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1. Introduction 

The present paper named the theory of non-linear elasticity may, if simply 

considered, express a theory of elasticity of such materials as cast iron, concrete 

or rubbers which do not follow the Hooke's law, but the author believes from 

the point of view in connection with intermolecular forces, that it will be valid 

in the wider sense to many other materials. 

It is a great advantage for us that steels and many other engineering metals 

follow the Hooke's law and the relations between stress and strain which are 

produced in these materials are expressed by the linear equations. In such a 

case, we may apply the law of superposition without any difficulty for combi­

nation of any two or more strains, but these relations are not actually linear in 

cast iron or concrete. For uniaxial tension, C. Bach expressed them in the form 

e=u.a" and Cox and Lang used a parabolic expression e=a/(a-ba) where e rep­

resents strain and a denotes stress, while we have even now no reasonable for­

mula applicable to the state of biaxial tension or compression. This problem 

was once studied by Prof. M. Kakuzen ll. He put 

_ a, 1 aJ ei-- ----·-- --. a-ba, m a·-·baJ' 

Ci, j=x, y, z) J 
(a) 

where 1/m means Poisson's ratio. 

As, strictly speaking, any two non-linear expressions should not be super­

posed, the above equation is, as he already recognized in his report, not compa­

tible. It my be only used as an approximate relation. 

The author has established a new theory relating to stresses and strains in 

such materials and discussed it with respect to intermolecular forces. 

(1) Professor of Doshisya University, Kyoto, Dissertation, 1938. 
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2. Author·s expressions for the. relation between stresses and strains 

Now, we represent strains in the direction of the co-ordinate axes by et, eJ 

and e1: and the corresponding normal stresses by. ai, dJ and a.,.. As a normal 

strain be determined by the present state of normal stresses, we may write 
generally 

!t=f~(d.t, d~ dk), l 
(i, J, k-x, y, z) 5 

(1) 

ft represents a function of stresses, in which all shearing stresses are not con• 

tained as they do not give influence upon any normal strains. By taking the 

total differential of eq. (1), we have 

( 2) 

or simply 

(2') 

As a special case, we assume that all the differential coefficients in eq. (2) 

would be constant. Then, for an isotropic body, we may put 

Eq. ( 2) becomes 

(3) 

This is the ordinary expression in the elasticity based on the Hooke's law. 

It we put C 1=1/E and C 2 =1/mE, E corresponds to the modulus of elasticity 

and m to the Poisson's constant. 

Next, if we assume that any of o/dfJan is a function of an only, or we ex­

press oltfoat=f/J1(a,), oftfoaJ=qJ2(dJ) and f)Jtfoa.,=qJ2(a1;), then we get 

e,=F iCat)+ F2(dJ)+F2(a1:) 

where F 1 and F2 are functions of each stress only. The foregoing expression (a) 

can be comprised in the above equation. 

According to this equation, the effect which a, has on a normal strain in any 

direction is perfectly independent of other stresses and this shows that . the law 

of superposition would hold in this case. Therefore, the above mentioned assump­

tion will be considered to be incompatible for materials which have non-linear 

relationship between stresses and strains. 

From this reason, we generally must take the differential coefficients in eq. 
(1) as follows: 
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(4) 

where (/) 1 and w, denote functions of stresses. And we put 

1 1 (5) 

wherein m may be, in general, considered to be a function of stresses a., dJ and 

d1t, Though it is different from ordinary Poisson's constant, it concides to the 

latter in the special case in which 8fd8an takes constant value. By introdncing 

eq. (5), eq. (2) becomes 

(6) 

Now, the author put m constant in the above equation according to the rea­

son that is, he considers, approximately appropriate by the theory which he will 

later explain. 

Moreover, we write 

(7) 

and let us call it an effective stress. Then, eq. (6) becomes 

( 8) 

Now, he assumes that 0 1 be a function of a., only; i.e. the normal strain e, is 

determined by the value of a.1• 

This assumption will be assertained by the theory, which he intends to ex­

plain later. 

By using this assumpt~on, we may be able to integrate the above equation 

and obtain e, in the form 

(9) 

3. Relation between the shearing stresses and the shearing strains 

As the shearing strains are caused by the shearing stresses, they are generally 
expressed by 

(10) 

where i'1 means a shearing strain and -r, a shearing stress. 
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Its differential is 

(11) 

Hereupon, if we denote 

eq. (11) becomes 

(12) 

where x is another function. 

In order to obtain the relation between x and QJ,, we consider the condition 

of pure shear, in which· 11,= -aJ=d, 11.,=0 and a is equal to the value of the 

shearing stress -r. Then we have 

(13) 

If both stress-strain curves of a material in tension and in compression have 

the same form, the following relation holds : 

(14) 

4. On the modulus of elasticity and Poisson·s constant 

The ratio of stress of strain a/e obtained from a tensile test for such mate­

rial as cast iron, which deviates from the Hooke's law, does not exactly denote 

an increasing rate of stress for given strain, but it is called occasionally the 

second modulus of elasticity owing to its meaning of the mean rate of stress­

increase between the stresses O and 11. 

On the contrary, the reciprocal of the coefficient fJ.fi/811, denotes the actual 

rate of stress-increase an the given stressed state. Therefore, it should be called, 

in general, the coefficient or modulus of elasticity in this case. While, as each 

strain is caused by three normal stresses acting. in the directions of the co-ordi­

nate axes in the complex state of deformation, (b, should be taken up as the 

modulus of elasticity and x, the modulus of shearing elasticity. Poisson's ratio 

is defined ordinarily by the ratio of the lateral strain to the longitudinal one pro­

duced in an uniaxial tension in the ordinary theory of elasticity and be written as 
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where e' means the lateral, e the longitudinal strain and m' Poisson's constant. 

In the materials, which follows the Hooke's law, m' has the constant value 

m, but it can not be decided in cast iron or other materials of non-linear elasti­

city that m' takes a constant value through all the slates of extension, 

The author names the ratio m defined as eq. (5) an auxiliary coefficient of 

elasticity. 

5. Various types of stress-strain curves 

Generally speaking, the index n in Bach's equation is ordinarily greater than 

1 and the constant b in Cox and Lang's expression takes a positive value for 

comparativ~ly more brittle materials, while n takes a smaller value than 1 and 

b is negative for many organic materials as rubber or leather. 

It is clear that the above mentioned assumption which takes (I), for granted 

to be a function of a,, coincides in the case of uniaxial stress to these expres­

sions. Now, he enumerates the varions types of stress-strain curves. 

(I) Let (I), be expressed by a linear equation of a,, as follows: 

(15) 

in which E and A are both constant; the former corresponds to the modulus of 

elasticity when the stress-strain diagram is straight. 

From eq. (9) and eq. (15), we obtain the relation 

(16) 

(II) Next, let us take 

(17) 

then, the corresponding relation between stress and strain will be expressed by 

and 

In the special cases of n=2;3, 4, eq. (18) becomes as follows: 

(a) When n=2, then 

(18) 

(19) 

(20) 
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This equation coincides exactly to the foregoing expression of Cox and Lang 
for a pure tension. 

(b) Let us take n=3, then we have 

@,=E(1-ia,,)3 
and 

(c) For n=4, a>, and e, are expressed by the equations 

and 
2 1 2 E 2 - 3-AEdet+ 3 A

2a,; 

(E-Aa,,)a •de; 

These curves are shown in Fig. (1). 

The curvature of stress-strain diagram 

increases with the value of n. 
(III) (a) As the second term of 

the numerator in eq. (23) is very 

small compared to the first term, by 

neglecting it we have the following 

relations: 

for which the corresponding a>, is 

@ · (E-Aa,,)3 

' E(E+Aa,,) 
(26) 

d ¾m• 

(21) 

(22) 

(23) 

(24) 

(b) By neglecting the smaller term 

in the numerator in eq. (24), we obtain 

as---+---+---+--i-----i------i 

o,__ _ _,__....__--'---":---'::'""--:' 
0 .o, ..Ol. . .03 .04 .os .06 t, 

Fig. 1 
(27) 

We see that the curve of eq. (22) draws very near that of eq. (25) and simi­

larly eq. (24) near eq. ('2:1). 

6. Foundarnental equations of non-linear elasticity 

· As the relation between an effective stress- and the stresses acting in the 
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directions of co-ordinate axes is shown in eq. (7), we can easily derive the equa­

tion 

di m(m-l) {det+deJ+llet} 
(m+l)(m-2) m-l (28) 

from which we get the relation 

This shows that the sum of effective stresses is also an invariant. 

If we let s. stands for it, eq. (28) becomes 

dt=____!!!__{det+~} · m+l m-2 (29) 

Then, the equations of equilibrium of forces of elasticity without body forces 
will be expressed by 

m O<fet m as. OTrc OTj -o 
m+i aT+(m+l)(m-2) af+ f)j + 8k - (30) 

(i, j, k=x, y, z) 

By inserting the relations (8) into the above equation, we obtain 

_!!!__(/) J!e, + m {!_Se+ 8-r" + 8-r J =O 
m+l '8i (m+l)(m-··2) 8i f)j f)k 

or 

in which r" and r J stand for shearing strains. 

Now, if we denote the displacements in the direction of coordinate axes i, j, 

k by A,µ, and J.1, the normal strains are expressed by 

and the shearing strains 

By introducing these exprassions into eq. (31), we obtain 

m [ a2A a2 µ 0 2J.1 ·J 
(m + l)(m-2) (m-l)(f)'oi 2 + (/)'a;art-(/)rcaiok 

(
82A 02µ) ( f)2J.1 02A) 

+x"ap+ajoi +x;akai+ak2 = 0 (32) 
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7. Elasticity of cast iron 

Both stress-strain diagrams of tension and compression of cast iron do not 

take the same form and the elastic constants obtained from those curves have 
different values in each. 

If we examine, for example, the experimental results of C. Bach, we see 

that the index n in eq. e=aa" for tension is somewhat greater than that for 

compression. 

According to Cox and Lang's expressions, 

e =a/( E- Aa) for tension 

and 

e=a/(E+A'a) for compression 

where A>A' generally. 

In order to get a relation between shearing stress and shearing strain in the 

case where both stress:-:strain curves do not take the same form, we may put 

a,=a= -a1, and ak=O considering the slate of pure shear. Then, we have 

a, m+l ae,=a,--=--· -a 
m m 

a, m+l 
a.,=a,-m= --m q 

Therefore, the author's theoretical eq. ( 6) is written as follows: 

de,=0£(1,,)da.,= 0,(m;la) d(m;la) . 

de,=----1-da J 
1 d(-·m+!a) 0/(a.,) • O')/(-m;la) m . l (33) 

in which 0, and 0 / are both the functions to be determined by tension or com­

pression curves. 

This state of stress is no other than the state of shear in the direction in­

clined 45° to the former and the shearing stress -r is equal to a. 

The increase of shearing strain due to it is expressed by 

The relation between this and the foregoing de, and deJ is shown as follows: 

(34) 
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d .. _2(de,-de1) 
1 -2+de,+de1 (35) 

As the second and third terms of denominator in the right band side of eq. 

(35) are both very small compared to the first term, we may neglect the sum of 

them, then 
(36) 

By putting this value into eq. (33 ), we get 

(37) 

For example, corresponding to Cox and Lang's expression, we put 

then 
1 E 
fP, = ( E =-Aa.;)2 • 

1 _ E , 
0/ (E + A' a.1)2 

By inserting these into eq. (37), we obtain 

_1 -~+1{ E + E } 
x(,)- m (E--Am;:;1,r (E-A'm;:;1,t (38) 

Hereupon, using the relation G=mE/2(m+l) which exists between the modu-

lus of longitudinal elasticity E and that of shearing elasticity G, we get 

(38') 

Then, the relation between shearing stress and shearing strain will be ex­

pressed as follows : 

(39) 

In the special case where A=A' or both stress-strain curves of tension and 

compression have the same form, 

(40) 
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and 

(41) 

It is very inconvenient that we must 

apply the different equations to tension and 

to compression as descibed above. 

Therefore, the author presented a new 

equation as the relation applicable through 

both tension and compression as shown in 

Fig. 2 

which can be simplified as 

1 { Ao, A'"' } 
e,=A+A' E-A", + E+A' "' 

Corresponding to it, we have 

l E { A A' } 
ID~=A+A' (E-Af11 ) 2 +(E+A'"1 )2 ( 43 ) 

and 

Then, the shearing strain is expressed 

or 

.0011-

I 
I/ 

3.0 

a.o 

1.0 

V 
.002 / 

0 

/.0 

I a.: 

I a.o 

J 
4.0 

5,0 

Fig: 2 

=-- ·-~~+-----G { Ar A'r } 
A + A' c2 -!12 -r2 c2 .-!1'2 i-2 

4. 4 
When A=A', eq. (42) becomes 

and eq. ( 45) is transformed to 

.,_ Gr 
,- A2 

G2--r2 
4 

75 

i-

/ 
/ 

.ooa .004 +6 

(45) 

(46) 

(47) 

The normal stress is expressed from eq. ( 46) as a function of strain as 
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Ee 
a1 -1 + A2e2 (48) 

and 

'!" 
Gr (49) 

By suitable approximation, eq. (42) can be transformed to an expression 

Ee 
<Jt (1 + Ae+ A2e2 Kl-A'e+ A'2e2 )· 

(50) 

applicable in the region of small strains. 

8. Bending and torsion of a cast iron bar 

In the bending of a cast iron bar, the neutral axis does not pass through the 

center of figure in its cross section, as the stress-strain curves of tension and 

compression are different each other, but its deviation is so small that we may 

neglect it for calculation of bending moment. 

The position of the neutral axis of a rectangular cross section can be ob­

tained approximately from the equation 

A(l +~1l.Q)3-A1 (1 _?1lo)3 
27/o 2M h . . h , 
h=EEJi2 (l+?Jf)a + (l-?'Jp)a~ 

where 7/o means the distance between the neutral 

axis and the center line of the rod and b is the 

breadth and h the height of the cross section. 

The value of 27J0 /h is plotted in Fig. 3 for the 

case where A= ,WO and A'= 150. 

Noticing that 7/o is very small, we may use 

the · expression ( 46) as the mean stress-strain 

curve of tension and compression for calculation 

of the bending moment. 

6M/bh~ kg/cmi1 

Fig. 3 

Let the fibre strain e be proportional to the distance from the center line, 

i.e. e=c7J, then the bending moment is expressed by 

or 

(52) 
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Developing this into series and neglecting the higher terms of infinitesimals, 
we obtain 

where 

1 
2-ch=ce1=e1 

(53) 

Neglecting the higher terms of ei, we obtain 

(54) 

This is a relation of the maximum stress expressed as a function of the 

bending moment. . 
After these equations, we see that the bending moment is not proportional to 

any of strain e1 and stress 

Let us compare this eq. 

(54) to the experimental 

data of H. Herbert 2 l. The 

curve M-ai, and M-a2 

•/00 

fot/Ol----1--0-.. -.--+-..,-,u-,o-•---1-----+---+~=-+~-1--------l ., ........ . 
aool---+.:G:,c__c•:....•-4•=•5.:.."_" i---+---!-.-...----+..,_c..-+--,,,i"""--l 

shown in Fig. 4 are both the 6ool--+--+---+--+--+1n.L-iz::!l.-S~ 

bending moment-stress dia-

grams in which a 1 denotes 

the maximum tensile and 

a2 the maximum compres­

sive stress. Though the 

amount of deviation of 

M-a2 curve from the strai­

4MJ 6oo 800 looo 1200 14,,o ti.a• 1800 

d'J~~/mi 
Fig. 4 

ght line a 1 =6M Jbh2 is not so large, it is evident that either of them has a ten­

dency of going upwards with the stress-increase. The value of q1 calculated 

from eq. (54) is plotted in this figure. This curve is concave upwards and 

shows a mean value of M..,a 1 and M-a2• While the relation between the bending 

moment and the maximum stress calculated from equation e=a.a11 in place of a 

hyperbolic one is expressed by 

bh2 
M =----~~- -d1 

2(2+1/n) 

2) H. Herbert. z. V. D. I. 1910, p. 1387. 
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or 
M oo u1 

whichshows a shraight line. 

Therefore, this equation does not coincide to the actual data and should not 

be used for bending of cast iron. 

Similarly, in the case of bending of a bar with a circular cross section whose 

radius is r, the moment is shown in the form 

where 

and 

This is transformed to 

A2c2r2 
/3 2+ A 2c2r2 

_ (4M Jrr:r3 ) 
111

- 5 (A) 2 (4M) 2 
1+-- -8 E 11:r3 , 

(55) 

For the Torsion of a cast iron bar with the circular cross section, let us use 

eq. (47) and derive the relation between the twisting moment and the maximum 

shearing stress in the cross section. 

Now, we put A/2=B in eq. (47) and r=rfl in which fl stands for the specific 

angle of torsion. Then, we have 

1'1 

Me= r T•2rrr2dr=-rr:g {r12 ---1 . Jog (1 + B202r12)} J B2fl B2f12 · 
0 

in which r 1 is the radius of the bar. 

By developing it in series, we get 

(56) 

where r 1=r1fl. 

The maximum shearing stress in the cross section is expressed as a function 

of the twisting moment as follows : 

(57) 
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All these equations denoting the relation between stress and moment have 

commonly a expression of hyperbolic type. 

9. Explanation of the relation between stresses and molecular forces 
by using a model 

Internal forces which are produced in a body are attributed in the end to the 

effect of atomic forces or molecular attraction in the micrographic point of view, 

but if we compare them to the stress which is based on the macrographic con­

ception, we will find that their relation would not be easily deduced because there 

are remarkable q.ifference between the.strength of materials calculated from the 

point of view of molecular attraction and that obtained from the actual material 

testing. We must recognize that, in actual materials, there are many gaps or 

dislocations besides inhomogeneity. 

While, the stress is no other than a force due to molecular attraction and 

denotes a mean value of forces acting on a small area of a plane passing 

through a given point in a body. 

Therefore, he considers, it is to be determined in connection with molecular 

forces. 

The Poisson's constant is defined ordinarily as a constant which specifies the 

relation between the lateral strain to the longitudinal one in the uniaxial tension, 

but this statement describes only a character of material that a lateral strain is 

associated with its corresponding longitudinal strain and does not give any ex­

planation as to the mechanism with which the former is connected to the latter 

and then to the internal forces. 

In order to make it clear, the present author intends to use a model shown 

in the following and to explain the mechanism of connexion of strains. 

Firstly, let us take a small element arbitrarily cut from a stressed body and 

call it a particle, though it is not thf.>se which are arranged in regular order ac­

cording to molecular orientation like crystal. 

It may be considered that it is a particle of any size and that it is in equili­

brium ·being pulled in all directions by the others surrounding it. Though 

mutual attraction is of course caused by molecular forces, it is not i_dentical to 

the latter, but it may be considered to be a resultant of forces. Secondly, we 

take these paraticles regularly arranged in the · directions of principal stresses or 

let them lie on each of lines of principal stress. Then, from the condition of 

symmetry, they would situate themselves on all corners of the octa.hedron shown 

in Fig. 5. 
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We specify its cor­

ners by denoting signs 

i, j and k. Therefore, 

ii, j j and kk indicate the 

directions of principal 

stresses. Let us take the 

distance between oppo­

site particles as unit of 

length; i.e. ii= j j= 

kk=l. 

As an example, we 

consider the case of sim­

ple tension in which the 

tensile stress a, acts in 

the direction of ii and 

let the strain in this di­

rection be e and the late­

ral strains in the dire-c­

tions of jj and kk be e', 
then the forces between 

<(j 

Fig. 5 

particles may be generally expressed as the resultant of attractive and repulsive 

forces by 

(58) 

where the first term in the right hand side is the resultant of attractive forces 

and the second means that of repulsive forces. If we consider it a molecular 

force, the index m is generally greater than n and they are presumed for ex­

ample of a halogen salt n=2 and m~lO~l?-

As ii is, however, a resultant, but not a molecular force itself, the values of 

these indices should be considered to differ from them. 

From eq. (58), we have 

(59) 

Because ii must be proportional to e in the range of small e, we may take a=b, 

then the above equation is approximately expressed by 

(60) 
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Owing to the fact that there are many gaps or dislocations in addition to 

inhomogeneity in the actually existing materials and that thereby the constants 

C 1 and m in this equation should be considered to be of different orders from 

those for molecules, we rewrite it as follows: 

.. Ce zt= ... --
l+De 

(61) 

by putting new constants C and D into eq. (60) and consider that these constants 

should be determined from the results of material-testing. 

For the stress-curve of compression which bends toword the direction of 

negative strain as in cast iron, the sign before D is taken negative in the case 

of compression. 

Similarly, internal forces iJ and fik are described as follows; 

7-; - Ce' 
11=kk=-­

l+De' (62) 

The particle i is not. only pulled by the opposite particle i, but it is also attrac­

ted by all particles surrounding it, though the effect of remote particles upon it 

may be very slight and negligible. For such case, it will be generally very 

tremendous that we express it by a simple mathematical equation. 

He intends to use a conventional method in order to treat this problem and 

to determine the magnitude and direction of resultant forces. 

As there enter in general two elastic constants into elasticity of an isotropic 

body, it is convenient to conceive two kinds of resultant forces, which are as­

sumed from the condition of symmetry to be one the normal force ii, JJ ·and fik 
and the other the inclined forces [}, Jk and Iii acting in the direction dividing 

the intersecting angle of prinapal axes. The distance ij changes its value with 

lateral strain e' as well as longitudinal strain e and accordingly the internal 

force [} changes. Let us 

assume it is of the form 

similar to eq. ( 61). 

As a part of elongation 

of ij is, as seen from Fig. 

5, e/2,/ 2 due to the elon­

gation of -ii and the length 

ij is l/J/2, the strain in 

this direction becomes e/2, 

while the other part of it Fig. 6 
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is similarly caused e' /2 due to the elongation e:' of jj. Therefore, the internal 

force between particles i and j is expressed by 

(63) 

Now, let us assume that they are arranged regularly n particles on a plane 

whose area is, for example, 1 cm2 and consider the condition of equilibrium of 

forces in the direction normal to the plane, then we have. 

ii+Z[J cos ~ +2ikcos ~ =~ 

__f_e:_+zvz· · C'( e: + e:' )/Z_=~ 
l+De: l+D(e:+e:')/2 n 

The internal force between jj particles is written similarly as 

.. Ce:' 
JJ=l+De:' 

and that of jk is obtained from Fig. 5 as follows : 

-;- C'e:' 
Jk=--­

l+De' 

therefore, the equation of equilibrium of forces in the direction jj is· 

I]+2I[ cos ~ +2j7i cos {=o 

since dJ 0 

Ce:' .-- C'(e:+e')/2 - C'e' ----- +v~ - -- ·· ---+vz --=o 
l+De' . l+D(e:+e:')/2 l+De:' 

For materials which follow the Hooke's law it becomes 

ce:' +v2 c'-~-t:.£+v2 c'e:'=o . 2 

then 

-- ------ --· -µ--_ 1~1 C' 1 
e: v!;f C+3C' m 

./-c m=v 2 -+3 C' 

(64) 

(64') 

(65) 

(66) 

(67) 

(67') 

(68) 

If we .take C' =4C as a special case, m is equal to 3.354 and µ=0.3 which 

correspond to the value for mild steel. 

Next, let us consider the state of pure shear where we can put a,=a= --a1, a.,=0, 

then 
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:+✓ 2.~+v2ik=: 
11 
I 

H+v2 jk+v2 ji=-­
n 

kk+✓-2- ki +✓-2 li]=O 

83 

(69) 

From the first and second equations of the above ( 69 ), we obtain the same 

relation 

( C' ) 11 
e c+ v2 =-,, 

while e=(m+l)11/mE 

E_n(m+l)(c+ C' ) 
m v2 

Using the relation (68), we get 

E_n(m+l)(m-2)c I 
m(m-3) ' 

G n(m-2)c 
2(m-3) ' 

(70) 

Finally, we deal with the general state of stress and let three principal stresses 

be 11,, 11J and 11,,,, then we have 

ii ~~2 ~+v ~ :=:~ l 
v2 ji+jj+v2 jk=-1. j 
vz kl+vzliJ+kk=ik 

(71) 

where internal forces between particles are shown 

and 

From these equations, we get the following : 

ii J] 
e, C v··' eJ C D .. ' - u - JJ 

and 

e,+eJ~ ij 
2 C'-Dij' 

l 
e1+11:e~ jk e11:+e,~ ki r 

2 C'-D]k' -2- C'-Dki 

(72) 

or 
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IT + Tl ~2 fJ -1 
C -.!!ii C ~ _!! jj . G' -=_Dij 

jj + --1!!!_~~2- jk -
C --_}!H C-::kk C' --.!!jk j 

kk + ii ~2 ki 
C-Dkk C -Dii C'-Dki 

(73) 

Six internal forces of particles are expected to be obtained from the above 

equations (71) and (73), but it is not inevitable that their solution will be of 

much complicated expression. While, the second term in the denominator of 

each fraction in eq. (73) is very small and moreover rigorously considered eq. 

(72) will not strictly hold, because the resisting force due to the change of the 

direction occurs in ij, jk and ki. 

Considering these effects, tbe author neglects the insignificant terms in eq. 

(73) and put simply as follows : 

(74) 

Then, from these simultaneous equations of first order, we can obtain the 

solution 

in which 

and 

And then, 

C(2C +3v2·c1
) 

L 
(C+2v 2C')(2C-'t--i/ 2 C') 

./-c m=v 2 -+3 C' 

___ m(m 3) L-----­
(m- 2)(m--1) 

, Accordingly, eq. (75) is written as follows: 

We see that eq. (77) coincides to the foregoing eq. (68). 

(75) 

(76) 

(77) 

(78) 

(79) 
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By using the relations (70) and rewriting D=A, we have 

(80) 

This equation is the same as eq. (20) in which the coefficient (/Ji is expressible 

in an equation of second order of d•t and is a generalized form of Cox and 

Lang's equation. 

In order to treat this problem referring to any rectangular coordinate axes, 

we consider a similar model in a body which is submitted to normal stresses d.,, 
dy and de acting on the planes perpendicular to each of the co-ordinate axes. 

Then we can express the equa­

tions for equilibrium as follows : 

xx :~2 x~ +vz xz=:; l 
V 2 yx+yy+vz yz=d 11 

v-z i.x+v_2_ -;;,+ n=i J 

(81) 

In addition to these normal 

stresses, shearing stresses act 

also on those planes in the• 

general case. They distort the 

lattice of particles as shown in 

Fig. 7. 

Accordingly, the internal 

forces in the inclined direction 

X 

y 

Fig. 7 

xy, yz and zx change their values by the magnitude a.,v, a11• and a • .,. 
Therefore, the left force in Fig. 7 becomes 

and the right 

The sum of these forces in x:x direction is 

1 -- .._ 1 - . /-- -
v2(xy+xy)= v2 •2xy=v 2 xy 

y 

(82) 

which does not give no effect on eq. (81). The relation between the shearing 

stress -r, and a., 11 is written as 
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o,, 11 is tbe resistance due to change of inclination of xy line in addition to the 

elongation of it. It may be considered that tbe part of this resistance due to 

change of angle is very small when m is equal to 4. 

10. Conclusion 

Regarding to the elasticity of such materials as cast iron in which tbe rela­

tion between stresses and strains can not be ex·pressed by a linear equation, the 

author has pointed out that the law of superposition should not be applied and 

established a new theory and thereby derived a relation between stress and strain 

e;=/tCa.1) 

a,1=ai-lcar+-a1:) 
m 

by suitable assumption which he verified from the point of view of intermolecular 

forces. 


