by Slade’s,

Kimball’s and Iwai’s Methods

corresponding to a discharge (Totally Bounded Type)
_ unde pe

of 10000 m3/sec and all the
values of the discharges are calculated multiplying each 7 by m(@)=4000.8
m?3/sec. ‘ A

Partly bounded distribution;

The same data of River Tone is adopted to explain the case of the distribu-
tion of this type. Since log xo=—0.07950 from equation (19),, the value of ¥,
becomes %,=0.83272 which is pretty close to x13=0.89182. Then this value of ¥,
and two values of x;, one taken from the maximum and the other from the
’mmxmum of Table 1, are put into equation (19).. In this exampleﬁ we can take

12 pairs of x’s since N=25. But here, according to Kimball's Principle, attaching
great importance to the goodness of fit within the domains of 10% from both
the upper and lower Nmits, integer 3 which is the closest to the ratio of 25/10 is
adopted and 3 values of b, are obtained from equation (19); by using 3 and X35,
X2 and X1, X3 and xp3 as the values of the 3 pairs of x; and x:. Then the arith-
metic mean of the above obtained three values of b, is regarded as the final
value of b,. In this way the value of b, is obtained as b,=0.2496. Finally the
value of ¢y’ is obtained as ¢y’ =3.415 from eqation (19); and putting these three
constants %o, o and ¢y’ into equation (19);, we may represent the duration func-
tion as follows. '

Wi ()= {1-0,(80}, & =3.415 log (x+0.2496)—0.1173 ... (21)

On the other hand, if we do the calculation according to the above principle
adopting xp=x,=2x13=0.89182 which is the median of the samples instead of x;



2

from equation (19):, we get
b,=0.5756 and c,=4.516. If
the result of this estimation is
illustrated as W/—curve in
comparison with Wi—curve,
it becomes as shown in Fig. 4
and the values in detail are
as given in Table 2.
Comparing these two
curves, Wr—curve is to be ap-
preciated as more suitable
than W)'—curve and this fact
tells us that we must hesitate
to consider x;, the median on

»
S~
x and x

4 :

. .,
VEN S0 0 5.21 al00/ Q000 000000/
W x 100%

Fig. 4. Duration Curves estimated by Iwai’s two
Methods (Partly Bounded Type)

the samples, as the value of Xos because this assumption is not always safe,

especially when N is small.

In the following we will consider a different method apart from the above

principle. If xo=2x,=x13=0.89182 is assumed, then we have only to estimate the

remaining two constants, b, and ¢¢’, in some way or other. For this purpose, b,

is represented by u1, %, and 71 from equation (9) and substituted into the ¢% of

equation (10), resulting .in eliminating b, and establishing the following cubic

equation of 7.
r3+1?-Un+U=0,
Using -the three relations,

N
Xo=X0, .a1=m(x)='21x:/N and

' N X 2
0=V mtz = {El (xa—m(x)>
N }0'5, U bhecomes a constant
and this equation becomes
solvable. Then the values-of
by and ¢y’ can be easily cal-
culated from equation (8) and
(9). Solving the cubic equa-
tion by this method, 71=
1.08046 was obtained as the
most suitable root and hence
bp=0.45270 and ¢,/ =4.13917

2 .
where U= a/(/zl—zo)} ............... 22)
] :
P P A8
A AP
%
V:/ ° -
P )
rel Y
/ &
x
o]
A7
Vi

a7/
979590 50 10-521 a1 00/ 0000/ 000000/
W x100%;

Fig. 5. Duration Curves estimated by Slade’s and
Iwai’s Methods (Partly Bounded Type)
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are obtained. Thus we can draw the duration curve shown as W;” in Fig. 5, of
which precise values are tabulated in Table 2.

In this case, if we solve usmg equation (9) and the first two e‘quaﬁons in
eguatxon (10), adopting m—Z x/N, m,uz=i’}1< x;—'_m (:;))ti / (N fi)* and muz=
?:,l(x, m(x)) / (N —1)%, exactly the same results as the results ftom Slade’s
Method of Moments (33> are obtained. According to this' principlé we got yo=
0.903073, by=0.741201 and ¢’ =4.810706 and the duratlon curve became as shown
in Fig. 5 and the precise values as given in Table 2.

In short, when we select and solve any three of the fol_ldwing Aﬁve- equations,
2o=x% equations (6), (9) and (10), the three unknown constanfs, %o» o and ¢y’
are decided simultaneously. ) »

Thus in this manner, some other new methods of estimation were devised

besides the above two. Good results, however, could not be cbtained by the other
method upon actual applica-

0

tion on the same data. ' : — ~
Furthermore, Gibrat’s : -

Method by the semigraphical A
trial. calculation (¥-U1D  was 5‘%%/‘({6( | _;*
applied and %,=0.94, b,=0.7 , “r s\ /g
and ¢’ =5.19 were obtained, =
this ‘Tesult being shown in [ 4
Fig. 6 and Table 2 with the V|7
result of Grassberger’s New ‘ 0/
Method™.  Besides the rocur— g5 7G5 2/ 0/ 00/ G000 Q0000

above methods, Grassberger’s ' W x 100%

old methods 2-(1%) and the Fig. 6. Duration Curves estimated by Gibrat’s
L Method (Partly Bounded d
combined methods of these € ¢ v ed Type) an

Grassberger’s _Method
and the writer’s method were '
applied to the same example but good results were not acquired by most of them.

Besides the above-mentioned methods, all of which depend upon the Logari-
thmic Normal Distribution, Foster’s Method ¢¢> which is based upon Pearson’s
Distribution and Hazen’s Menhod ¢ which was found semi-experimentally in

* * [n these equations, both denominators are not N but (N-1) and this assumption is
not theoretical because it allows a hypothesis of an unbiased distribution. of the basic vari-
able x. In the above calculation, however, (N-1) was taken in compliance with the princi-
ple of the original paper (23) and also in the calculations following explaining the same
examples solved by the methods of Foster and Hazen,
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America were applied and
their duration curves are as
shown in Fig. 7.
the results of these two me-

Moreover,

thods are listed in the lower
part of Table 2 in comparison
with the above results
together  with  Goodrich’s
Method 3, 49
special skew frequency paper
and Fuller's
Method (V2. Among them the
discharge obtained by Fuller's
Formula, in which 77 does
not mean

utilizing the

experimental

the statistically
correct value of flood year T,

pren-Li—

)

x and x

W4
7
0/
979590 30 10521 Q1 001 0000/ 000000/
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Table 2. Estimated Flood Discharges of Tone River at Kurihashi
by Various Methods.
T Flood Years w| 10 | 20 | 50 500 | 1000 | 10000 PX) 0
Method ~ “—— _ | VrS. yrs. yrs. yrs. yrs. YIS: | m3/sec
: o m3/sec | m3/sec | m3/sec | m3/sec | m®/sec | m3/sec | m3/sec | yrs.
oy |Iwai, Ws (1948)( 74463 | 89080 | 10706.2| 11969.8 | 14591.0| 15589.9 18393.7| 346
= g g Kimball (1938)| 73089 | 8755.9 | 10541.5| 11799.8 | 14419.1| 154189 18241.2| 376
E EfiSilade (19343 72886 | 88073 | 107035| 120508| 148744 | 15957.2| 190089 | 353
(=]
%E :§ lwai, W; (1944)| 6961.4 | 8481.7 | 10522.1| 121224 | 16083.2 | 17883.6 | 236050, 39.5
EE g Iwai, W7/ (1944)] 70159 | 8320.0 | 10007.5 1127881 125569 15584.7 | 20136.0| 480
o}
gﬁ ﬁ Iwai, Wi (1948)| 7093.9 | 8462.1 | 10254.7| 11620.4| 14496.7 | 163322 | 214222 439
X % Slade (1934)| 7185.6 | 8514.1 | 10217.5| 11811.5| 14460.0 | 15756.6 | 201963 | 235
= E Gibrat (1932)| 72228 | 88125 | 10970.8 | 126764 | 16923.0| 188904 | 261033 333
Grassberger (1936)| 73774 | 89194 | 11025.0| 12974.1| 16801.0| 18718.7 | 262753 | 32.1
g
5=
§ g ::a'; Foster, 111, (1924); 7246.7 | 87038 | 11953.6| 120368 161252 | 16579.3 | 208426| 289
- et
é;‘ % Foster, I, (1924) 74539 | 8900.2 | 11701.9 11780.0} 14315.3| 14596.9 | 164569 288
A
Hazen, (1930 77788 : 8819.7 | 11660.3 | 126085 18076.8| 18684.5, 269114 26.6
Goodrich, 11, (1926) 70889 | 84114 | 10001.8| 111888 | 13671.0| 147209 | 179282 49.0
CFRY=(R-0.18)
Goodrich, V, (1926) 7970.8 | 9190.2 | 10433.4| 11223.6; 12569.8 | 13037.8 | 14189.5| 349
(fR)==(R-0.19)/(48—-R)
e 8log Ty > | 72014 | 81616 | 94379 | 10420.1) 126385 136030 | 168033




15

is so different in nature compared to that obtained by all other methcds that we
cannot compare it precisely with the others. It was cognizable on not only the
example of Tone River but also on many of the other rivers that the value of
the coefficient in Fuller’s Formula, 0.8, is too small and it must be enlarged to
the extent of 1.3 or 1.4 in Japan.

After applying these various methods to many Japanese rivers, we found,
as can be understood from Table 2, that the more statistical methcds produce
the better results and, among them, the methods based upon the Logarithmic
Normal Distribution are superior to the others and that the above proposed
method of Wy is the best one in totally bounded type and W; in partly bounded
type. Furthermcre, such studies irdicated to us that the conditicns under which
floods occur at most rivers in Japan are quite different from the conditions in
foreign countries and the methcds of estimating flcod discharges in our river
confrol works are yet in general very rudimentary. 'i‘hus it was made clear that
researches in this line is of abselute necessity in the future.

Since we._obtained b,=0.2496>0 for the above case of W; of the partly boun-
ded type, the value of the lower limit (—b,) beccmes negative, resulting in giving
a negative minimum flocd discharge. Therefore, if we persist in obtaining a
value of b, which will give a positive minimum floocd discharge, we must select
the values which will satisfy the cordition 8,<C0 frcm all of the values of b, cal-
culated from equation (19); with various pairs of x: and x:. Then all pairs of
values of ¢, which are calculated by putting the above selected values of 8, into
equations (19)s and (19/)s are compared. Finally the best value of b, is adopted
by picking up the value of b, which will make the two values of ¢, become the
closest to each other. According to this procedure we can discriminate and find
the most suitable values of b and g in the totally bounded type. 7

These methods of estimating duration curves proposed above were very useful
in various problems besides the problem pertaining to annual flood discharges.
For instance, duration curves, the variable of which was taken as the rainfall
intensity 7 which changes with each different rainfall duration time {-, were esti-
maled according to the principle of equation (19). Then a new method of stati-
stically estimating a curved surface formed by these curves was proposed by
equation of the following form, '

i=Kitr~Kei g~ Ke, L werrerra s seanas (23)

where K1, K3, K3 and K, are constants and two of them, K; and K, are decided
corresponding to the probability W.
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Hence we can easily draw a storm rain i'nténsity curve separatély correspond-
ing to any arbitrary value of W. These Probability Storm Rain Curves are very
useful in estimating the above mentioned probable ﬁood'discharges from rainfall,
but here, a rational and economical methed of pIanning sewer net was accom-
plished applying this estimation of probable rainfall into Vicari-Hauff’'s Method
and upon application of this method to some real examples very interesting
results were obtained. ' e

Also duration curves of* daily discharges for one year of many representative
rivers in Japan were estimated according to the principle of equation (19) and
the characteristics of the varying conditions of the discharge were comprehended
by means of several statistical costants. Fig. 8 shows these duration curves and
their equations for the basin area of 100 km? of 11 representative rivers of Japan.
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Fig. 8. Duration Curves of the Daily Discharge for one Year of
11 Representative Rivers in Japan

Furthermore, the duration curve based upoh the totally bounded distribution
type, is regarded recently as being very important not only for the aforementioned
hydrological data but also for other problems in which the existence of both the
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upper and lower limits must be provided in the frequency curve. But the writer
applied this to the gradation curve of soil. In this case, assuming that the den-
sities of all soil particles contained in a scoop of soil were uniform, the weight
of each particle should be proportional to the cube of the diameter. Hence, it
could be readily presumed that the gradation curve pertaining to weights of par-
ticles could be theoretically deduced from a duration curve which is the integra-
tion curve of a frequency curve drawn corresponding to all sizes of particles and
the number of particles represented by the size.

Applying basic equation (1) and (1’) and following the above principle,
Grassberger %) has succeeded in representing this gradation curve in the form of
1—W=% (14+9,). The writer developing this method, also successfully deduced
a function of the same form in the case of equations (3) and (3/). Thus a new
statistical methced of estimating this curve by trial was successfully derived for
any given soil sample and new appreciable results were cbtained by investigating
the correlation between statistical constants and physical properties of many soil
examples in Japan. Hereafter, it is expected that these results will prove to be
very useful in deciding the proper gradation of concrete aggregate and filter sand
in water filtration plants or in understanding their characteristics. Also this
method of estimation will be considered very effective in investigating statistically
the factor of safety of structures ), The writer is now engaged in studying
these interesting problems.

4. Conclusions

(1) The so-called Slade’s Type Distribution, that is Logarithmic Normal
Distribution, was adopted as the statistical asymmetric distribution of hydrological
data, and then the distribution was divided into two types, namely, one with a
limiting value on one side only and the other with limiting values on both sides.
Frequency curves and duration curves were analyzed mathematically in each type
and then their asymmetricities were distinctly determined.

(2) Furthermore, upon studying all past methods of estimating duration
curves based upon not only this type of distribution but also many other types,
it was found that the method based upon this Slade’s Type Distribution was the
most suitable, and new methods have been proposed by using the above-mentioned
analytical results.

(3) Upon practical application of all of the above methods mainly to Japa-
nese data, it was found that, in exactness, equation (18), and, in practice, equa-
tion (19) gave the best results. Thus many remarkable results were obtained
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concerning flood discharges, river flow conditions and precipitations, and in con-
nection with statistical economics, these results proved to be useful guides in
planning various water works, such as river improvemént, water supply, water
power and sewerage works. Moreover, besides such hydfological problems, these
theories and methods will become very effective in other fields, such as soil proper-
ties and factors of safety in structures.

(4) An extensive study was theoretically made pertaining to those statisti-
cally estimated duration curves, the following being the brief results.

In examining the Reliability df dutfation curves estimated statistically,
Pearson’s Chi-Square Method which censidered the Number of Degrees of Freedom
and v. Mises’ Omega~Square Method 2> with which the duration function can be
tested directly were applied, giving up the former idea based upon the old theory
of errors.

In the case of Small Samples, hewever, it was found that they all lacked
preciseness. As the methcd effective in this case, a new precise method of testing
the Measure of Goodness of Fit based upon polynomial distribution was devised.
This result 'should be appreciated as cultivating a new Stochastical Field in such
problems on duration curves.

The writer was very fortunate recently to obtain the new thesis (26> of Prof.
Thomas, Harvard University, and admired his new conception and theory and in
the near future hopes to make a discussion on it from various points of view.

The above results summerized in this paper had been got under the kind
instruction of Prof. Tojiro Ishihara, Kyoto University, and already been published
in Japan since 1944, The writer thanks him vefy much and earnestly expects the
world-wide criticism to this paper.
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