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. ’ Synopsis

. By solving the momentum equation of a thin sheet flow on road surface
numerically with the condition of continuity obtained under the condition that rain
falls on road uniformly, water depth and mean velocity of thin sheet flow and
also frictional velocity related with soil-erosion of road surface are computed, and
then the effects of camber shape and longitudinal slope of road surface on its
drainage and stabilization are discussed.

1. Case when there is no longitudinal slope

(1) Fundamental equation.

As the flow on road surface may be considered as two dimensional when
there is no longitudinal slope, x-axis is taken along the road surface perpendicular
to the crown line, z~axis, vertically upwards and the original point at the crown,
as shown in Fig. 1. ¢g=¢1—¢: is assumed, where ¢, represents rainfall intensity
and g2, infiltration capacity. Furthermore the following notations are used, «:
velocity, 7 :water depth, J.:slope, p:density of water, 7,: frictional stress on
bottom surface. Considering two cross sections ‘ z

. . Q.8x
a small distance dx apart along x-axis, the

continuity and the mementum equations become

as follows, neglecting the change in momentum
during the rainfall on the road suface and the
infiltration of the rainwater into the earth.

oh dr
0—t+§cso udz—q, ( 1 )
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S paal;dz-!- (’?xS odz=—rv,+pgh],— pgh% . (2)

As the steady state is discussed in this paper, Eq. (2) becomes as follows,

W= gh], — gh xs widz. (3)

In the continuity Eq. (1), the mean velocity is #, and the discharge is zero
for x==0, or at the crown, and if ¢ is generally a certain function of x, then

unh={ gdz. (4)

(2) Water surface curve, mean velocity and frictional velocity.

As the flow of rainwater on road surface is generally a laminar flow, it is
assumed that, as for the velocity distribution, the following formula confirmed by
the ekperiment of the thin sheet flow for smooth surface can also be applied
univefsally in this case. A

u/u*=(u*z/y){1—(z/2h)}, v : kinematic viscosity. (5)

Thus mean velocity u,,..becomes as follows from Eq. (5).
U [e6¥=(1/3Du*R/v. (6)
Eliminating ., and' u«* from Eq. (4), (5), (6) and (3), the next equation is

derived.

‘ {gh3 - %(S:qu) z}gg —ghd ]+ LsthS:qu+ BuS:qu =0.

Generally this equation cannot be solved, but if it is expressed by the following
equation and numerical mtegratlon performed giving the boundary condltlon, the
water surface curve can be obtained.

dh

ak:‘Fl(h’ x)/F2(h’ x)y ( 7 )
ZhT. “0dx 3\ ad
where  Fuh, y=(WEREY 1201 ldx Slads.

rih - () -8y

~If the relation between the water depth % and x is obtained, the mean velocity
Up, is computed from Eq. (4). Furthermore, from Eq. (4) and (6)
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wr=y\adz /b, (8)

from which the frictional velocity «* can be computed.

2. Case when there is a longitudinal slape |

(1) Fundamental equation.

As shown in Fig. 2, the crown line of road is’ taken as y-axis and the direction
to which the rain water flows assumed as positive. The symbols are the same
as those in the preceding case and v, Jy and 1y
respectively represent the velocity along y-direc-
tion, the slope and the component of the frictional
stress on the road surface. If a hexahedron
ABCDEFGH parallel to x, ¥y and z-axis having
a bottom surface whose two sides are small
distances déx and Jy is considered, as shown in
Fig. 2, and the continuty and momentum equa-
tions in the x and y-directions are formed, then

Fig. 2
the case for the steady state is as follows.
66 S pu2d2+aays ouvdz=—rts+ pghjJ,— pgh h (9)
rh
gys pvzdﬂg ovudz=—rty+ pgh]y—pgh g (10)
0 0
OxS udz+ay§ vdz=gq. 1)

Except for the part near the boundary of the upper and lower ends of the
longitudinal direction, viz. y.-direction, generally there is no change in «, v and h'
in the y-direction, so terms of % in Eq. (9), (10) and (11) are eliminated and
by putting v¥=1" tv/0, they become as simple as follows.

2=gh],—gh dﬁ dxs widz - a
v*2=ghj,,—dix Sovudz , as)
wnht={ gdz . (14

Eq. (12) and (14) are exactly the same as Eq. (3) and (4), respectively.
(2) Water suface curve, mean velocity and frictional velocity.
If the following same equations as in case 1 are used for the velocity distribution,
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ulu¥=Cu¥zfv){1-(z/2h)}, (15)
ofo*=(v¥2[v) {1-C/2h)}, (16)

" then an equation exactly the same as Eq. (7) is obtained from Eq. (12)~(15),
dh =F1(hx)/F(h, x). a7

From this, the important fact that the water surface curve does not change
ever if there is a longitudinal slope is revealed.
Furthermore, the next relation is obtained from Eq. (14)~(16).

v*2=3yu, /N, S:vudz—-=( 6 /S)v,,.S:qu.

If these equations are put into Eq. (3), Eq. (3) becomes

6 qu‘—lﬁ'+ 6qv,,.+?f1i"3—gh]w=0 , ¢t-))
5 h

and a differential equation of v,, and x is obtained. This being generally insolvable,
a numerical integration must be preformed and transforming Eq. (18) by putting
g=const. gives

d 5g2Ju;, 5y (vpux)
2;tn2)= 65% Py Pl Q9

Numerical integration is done using this equation.
As a special case when fi=const., Eq. (19) is solved simply giving the follow-

ing result.
_&l] v_hz / 2qh
Um="g,~ <1 *+5, ) 4 (20

If v, is obtained, the resultant mean velocity is known as V=1 ut, + v,
using u,, obtained from Eq. (14), and the frictional velocity V* becomes as follows.

V¥=y"3vVulh. 2D

3. Example of numerical calculation |

(1) Water suface curve.
Cross sectional shape of road is

expressed as follows by taking the original

point at the crown of the road, 7-axis

vertically downwards and é-axis perpen-

-~ dicular to 7-axis as shown in Fig. 3, - Fig. 3. Cross-sectional shape of road.
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p=H(&/L)", : (22)
where [ : half width of road, H : height of crown of road.

(41‘752=nio($/l)”" from Eq. (22), where do=H /I,

so if the relation between ]x‘ and x is approximated to J.=ni(x/{)*"! and
g=const., functions of F, and F3 of Eq. (7) become

3217 -1 2
FiCh, xy=81ia( £)'2 12 g _3ax

] 5 2 v '’
Fa(h, )=ER 82

As an example of
16 : I - o numerical calculation,
’.’nm i.=a012'\ j_‘_’f_’aﬁ; ——="""1  the results obtained by
L2 /,,4:2?_ ==y ,_ ——tm plotting curves of
//);::"/;/ ——% Gozo| 024 F1=0 and F,=0 for
o8 = —18 various combinations
04 7] - of #0=0.012, 0.016,
e 'r‘:';‘; | . 0.020,0.024 and =10,
% | e 5 1. 4 12 1416 18 20,
when [=375cm, g=
...If In i.=]:).012 1299 +4—1 = 004cm/s, g=980cm
12 /_;ﬁ,;’_ 7"};, i e /s? and »=0.0lcm?/s,
;2;/3——/2"%/%— Y 02 ?re A- and - B-curves
03? =1 _—1 &  in Pig. 4.  B-curve
T represents the boun-
T T n=12 —— |  dary at which ordinary
0 l : n=i§ —— flow changes - to jet
° l 2 3 Tmo 4 flow and Z—Z—-ﬂw at all
’Lm A i.—;o.o:z |0.0I6 ] L points- on this ?urve
,; b I: — excluding the inter-
e e - section point P with
08 A,//: '?/-0'020, 0.024 curve A and the
| 1 — ? .' original point, and also
¥ e d n=44 — Z—z=0 at all points on
é 0 p 2 3 n=4ox:j 3 curve A  excluding

Fig. 4. Graphical representation of F;(h, 2)=0 and point P and the origi-
Fo(h, x)==0 curves, nal point. - The curve
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of the water suface

can be obtained by
doing numerical inte-
gration under the given
boundary conditions,
but when point P
appears on the road
surface in the case of

a natural flow down,-

the curve of the water
surface must be ob-
tained step by step,
beginning at the inter-
section point P and
working towards the
ordinary flow side of
the upper stream and
the jet flow side of the

down stream. The

value of % at the
intersection ppint P
can be obtained by
computing
(G2t 2/
The method of
numerical integration
employed here is the
isoclinic method which
P. Wilh. Werner¥
used in the calcﬁlation
of the water surface

* P. Wilh. Werner :
* Wasserspiegelberechnu-
ng von Kanilen bei gle-
ichmissiger Bewegung
und verdnderlicher Was-
sermenge ’’, Bautech.,
Heft 23, 1941,
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Profile of wzter surface

nN=10, i,=002

L e Profileof water surface
n=l4, L= 002
04
| 1 1 }
00 ! 2 3 Xm 4
dx
i <
A ]
ast ~ _ B
- i ———— Profiledf water surface
n=20 i,=002
04}
0 L L L
Y . / 2 3 X*m 4

Fig. 5. Profile of water surface.
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profile of a channal with varying discharge. The curve of the water surface for
the case of 7,=0.02 and »=1.0, 1.4, 2.0 obtained by this method is that shown in
Fig. 5. What can readly be understood from this Fig. 5 are that, except for the
part where x is small, the curve of the water surface is approximate to the curve
of Z—ﬁ:——o, viz. A-curve, and that the water depth is constant when n=2, viz. the
cress sectional shape of road is a quadratic parabola. Therefore, it may be said
that A-curve in Fig. 4 is approximately the same as the curve of the water surface:

(2) Mean velocity and frictional velocity.

If the relation
between the water

15

depth F and # is given
(Y"“/s by the above mention-
ed method, mean
velocity #, and fric-

tional velocity #* for

the case when there is

no longitudinl slope
can be obtained from
Eq. (4) and (8), énd
these results are the
curves of Jy=0. shown
in Fig. 6 and 7.

2 3 xm 4 . When there is a
Fig. 6. Relation between mean velocity and =, Jy, x. longitudinal  slope, ¥m

(o

must be obtained by a

numerical integration
20 e of Eq. (19), and the
v — =T isoclinic method was
£mys e 7/_,%/-'//{— = adopted as was done

in obtaining the curve

ZO}J . of the water surface.
1.4 0.0,
ko) Broken lines in Fig. 8
. %2} 0.01 represent the curves
10
2.0 for M-—-O which
14 0 dx
' 0 express Um=gJyh?/3v,
2 3 xm 4 viz the equation for

Fig. 7. Relation between frictipnal velocity and »n, Jy, «. uniform steady flow,
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Full lines are -
curves showing the
required  relation 3000t
between v,x and x U L
obtained from the om¥s |
condition of passing
through the original 2000
point. The differ-
ence between the
two is only about

42 at maximum,

1000}
so if an error to
this extent is ad-
mitted, then they
can be obtained 0 . T , .
simply from the 0 . loo 200 300 . 400
- Xem

equation for uni- Fig. 8
form steady flow
without resorting to. a numerical integration by the isoclinic method. If v, is
obtained, the resultant mean velocity V,,=1"u%+ % and the frictional velocity V*
is obtained from Eq. (21) using this.

Fig. 6 and 7 show the results of the calculation for the cases when the
longitudinal slope Jy is 0, 0.01 and 0.02. Calculation was also done for the case
of J5=0.002, but except for the small values of x the curve can not be illustrated

as it almost coincides with the curve of Jy=0.

5. Conclusion

Conclusions obtained from the above theory and the results calculated are as
follows.

(1) Profile of the water surface is invariable regardless of the longitudinal slope.

(2) 1In the case of natural flow down, the profile of the water surface may
be approximated by the curve %=0 except for the part near the crown of the road.

(3) The water depth is constant when the cross sectional shape of the road
is a quadratic parabola, viz. =2, and when it approaches a straight line, viz.
n=1, the water depth is smaller near the crown and becomes greatef towards
the sides. '

(4) When there is a longitudinal slope, both the mean velocity and the
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frictional velocity become greater as can be seen from Fig. 6 and 7. The effect
of the longitudinal slope on the mean velocity and the frictional velocity is the
greater near the crown of the road the larger 7 is and the greater near the sides
the smaller # is.

(5) When 7,=1/50, a longitudinal slope smaller than 1/500 has hardly no
effect on-the mean velocity and frictional velocity.

6 'As,'_che critical tractive force, namely the value of the frictional velocity
when small sand particles begin to be moved is about 1.5 cm/s for sand particles
0.2 mm in diameter and V*=2.0 cm/s for those 0.6 mm in diameter, it can be seen
from Fig. 7 that for the case Whén there is no longitudinal slope and the difference
of the rainfall intensity and the infiltration capacity is ¢=0.004 cm/s and i0=1/50,
particles about 0,2 mm in diameter are moved on the road surface between x=2.7 m
and sides for s#=1 and also between near x=2.1m and sides for both n=1.4 and
n=2.0. 1t is also noted that when there is a longitudinal slope of 1/50, particles
0.2 mm in diameter are moved on the road surface between near x=1.0m and
‘sides for #=1.0, 1.4 and 2.0 and even particles 0.6 mm in diameter are also moved
on the road surface near the sides for n=2.

In summarizing the above facts, in thé case of paved roads where there is
practically no necessity of considering the erosion due to rain water, n=2, namely
a quadratic parabola, seems suitable because it is best to keep the water depth
on foad surface constant from the point of view of traffic. As longitudinal slope
has no effect on the profile of the water surface, it must be determined by other
conditions if water depth is in question. In the case of unpaved roads, a cross
sectional shape close t(.);"‘a,‘jstraight line, namely n=1, is desirable in order to make
V* as near constant as pbesible so as to make the grade of erosion uniform. If
only the erosion of the road surface is considered, no longitudinal slope is better
in view of making V¥ small, but when there are inevitable conditions as cenfigu-
ration and etc. it is better.to make the longitudinal slope as small as possible.
In the example of numerical‘i calculation explained in this paper, V* is about 6%
larger when there is a longitudinal slope of 1/100 than when there is no longitudinal
slope, for the road surface with cross sectional shape of straight line, viz. #=1.

The writer is greatly indebted to Prof. Dr. Tojiro Ishihara for his constant
instruction in completing this study.



