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1. Introduction 
When we study theoretically the surface potential due to some electrical 

sources in electrical prospecting, we usually pick up the medium in which the 

orebody lies as the homogeneous and isotropic one. However, it is evident that 

this a88Umption is too far from the real circumstances. for the fields we try to 

prospect are generally heterogeneous and anisotropic. Therefore in interpreting 

the field data obtained by the electrical prospecting, it is very important to study 

the effects of anisotropy of media on the surface potential curves. As for the 

resistivity method of electrical prospecting this problem has already been treated 

by some authors, for instance, by Schlumberger and Leonardon 1), by Stichter 2), 

by Muller S) and by Pirson 4 ). 

·The present author applied the problem for the case of the spontaneous 

polarization method of electrical prospecting and will report here the results 

obtained for the case where the polarized orebody of the rod type lies in the 

anisotropic medium. 

2. Theoretleal Conside•atlons 
First of all, let us consider the simple case, that is, the medium in which 

the orebody lies is composed of a single anisotropic stratum. 

Defining the resistivity parallel to the surface plane as P'fl. and the resistivity 

perpendicular to it as p.,, we can denote the anisotropy coefficient a as follows: 

(1) 

Let us take a rectangular co-ordinate system (~r-system) of which the 

.r,v-plane is parallel to the surface plane and r-axi& is perpendicular t? it, and 

al!IIWtle an electrical point source C is given in this medium. Then the current 

densities through the planes perpendicular to the axes o~, Oji and oa are given by 

the following expressions: 
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. 1 8Vi 
,., =- p1, 0 8x' 

. 1 8Vi 
... ,v.=:=-p,.· fJy' 

(2) 

. 1 8Vi 
h =-()ff

0 8z' 

where Vi is the potential of any point in this medium. 

Putting (2) .in the following expression, the condition of the conservation of 

current, 

we can easily obtain the following result, 

1_ (o2
V,. I+ o2Vi)· +1_• 02Vi = 0 

Ph ox2 oy2 · Pff oz2 ' 

(3) 

(4) 

Now let us take another rectangular co-ordinate system a·7J_--system) which 

has the following relations against the old one, 

~ = vax,] 
7J =. v <-' y, -

r; = z. 

By using the relation (5), we can write (4) as follows: 

(5) 

(6) 

Therefore, with respect to this new co-ordinate system a7Jr: ), the potential 

Vi satisfies the Laplace's equation for the homogeneous and isotropic medium. 

And the resistivity p' for. this new ·space becomes as follows: 

(7) 

(Refer to Appendix 1.) 

Thus we can treat the anisotropic problem as the isotropic one by using the 

relatio:ns (5) and (7). 

Hence, when two point sources which represent the polarized orebody of the 

rod type are given at points A(a1, 0, d 1 ) and B(a2, 0, d 2) in the anisotropic 

medium (xyz-space), we can consider the corresponding points A'(J/a ai, 0, di) 

and B'(va a~, 0, da) in the isotropic medium (~7),-space) by using the relations 

(5) and (7) and the surface potentials due to these sources can easily be cal

culated. Namely, the potential V of any point P(~. 7), 0) on the surface is 
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given by the following equation: 

V = _ p' I [ 1 _ 1 ]. ( 8 ) 
2

1r ✓ (e-vaa1)2 +712 +df jce-:v <-<02)2+712 +d~ 

And also by using (5), equation (8) can be written as 

V = _ p2l [ 1 _ 1 ] ~ ( g ) 
7r j a(x-a1)2 +ay2 +df J a(x-a2)2 +ay2 +d~ · 

Next, let us treat the case of two-horizontal layered and anisotropic strata. 

If we assume the resistivity of each layer parallel to the surface plane as 

µ1,., p21,, and those of perpendicular to it as P1.,, p2., respectively, the anisotropy 

coefficients of each layer a1 and a2 can be represented as follows: 

a1 = P11tf Pl"• } 

a2 = P211./ p,z.,. 
(10) 

Now by using the same procedure mentioned above, we can convert the 

anisotropic layers (xyz-space) to two isotropic layers (e171'i;'-space and e"71",;"
space) separately. Namely the upper anisotropic layer can be transformed into 
an isotropic layer by 

e' = ~x. ] 71' = va1Y• 
r;' = z, 

(11) 

and p' = P1Tu (12) 

where p' is the resistivity of the new isotropic medium. Similarly the lower 

anisotropic layer can be transformed into an isotropic layer by 

e" v-

l 
= a2X, 

71" =i/a;y, (13) 

i;" = Z, 

and p" = P21u (14) 

where p" is the resistivity of the new isotropic medium. 

Again it can be easily proved that the Laplace's equ!}tion is still satisfied in 

the space (e"'71"',;"') which is obtained by the following transformation: 

e"' = Ja1e,, = Va1X = e', a2 

71"' = ja1 ,, 
a2 71 = ~y = 71', (15) 

<:"' = ja1 i;" = ja1 z, 
a2 a2 
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and by this transformation the resistivity of the medium also changes to the 

following value, 

(16) 

Therefore we can also treat the anisotropic problem as an isotropic one by 

using the above transformations and the formula for calculating the potential 

which satisfies the boundary conditions of these 

new isotropic spaces also satisfies the boundary 

conditions of the corresponding anisotropic media. 

(Refer to Appendix 2.) 

For instance, when two point sources which 

represent the polarized orebody of the rod type are 

given in the anisotropic media at A(a1, 0, d) and 
Fig. 1 

B(a2, 0, h +l) as shown in Fig. 1, we can easily find the c0-0rdinates of these 

sources in the isotropic media by using equations (11) and (15); Then the formula 

for calculating the potential at any point P(e, r;, 0) on the surface is given by 

V =- p'I[f kn 
2n- h=O V(~-v a1 a1)2 +7)2 +(2nh +d )2 

+ :E ~ 
R=l va-v a1 a1)2 +r;2 +(2nh-d)2 

where h is the thickness of the upper layer and 

k = p"'-p'. 
p"' +p' 

(17) 

(18) 

By using the equations (11), (12), (15) and (16), the above formula can 

also be written as 

+ :E ~ 
"=I Va1(X-a1)2 +a1y2 +(2nh-d)2 

-(1 +k) :E k" ] ' (19) 
nmo ✓a1(X-a2)2 +r1.1y2 +(2n+l h+ laiz)2 

'V a2 



where 

(17) or (19) is the 

formula for the case 

where two electrical 

point sources lie over 

the aniBOtropic layers 

and similarly we can 

also find the formula for 

the case where two 

sources together in the 

upper layer or in the 

lower layer. 

3. Examples of 
Numerical 
tions and Considera

tion of the Results 
Numerical calcula

tions can be carried out 

by using formula (_9) or 

(19). 

For the ·case of a 

single anisotropic stra

tum, the author com

puted the surface poten

tial of the polarized 
orebody of the rod type 
dipping 45 degrees, a 

being 9, 4, 1, ! and ! . 
In Fig. 2 the surface 

potential curves along 

the .x-axis are shown 

and in Figs. 3 and 4 
the equipotential lines 

obtained on the surface, 

I. lTO 
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when a equals to 4 and 

to ! respectively, are 

shown comparing with 

an isotropic case. 

For the case of the 

two-layered and aniso

tropic strata, the .author 

carried out the calcula-
. . 

tion for the case ·where 

the polarized orebody of 

the rod type dipping 45 

degrees lies · over two 

anisotropic~ l~yers. 
• In Fig. 5 the surface 

potential ::Curves along -

the x-,..axis, obtained 

when either the upper 

layer or the lower layer 
is isotropic and the other 

is anisotropic, are 

shown. The curves 

along the .x-axis, obtain

ed when both layers are 

anisotropic and a1 equ
als to a2, are shown in 
Fig. 6; and those ob

tained when a 1 does not 

equal to a2 are shown 
in Fig. 7. 

And it must be no

ticed that all these re

sults are obtained for 

the same electrical sour
ces, that is, for the same 

polarized orebody. · 

By comparing these 

results with the isotropic 

case we can summarize 
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the effects of anisotropy 
on the potential curves 
as follows: 

a) When a is great

er than 1, in other 

words, when the current 
can pass through the 
bedding plane more ea

sily than along it, the 

range of the negative 

potential on the equi

potential lines becomes 
narrower, but the value 

of the negative poten
tial at the negative cen· 
tre becomes a . little 
larger. 

b) On the other 

hand,. when a is less 
than 1, in other words, 

when the current can 

)tass along the bedding 
plane more easily than 

through it, the range of 

the negative potential 

on the equipotential 

lines. becomes wider, but . 
• I the value of the negative \ 

potential at the negative 

centre becomes a little 
smaller. 

c) The effects of 

anisotropy on the posi

tion of' the negative cen

tre is negligibly small. 

d) For the case of 

the layered and aniso
tropic media, the effects 

... 
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of layers and anisotropy are appeared together in the curves. However, when 

Pi• does not differ so much from fJ2,,. as these examples, the effects of anisotropy 

are remarkably larger than those of layers. 

e) If either the upper layer or the lower layer is anisotropic, the effects are 

larger when the upper layer is anisotropic. 

f) If both the upper layer and the lower layer are anisotropic and the 

anisotropy coefficients of both layers are equal, the curves obtained are similar 
to those obtained in the single anisotropic stratum. 

g) If both the upper layer and the lower layer are anisotropic and the 

anisotropy coefficients of both layers are different, the effects of the upper layer 

are predominated than those of the lower layer. 

4. Conclusions 
The author reduced here the formula for calculating surface potential of the 

polarized orebody of the rod type in the anisotropic media. 

From the results obtained by numerical calculations it can be concluded that 

the anisotropy of media has the considerable effects on the surface potential 

curves, especially when the anisotropy coefficients are much larger or smaller 

than 1. 

In practice it is supposed that the anisotropy coefficients are not so much 

larger· or smaller than 1, but also it is reported that in stratified structures the 

electric current tends to pass along the bedding plane more easily than through 

it. Hence, we must be careful in interpreting the field data of the spontaneous 

polarization method obtained in the anisotropic stratified media for the effects of 
anisotropy. 
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Appendix 1 

Let us consider the following transformation by which the anisotropic xyz
space, of which horizontal resistivity is p,. and vertical resistivity is p.,, changes 

to the isotropic ~'1],-space of which resistivity is p', 

~ = ax. l 
'1J = ay, 

' = cz. 

As shown in Fig. 1 if we consider an 

infinitely long electrical line source ci 
which the intensity of current per unit -

length is J, the current ·density ir at the 

point (~ y) separated from the line source 
with r in this xyz--space is given by the 
following equation; 

• Jdz 
ir = -

2nr 

(1) 

z 

(2) 

while the current density i 8 ' at the corresponding point in the ~'1],-space is also 
given by 

iB' = 1'k 
2nR 

However, by equation (1) the following relation can be obtained. 

R = avx2+y2 = ar. 

(3) 

(4) 

Substituting ( 4) to (3) and comparing the result with (2), we can easily obtain 
the following relation, 

• , Jcdz • c 
I B = 21tar = Ir fJ 1 

hence, (5) 

On the other hand, if we represent the electrical potential at any point in 
these two spaces as V, the current densities at above points can be shown as 
follows: 

(6) 
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Substituting (6) to (5) and considering the relation 

av 1 av 
aR = a· ar • 

we can obtain the following relatkn in the last, 

p' = l. pr., 
C 

Next as shown in Fig. 2, let us con-

sider the el~trical plane sources of infini

tely wide in both the .xyz-space and the 

~7}(-space which pass the origin and of 

which the current densities per unit area 
are j and j' respectively. 

Then the intensities of the electrical 

% 

0 

field Ea and E,' at any corresponding points ca, 

in both spaces are given by 

Ea= 2njp.,, } 

E.' = 2nj'p'. 

But there exists another relation 

jd.xdy 

and by the relation of (1) it follows 

j' = \ j, 
(' 

hence, substituting this to (8) we obtain as a result 

E,' 1 p' 
Ea = a2 ·p.,' 

On the other hand, 

then 

From (9) and (10) we can easily obtain 

$ . 

Es 

i f. 

~ 

Fig. 2 

(7) 

i' l 
E; 

, 

(bJ 

(8) 

(9) 

(10) 

(11) 
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Consequently, when a and c take the following value as shown at equation 
(2) in the original paper 

a= va. 

1 
c= 1, 

a= 
pr,, 
Pe. 

both (7) and (11) show the same value of resistivity p' as 

(12) 

Appendix 2 

As shown in original paper, we can treat the anisotropic problem as an 

isotropic one by using suitable transformation of co-ordinate axis. Consequently 

here let us prove that the formula for calculating the potential which satisfies 

the boundary conditions of the transformed isotropic spaces also satisfies the 

boundary conditions of the original anisotropic spaces. 

As has already shown we can transform the anisotropic xyz.:.Space, of which 

the horizontal resistivities in the upper layer and the lower layer are p1r,, and 

p2r,, respectively and the vertical ones in resP.E'Ctive layers are p1• and P2•• into 

the isotropit ~7},-space of which the resistivities in the upper and the lower 

layers are p' and p"; and also the equations of transformation of axis in the 

upper layer are 

and 

~ = Va1 X, l 
7J = i/aiY, 

'= z,. 

and those of in the lower layer are 

~ = 
Va,•• i 

7J = v'a1>'• 

' = ~<J.1 -z, 
a2 

and p" = p2r,,; 

where PlA 

l a1 -, 
Pl• 

<J.2 
P2A 
P2" 

(2) 

(3) 

(4) 

(5) 
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(1) Let us ftrst consider the case where an .electrical 

point source lies in the upper layer. 

Now let us consider with regard to the transformed 

h,-space. As shown in Fig. 3 if we take a cylindrical co

ordinate system of which origin lies directly over the point 

source on the surface plane and ,-axis takes the down-

ward direction as positive, then the potential Vi at any 
Fig. 3 

point in the upper layer and ½ in the lower layer which satisfy the boundary 

conditions in this space are given by 

and 

where 

p'l (oo { e-2""(e>-'+e->-')} Vi= 4n Jo (eH+e->-&) e->-,+k l-ke-2>.11 loOr)dJ., 

p"-p' 
k = p"+p'. 

(O<,<d) 

(6) 

(7) 

(8) 

From equations (1) and (3) the relation between the cylindrical co-ordinate 

(r, <p, ,) in the e~,-space and the corresponding one (R, fD, z) in the xyz-space 

are shown as 

r = va1 R, 

({I = (D, 

(9) 

Then by using (9) we can transform the equations (6) and (7) with respect 

to (R, 0, z or z' ), obtaining the following results, 

Vi=p'[ roo (e>-b+e->-b) {e-).JJ+ke-2>-ll(e>-•+e->-•)} J (J.R)d). (10) 
4ir Jo 1-ke-2M O ' 

(d>z>O) 
and 

The boundary conditions in the xyz-space are 

(12) 
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and 

(13) 

From equations (10) and (11) we can easily obtain 

(14) 

and 

(15) 

Hence equations (10) and (11) satisfy the first boundary condition, that is, 

equation (12). _ 

On the other hand, by using equations (2), (4), (5) and (8) we can get tbe 

following relation from equation (11). 

p' { e-2>-ct } -(e>-b+e-M) -Ae-M+k---~Oe>.ct-Ae-'-") 
r1" l-ke-2M 

-(e>-b+e->-b) , e->-ct r1.1(k-l) 
- ·11• l-ke-2>-ct 

=(e>-b+e->-b)•A•e-M, -),!P11t•r1.1•v~ • 
(l-ke-2 Xr21ai/ai +r1,.v',1.2) 

(16.) 

Similarly_ ftom equation (12) we also get 

ri_.e-M (--A /,1.1).eo•(e>-b+e->-b) (1+k l+e-~>-:") 
r2" . 'V r-<2 1-ke 2 

=(e>-b+e->-b)•A•e-M• -2p11&•a1•~ · 
(1-k e,- 2M X P21ti/ai + P11tv',1.2) 

(17) 

From equations (16) and (17) we can prove 

Hence equations (10) and (11) also satisfy the second boundary condit.cm,. 

that is, equation (13). 

(2) Next we have to treat the case where an elect

rical point source lies in the lower layer. 

Taking tbe cylindrical co-ordinate system and assum-

ing theco-ordinate of the point source as (o, 0, d+l~:~) 
as shown in Fig. 4, the potential V 1 at any point in the 

upper layer and V2 in the lower layer which satisfy the 

boundary conditions in the ~11,-space are given by 

cm 

' Fig. 4 
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(18) 

and 

(19) 

By using equation (9) the above equations can be shown with respect to the 

co-ordinate (R, (D, z) and the results are as follows: 

and 

and 

The boundary conditions in the xyz-space are 

V1 cr»a) = V2 C•'~o), 

From equations (20) and (21) we get 

(22) 

(23) 

(24) 
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and 

Hence equations (20) and (21) satisfy the first boundary condition, that is, 
equation (22). 

On the other band, from equations (20) and (21) the following relations can 

be obtained ; . 

(26) 

From equations (26) and ('Zl) we can prove 

Hence the potential V1 and V2 in equations (20) and (21) also satisfy the 

second boundary condition, that is, equation (23). 


