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Synopsis 

This paper deals with the forced vibration of a single-degree-of-freedom 

system under simple harmonic force. The author discussed this problem in two 

cases separately; namely, the one of symmetric restoring fo,ce and the other of 

unsymmetric one. As the result of studying, the author expounded a graphical 

solution which rs an approximate one but will be very conveniently used to get 

the steady vibration of this system. In this paper, the author proves by adequate 

calculations that the graphical solution is practically available for obtaining re­

sonance curves and phase ·difference curves in the system with any non-linear 

restoring force. 

Generally, the equation of motion in this case is expressed as 

mi +ex+ /(:x)=Po sin wt, 

where m is the vibrating mass, c the viscous damping coefficient, /(x) the resto­

ring force with any non-linear characteristic and P O sin wt the simple harmonic 

force acting on the vibrating mass, and :x means displacement of the mass, t 
time, x and x velocity and accelaration respectively. Dealing with this problem, 

it is conventional to discuss the solutions in the two cases ; that is, the case 

when /(:x) is symmetric as to :x=O and the other case /(:x) is non-symmetric. 

I. Forced Vibration of a Sy~tem with Symmetric Restoring Force 

1. First, we· will calculate the case when the characteristic of restoring force 

is expressed as f(:x)=a.x-{3:x3 • Equation of motion is, then, 

mx+cx+o.x-{3:x3=P0 sin wt, (2) 

We assume that displacement is approximately expressed as the following, 

x=a1 sin wt+ b1 cos wt, (3) 
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where a1 and b1 are unknown constants. Now if we apply (3) to (2) and com­

pare the coefficients of sin wt and cos wt in both sides of equation (2), the follow­

ing relations are obtained; 

{r1.-mw2 -!0ca12 +b12 )}a1-cwb1=Po I 
3 ' 

{a-mw2 - 4 0Ca12 +b12 )}b1 -:--cwa1=0 

(4) 

If we put the displacement X=Xma., sin ( wt- q, ), then amplitude Xma., is equal to 

v a12 +b12 and phase difference <p is sin-1 v a~/~b
12

• From eq. ( 4) we get, 

Po 

0 

Fig. I 

(5) 

3 where 0'=4 0, From eq. (5) 

and (6) we can calculate Xma., 

and <p. A survey of the eq. 

( 5) shows. in Fig. 1 o~ left 
hand side represents the cor­

rected curve of restoring force 

f1(Xma.,) which is corrected by 

! 0 .from original curve f(x) 

in this case, and the first term 

on right .hand side represents 

the straight lin~ . passiiig the 
origin and making the angle 
tan- 1 mw2 with' the abscissa; 

the second term an ellipse with. 

2P O and 2P O as the length of 
CW . 

two axis. The required ampli• 

tude will be obtained by draw­

ing the composed curve of the 
latter . two,. superposing the 

former on it and finding the 

cross point of the both curves 

as shown in Fig. l. Study of 

Eq. (6) will tell that the gra-
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phical solution as to the value of <P _is po~ibl~ . too 

as shown in the same figure. Thus we obtain a 

group of .the resonance curves of a vibrating 

system with non-linear restoring force of the form 

ax-{,x3 under various values of Po as ahown Fig. 

2.- We will now proceed to evaluate the Xma., and 

w, corresponding the point P on each one of those 

resonance curves where maximum amplitude 

t 

Fig. 2 

dx · · occurs. If we calculate d::°' from eq. (5) and put it to zero, we have 

· Applying (7) to (5) and thus eliminating w, we get, 

( 
c2) /( c2, 2 4mp02 a-- ± a--) ---{,' 

2 4m't 4m c2 

.X,,.a., , 2{,' • 

97 

(7) 

( 8) 

The position of point will be determined by (7) and (8). Next, we will deter­

mine the position of point Q where phase difference is tp=;. From eq. (6) we 

get, 

2- Po2 CJJ----. (9) 
C2 •X~a., 

Eliminating w from (9) and (5), we get, 

a± la2 -- 4mPo20' 
~ : t,2 

(10) 

Equation (9) and (10) will determine the position of point Q. From eqs. (8) and 

·oo) we see that Xmo., at P is slightly larger· than that of Q because :: is very 

·small compared to 11.. Similarly from eq. (7) and (9), we see that w correspon­

ding to point P is smaller, though slightly, than w corresponding to point Q. 

Anyhow, the distance between P and Q is so small in either direction that it can 
actually· be considered not to exist, or both points coincide. Let the locus of the 

point Q be a curve ABC in Fig. 2. At the point Q, P 0 =cwxma.,,, then ~rom eq. 

(5) the curve ABC is represented by the following formula, 

.(11) 

Now in the free-oscillation of this system the equation of motion is expressed 

as, 
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(12) 

The suffix n of .x in the above equation means the variable is the one in the case 

of free-oscillation and not of forced vibration. We assume that the displacement 

Xn is approximately expressed as, 

(13) 

Then the relation between ,x,.,,.,.., and wn becomes, 

a • .Xnmaz - /3' .x!mao, =mw~ . .Xnmaz- (lla) 

This equation identically equals the equation (11). 

2. Next we will discuss the general case of any non-linear restoring force 

/(.x). If the left hand side of eq. (5) could be obtained in any way, we shall be 

able to apply the above mentioned graphical solution in this case. We put the• 

left hand side /i(.x,,.,..,), then equations (5), (11) and (lla) become, 

fiCxma.,)=mw2.Xmaz±V Po2 _:(cw.X,naz)2 .• 

f1(.x,,.,..,)=mw2.x,,.,..,, 

11(.Xnmaz)=mw~nmaz, 

(5a) 

(14) 

(14a) 

In the free-oscillation of a system with any non-linear restoring force /(.x), the 
, 2 

relation between maximum amplitude .Xnma" and circular frequency wn (==;) can 

be obtained by the formula m, 

(15) 

We can calculate exactly the double integration of (15) in some cases, and in 

other cases we can calculate approximately at least. From this relation we can 

obtain graphically /i(.Xmaz) as shown in Fig. 4, then the graphical solution of 

eq. (5) and (5a) can be operated. We shall now discuss the actual procedure of 

the graphical solution. Firstly we find the relation between wn and ,x,.,,.,.., by 

integrating (15) in some way, then draw a curve of this relation as illustrated 

in Fig. 3. Take a point P arbitrary on the curve and let its coordinate be w,.0 

and ,x,.0,,.,.,,. Then, on a diagram like the one shown in Fig. 4, locate the cross 

point P of the perpendicular line Xmaz=.Xnomaz and the straight line mw~0.x,,.,.., 

(1) Timoshenko, Vibration Problems in Engineering, 1937, 120. 
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which pass the ori­

gin. Carry out the 

same process on each _ 

point on the curve 

and the one of 

/1(x,,.,,..,) as shown in 

Fig. 4 is acquired. 

We shall call this 

curve "corrected cha-

m<JIJJIIQ,( 
' , 

p,,/ f;(I~ 
, I I 

la,IWIJ /1 , I 
/ I 

, I 
/ I 

/ ' / I 
/ I 

/ I 

/ ' I 

racteristic curve of Fig. 3 Fig. 4 

the restoring force". Making use of this /i(x,,.,,..,) we can get resonance curve and 

phase difference curve by the graphical solution of (5) and (5a). This is what 

is called the method by free-oscillation and is the one devised by the author. 

Tbis method provides closer solution to real value than the 
0

Appleton's ·c2), be­

cause the harmonic terms of higher order of the displacement Xn are taken into 

calculation in the course of obtaining the curve ABC. Besides it does not neces­

sitate any restrictions on the given curve of restoring force, extending the cate­

gory of the problems to which the method is to be applied. Only difficult point 

in this method is the procedure to acquire the relation between the frequency of 

free-oscillation and the displacement. But then, the following three steps will 

help considerably to surmount tbe difficulty. 

(1) If /(x) is given in a simple formula, integrate twice the equation (15). 

In some cases the elliptic integral is useful for the purpose. 

(2) If the curve of f(x) is decomposable into several straight lines, use 

Klotter's <3 ) method which is handy for such cases. 

(3) If l(x) is given in complicated curve that could not be expressed in 

analytical form, integrate graphically the equation (15). Far more trouble is 

inevitable in such cases than the above two. 

II. Forced Vibration of a System with Non-symmetric Restoring Force 

1. First, we will calculate the case when the characteristic of restoring force 

is expressed as f(x)=rJ.X+{1x2 • Equation of motion is then, 

mx+cx +rJ.X+{1x2=P0 sin wt. (16) 

We assume that displacement is approximately expressed as the following, 

(2) E. V. Appleton, Phil. Mag. 1924, 47, 609. 
(3) K. Klotter, Ingenieur-Archiv, 1936, April, 87. 
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x=b0 +ai sin wt +bi cos wt, (17) 

where b0 , ai and bi are_ unknown constants. Now if we apply (17) to (16) and 

compare the coefficients of sin wt, cos wt and constant coefficients in both side of 

eq. (16), the following relations are obtained: 

0bo2 +a.bo+ ~(ai2+bi2)=0, 

(rl-mw2 +20b0 )ai -cwbi=Po, 

cwai+ ( a. - mw2 + 20bo )bi = 0. 

From these equations b0 , ai, bi can be evaluated. 

If we put the displacement to 

x=bo + Xmaz sin ( wt- <p ), 

from eq. (19) and (20), we get, 

Xmaz(a.-mw2 +20bo)= ±v p o2 -(cwXmaz)2 •. 

· While from (18), it follows, 

-a.±V a.2-202(ai2+bi2) 
20 

(18) 

(19) 

(20) 

(17a) 

(21) 

Double sign in the above must be plus ( + ), because x= -- ;0 means the point 

where the change of restoring force relative to x is zero. Therefore, 

bo 
-a.+Vrl2 -202 •Xmaz 

c20 

Replacing the b0 in (21) by (22), 

02 04 06 
a.•Xm,az--•X~a.,·-2-a•X::.a,,-~2 s•Xmaz- ...... a. a. a. 

=~w2xma.,±VPo2 -(cwXmaz)2 • 

(22) 

(23) 

This equation makes it possible to evaluate Xmaz just like eqs. (5) and (5a). 

That is, the graphical solution shown in Fig. 1 will be similarly used. Corrected 

characteristic curve of the restoring force therefore given by the following equa­

tion, 

-l"X (1-?_[fX2 )½ - ..,., max a2 ma:11 • (24) 
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l>o is evaluated by the following equation if .x,,... .. is known. 

(25) 

Lastly the phase difference rp will be calculated by the following, 

(26) 

This corresponds to equation (6), and also q; is obtained by graphical solution 
shown in Fig. 1. 

2. Next we will discuss the general case of any non-symmetric restoring 
force f(.x). In the treatment of a forced vibration of a system with non-syrn-

' metric restoring force, major problem is how the 

maximum displacement on positive side .x1 and 

negative side .x2 vary according to the change of 

w of the. external force P 0 sin wt. Generally ,x1 

and .X2 do not assume the same value and natur­

ally the center of the vibration-displacement is Fig. 5 

different from the origin. As we have pointed out in above discussion, .x can be 

expressed as (17a) for practical use, and this is represented in Fig. 5. Therefore, 

(27) 

These relations hold not only in forced vibrations but also in free vibrations. As 

stated in above discussion, the amplitude ,x,,.,,., in eq. (17a) is calculated by (23) 
and with this .x,,.,..,, b0 is obtained from eq. (25 ). As the generalization this proce­
dure, the author suggests the following method of calculating ,x,,.,.., and b0 in the 

problem of the forced vibration with any non-symmetric restoring force. 

As the first step, replace the non-symmetric restoring force by a symmetric 
one by some way or other and calculate .x,,.,.., in this supposed system of vib­

ration. In the second step, calculate b0 as a factor arising from non-symmetric 

characteristics. The resonance curve of the vibrating system with the symmetric 
restoring force will be represented as in Fig. 2, according to the magnitude of 
the external force. The curve enveloping the tip of each curve coincide with the 

ctirve ABC, or the free-oscillation curve, as was already explained in I. This 
fact suggests that the wrced . vibration of the system with symmetric restoring 

force, after all, depends upon the free-oscillation. It is easily seen, too, that in 
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the system with non-symmetric restoring force, the situation is the same as above. 

Let us explain more in detail. From a given 

characteristics of non-symmetric fore~, the value 

of Xnmaz for free-osciBation will be acquired as 

shown in Fig: 3. From the figure we obtain the 

/i(Xma.,) as shown in Fig. 4 in the same way as 

in the symmetric vibration. We adopt this new 

curve /i(Xma.,) as the hypothetical symmetric cor­

rected restoring force. Application of the graphi-

cal aolution as shown i_n Fig. 1 will bring about 

A 

the resopance curve as shown in Fig. 6. In this Fig. 6 

figure the curve DGH is the one corresponding to ABC in Fig. 2. 

F 

-w 

Next step to take is to evalua_te ~0 • Now suppose /(x) is given by ax+/jx2• 

Then the equation of motion will be eq. (16). Assume that, 

x =b0 + a1 sin wt+ b1 cos wt+ a2 sin 2wt + b2 cos 2wt + · · · · · · . (17b) 

Applying (17b) to (16) and carrying out the same step as we did before, we 

have the following~ 

where 

Therefore, 

1 
0ba2+abo+2 i,S=O, 

S= 1: (af +bi). 
t-1, 2, •.. 

bo 

l (28) 

(29) 

In· the double sign plus must be taken because x= -;0 represents the point 

where the restoring force's relative change as to X is zero. 

In the equation (16), we now consider the case when P 0=0 and c=O; that 

is, the case of free-oscillation. In order to prevent confusion, we shall put suffix 

n to the variables for this case. The equation of motion will be taken, neglec­

ting damping force, as 

(30) 

Let, 

Xn=bn0 +an1 sin Wnt +bn1 cos w,.t +an2 sin 2w,.t +b,.2 cos 2wut+ · ····· , (31) 

where w,. is the circular frequency of fundamental· natuPal oscillation. Replacing 

Xn in (30) by (31) as before, we have, 
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where 

Double sign must be plus. Therefore if, 

S = Sn, 

we have from (29) and (32), 

bo = bno, 
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(32) 

(33) 

As it is already clear, .a2, a3, a4, ...... and b2, b3, b4, ...... are smaller than a1 and b1, 

As an2,ans, ..... ; and b,.2,b .. 3, •••• ,. are smaller. than a,.1 and b,.1 in the same way. 

Therefore the condition (33) is actually the same as the following, 

This means that if the amplitude x1114., is the same in both the free and for­

ced vibrations, the values of b0 , or the deviation of the center of the vibration 

from the origin, will also be the same in both vibrations. In Fig. 6, b0 at point 

E and G are the same. Therefore the relation between xma., and bo. in fre~oscil­

lation remains as it is in the forced vibration. Thus the value of X,na., and bo 

of the forceci vibration of the 

system with non-symmetric 

restoring force will be deter­

mined. In using the above 

method, the two curves of the 

free-oscillation under non­

symmetric restoring force, 

that is, the one is the curve in 

Fig. 3 which shows the rela­

tion between X~ma .. and w,., 
and the other is one in Fig. 

-bRo 
Fig. 7 

-fz(I) 

rm 
t 

Fig. 8 

7 which shows the relation between b,.0 and Xnma21, We shall now discuss for a 

while about the method to acquire the required curues. 

Let the non-symmetric restoring force be /i(x) when x>O, and -/2(.x) when 

x<O, as illustrated in Fig. 8. x1 and X2 indicate the maximum amplitudes on 

positive and negative sides respectively. If we assume the displacement curve 

to be as shown in Fig. 5, then i=O at t=ei, and (=e2, Therefore the kinetic 

~nergy is zero here. Potential energy assumes the following two forms respecti­

vely, 
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X2 

I fz(x)dx. 
0 

At t=es the potential energy is zero and the kinetic energy is ~(.x)!-o. There­

fore if the system is without <;J.amping force, from the law of energy conservation, 

XI X2 ! /i(x)dx= ~ m(.x);=0 = i f2(x)dx. (34) 
0 0 

The above relation is illustrated in Fig. 8. That is, the hatched parts for x>O 
and x<O have the same area. Thus given / 1(x) and /z(x), the relation between 

x1 and X2 is decided by equation (34) and the relation between x-., and bo by 

eq. (27). 

Next, at x>O and x<O the following equations of motion are established 

respectively, 

m.x+ /1(:x)=0, 

mx-tz(x)=O. 

(35) 

(36) 

Now let the time required for x to attain x=x1 and x= -- X2 from x=O be respec­

tively t1 and t2. 

These t's can be calculated easily by the following two double integrals. 

x2 

~ dx 
t2= ·oJ1Jj:(.%")dx 

m.lx 
Fundamental circular frequency w,. of the free-oscillation will be then, 

7T: 
Wn=tl +t2 • 

(37) 

(38) 

(39) 

Relation between x,,.,.., and w,,. will be obtained by (37) to (39). w,. is generally 

a function of amplitude except when / 1(:x) and /z(x) are linear. Integration of 
(37) and (38) is not generally possible unless /i(x) and / 2(x) have some parti­
cular forms. However, graphical integration will give the same result as the 
numerical calculation when the latter is not possible. And if the curve of /(x) 
is decomposable into several straight lines, Klotter's method is· useful. 

The above mentioned method. is what is called the method by free-oscillation 

and is the one devised by the author. 


