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Simple methods of calculating the fcrm of airfoil section with a given pres-
sure distribution have been developed. In the design of axial flow type pumps
and blowers, suitable airfoil profiles which revealed good characteristics in the
wind tunnel tests are applied, but il is desirable to modify the section form
because interference effect due to cascade arrangement changes the characteristics.
In such case the two methods explained in this papet are useful as the profile
formm cdan be calculated in a simple way taking the pressure distribution of a
suitable airfoil section in a uniform flow. One method is that developed applying
the thin airfoil theory of Glauert and the other that based on the theory of wing
lattice developed by the present authors. (7 These methods are explained in the
following two paragraphs.

Part 1

The effects of angle of incidence, camber and thickness upon the velccity on
the surface of the airfoil are approximately independent of each other. Let V be
the velocity of a uniform flow and w. and w; be velocities on the upper and lower
surfaces of the airfoil respectively, then wy,—u;=7y gives the distribution of circu-
lation and %(w.ﬁ wi)— V =w, gives the velocity increment due to the thickness.

Take x-axis in the direction of velocity V, the abscissa of the leading edge
at x=-—1 and that of the trailing edge at x=1 and substitute x by x= cosf, and
develope 7 into the following series,

%=Aotan g +2Ansinn0. (1.1

A=l

(1) Hudimoto-Hirose, ‘Theory of the Wing Lattice composed of Arbitrary Airfoils,
Vol. XI1, No.l p. 20 of this memoirs.
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Then the induced velccity v, due to the circulation 7 on the surface of the air- .
foil which is perpendicular to the x-axis is as follows,

Yo a4 _ . .
7 A, EA cos nfl. (1.2)

n=1
The ordinate of the mean camber y. is determined by the following relation

4y _ v 1.3
dx v " : .3

Integrating the above equation with the condition y.=0 at #=0, the following is
obtained,

ye=Ao(1—cos )+ Z‘ SAy.cosn(fsin(idﬂ. (L
10

The half thickness of ‘the airfoil is expressed as follows,

Ya= 2 bn sin nb,

fn=1

and to satisfy the boundary condition sources and sinks are distributed along the
camber line, whose strength ¢ is approximate]y given by the following relation,

ooy (2

. E #bn COS 10. (1.5)

fim]

sin 0

The induced velccity #, due to this distribution is as follows,

3 nba sin nf
o M ' (1.6)
2 sind )
Developing the velccity w. into the following series
W in 0= EB,. sin nf, an

n=1

and comparing egs. (1.6) and (1.7), #bsn=Bsx is obtained and the half thickness is
determined as follows,

Ya= E %’- sin nd. (1.8
=1 !
To show the accuracy of this methed, an example is shown in Fig, 1. The
velocity distribution of N. A.C. A.M. 6 airfoil. at an angle of incidence 0.95° is
given, which is shown at the top of the figure with 7 and ws. The calculated



airfoil shown at the bottom of
the figure by the full line must
coincide with the contour line
of the N.A.C.A.M. 6 airfoil
which is shown by the dotted
line if the proposed method is
accurate. The contour lines
coincide fairly well with each

other although the calculation

is very simple.

In the case of a wing lat-
tice the induced velocities due
to distributions of vortices and
source and sink are as follows,

~0.2}-

Fig. 1
ur ()= ke jr<e>cot[ e x-9)]de, 1.9
-1 )
1
g (%) — ive ()= —ZT.SI‘I (&) cot [% e (x— e)] de, (1.10)
where u; and u, are X-com- y

ponents and vy and v, are y-

components of the ‘induced

velocities, d is the pitch of air-
foil and § is the angle between

the wing chord and the. axis of . ..

the lattice as shown in Fig. 2.
The procedure of numerical
calculation is quite the same as
that of the single airfoil, except
for the interference effect. The
induced velocity v, of eq. (1.2)
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Fig, 2

contains the effect of the thickness and the mduced velocty uo of eq. (1.6) con-
tains the effect of the camber and the condition determining the strength g of the
source and sink distribution must be modified to the effect of the velocity gradient
along the airfoil. Expanding egs. (1. 9) and (1.10) into series and neglecting
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small quantities, formulas are obtained.* The thickness is detetmined by the
following egs.,

A+ 4g) b1+ Asba=—By/,
(1+Ag) byt Ay (br+b3) = —_g.a’_,

(1.1
(1 Ae) ba+ Ay (B +by) = — gf" ,
k2 A 2 . 4
where (1——6—cos23> Bl’=Bl—k— sin 2/ (Ao—%Az) ,
=B,-% sin2g (A0+ L AI)
to=—1 (
=" sin2p (Aq— 5 Az —— cos 2B B/,
11-'= '_% sin 23 (Ao+-—2-— Al) ’
and k=—:} .
The mean camber line is determined by the following eq.
dy __\ : ‘ S ‘
@ zlc. cos n, (1.12)

where
=A¢— k—cosZB( o— 1 Az) L - sin 28 BY/,

Ci=A,— L 08 23 (2A0+ A1),
Cz'—_—Az, C3=A3, ....................................

Egs. (1.11) and (1.12) are obtained assuming the pitch—chord ratio n/2k is very
large and retaining only terms of k2.

Part 11

The wing lattice given in the z-plane can be transformed confoermally nearly
into a unit circle in the ¢-plane by the following well-known relation, '

,..,_z_{ -4 log - IEC+1 e log C+Ic }, @D
N T . K

* Only the most approximate formulas are shown here.
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where ¢ is the length of chord, 2 is the pitch—-chord ratio, 7 is the angle of stagger
and ¢« is a constant determined by 4 and 7. I angle g is defined as shown in
Fig. 2, then r'=—n—~—B.

2
Taking 6 as parameter the contour of the airfoil is expressed as follows,

—A Z'ccos(i ~1 2c8ind
- {cosrtanh 1 T+ e ———+sin7 lan TT}+mlcosr,

ol

(2.2)

1‘<

ao+2 an cos Bl + Ebnsm nd +misiny,

n=1 n=l

m=0, ®1, £2, s

where 0/=0—-0, and d,=tan"? (_1.;" tanr:) .

The velocity »y on the circle in the ¢-plane is, +»
S0 cog g 2R VK sin 6’
Ve Ot Ty e Btcos 2(0r T 0+ 1
. 2 (1—«*)cos 8’ +2xk%sin 27 sin 67
—sin g == 2=
™ VK {x4—2m2c052(0,»+0’)+1}

—sina ( S} 1bn cos nf’ — E nan sin nﬂ’)

‘n=1 n=1

+Ccos (Enau cos ntl’ + 2 nba sin n(i’)
Na] NA=]
+ Ir ; 1-—-x4
2rVe k*—2k¥cos2(f,+0")+1

—cosq 2ME_ E K2 {sink[(2n+1) 0,-—7] cos(Zn+1D¢

n=0

+cos [(2n+ 18- r] sin (2n+1) 0’}

-—sina%i P {cos [(2n+1)07~7’]c0s Cn+1)8 (2.3

n=0
—sin [(2n+1_) 0T—r] sin (22 +1) 0'}

Lod

o0
—sinu (2 #nbn cos ntl’ —2 #nan sin n(i’)
n=1 )

=]

(@) loc. cit.



+Cos « (i}nancos nﬂ’+i by sin n(f’)

=] fi=]

+ 2—1" (—I{%—) {1 +2 E k2 (cos 2nl p cos 2nt’ —sin 2nb r sin 2nb”) } ,

n=l

where V is the velocity of mean uniform flow, « is the angle of incidence, I" is
the circulation around each airfoil and K=x*+2«? cos 27 +1.

Now from the given pressure distribution, the velocity w, on the airfoil can
be calculated and the problem is reduced to determining the coefficients @a; bs and
a from a given value of w..

From the given velocity w., the corresponding veloaty on the circle in the
¢—plane is determined by the following edq.,

d > —
PR vy BTSN VAN TS Fer

and expanding this velocity into Fourier series it is expressed as follows,

- I’/{oc =Ao+ EA,. cos nt’ +E Basin nf’. (2.5)

n=} f=1
The coefficients of Ag, An and Ba are calculated from the numerical values given

by eq. (2. 4).
Then comparing eqgs. (2.3) and (2.5), the following results are oblained,

Azmir o5 g Bane gip o 7251 i sm[(2n+1)0z» 7’]

Gam1= 9,11 2n+1 2nrl
— Bana _Awmnr 24 gl —
bani1 2n+1 cos & ot 1 sina——= 5 os[(2@+1) Or T],
.27
A= ‘g:;‘ cos a+~€—:‘—sin a—-24, mZn cos (2nll p + a), (2.6)
and bn= Bin éos a—252 Az" sina+2A sin (2n0 7+ «)
2n ¢ Zn RS

Making use of the condition that the leading and trailing edges of. one airfoil are
on the x-axis,

E —1)®ax=0  at the leading edge, where §'=r,

and ao+2 an=0 at the trailing edge, where §’=0.
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Hence,

an+1=0, 2.7

and Q= — E @on. 2.8

From egs. (2.6) and (2.7),

\ A2n+1 an.ny ZA 5‘ lc2+ 2.9
COSaE ontl +sina 2t 1 A sm (2n+1)(7,. 7],( )

N=0 5=0

and the angle of incidence « is determined by this relation and a@» and b» are
determined by egs. (2. 6).

The isolated airfoil is a
special case of the above-men-
tioned theory and, in this case,
£=0, An:=—7;— and 0,=7.

As an example, the theore-
tical pressure distribution of a 0
wing lattice composed of
N. A.C. A. 4412 airfoil section
with A=1.284, r=50° and «=3°
was given as shown in Fig. 3
and the form of the airfoil was -10
calculated from this pressure
distribution. The points are
those calculated and it is seen
that they coincide satisfactorily
with the contour line of Fig. 3
N.A.C. A. 4412 airfoil section.
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