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In this paper, we have studied theoretically the heat transfer by laminar natural 

convection from a bot vertical flat wall to the surrounding fluid. This problem 

has already been theoretically studied by Pohlhausen, l) but his method is very 

tToublesome and since he uses Schmidt and Beckmann's2) experimental results for 

air, Pohlhausen's solution is not applicable to other kinds of fluids except air. We 

have analysed this problem for gas and liquid by means of three different approxi

mate methods, and compared each result with the other. 

1. Fundamental ordinary differential equations 

For the steady flow past a vertical flat wall, which is at temperature 7i. 
(absolute) and contacts with the fluid at temperature To, the equation of motion, 

the equation for thermal equilibrium, and the equation of continuity are 

and 

(1) 

(2) 

(3) 

respectively, provided that the temperature difference between the wall and the fluid 

is small as compared with the absolute temperature. In the above equation, T, Y, 

k and 0 are absolute temperature, kinematic viscosity, thermometric conductivity 

l;lnd coefficient of thermal° expansion of fluid, respectively, and g is the acceleration 

of gravity, and velocity u and v, and coordinates x and y are shown in Fig. 1. When 

1) E. Pohlhausen: Forschung, Vol. 1, 1930 p. 391. 
2) E. Schmidt and W. Beckmann: Forschung, Vol. 1, 1930 p. 341. 
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X the temperature of heated surface of the vertical wall 

is not constant but varies in the direction of the 

height x, such as 7i = To+ Bx\ where To, B and e 
are constant, Eqs. (1) and (2) become 

0 
~------Y 

Fig. 1. 

where 

e = T- To 
Ti-To" 

The boundary conditions are u=v·=0, '1=1 at y=0, and u=0, '1=0 at y=oo. 

(6) 

The partial differential equations can now be transformed into ordinary diffe
rential equations by the substitutions 

f=Ax-¼ Y, 

¢ = 4l1Ax¾ ,en. 
e = nco, 

where A is a function of x, and ¢ is the stream-function defined by 

so that 

V = _J_<t 
ax' 

¾ d,; 
u = 4llA2x df 

[ 
¼ ¼ d,; -¼ -¾ dr;] v = - 4llA'x ,;+4llAA'x y-+3llAX ,;-J1A2x y-d~ d~ ' 

where the dash indicates the first differential coefficient of x. 
The equations for ,; and 7J are 

~;~ + (3+ 41, x) , ~~~--2 (1+41' x) ( ~~-r +g0i~A41'o) n = o. 

~~~ + i (3+4f~x) r; ~f-4 i -~~-n = o. 

When we put 

A= [g0(Tc_To)]¼ = [gSBJ¼ x'/4 
4ll2 . 4ll2 

in Eqs. (12) and (13), they become 

ds,; . d2,; ( d,; )2 
-d~a-+C3+e) 't1~2 -2(1+e) d{ +o = o, 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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d2iJ diJ d,: de2 +P,{3+e)r:d{-4Pre de iJ = 0, (16) 

where P,. is Prandtl number (equal to Y/k), and the boundary conditions are 

e=o c=0 d,: 
iJ = 1 } . 

: df=0 

e = oo: ~~ = o 
(17) 

11 = 0 

Eqs. (15) and (16) are the fundamental ordinary differential equations, and 

they will be solved with the boundary conditions (17). Now, suppose e is equal to 
zero, that is, if the surface temperature is constant, two equations become 

(18) 

(19) 

which have been given by Pohlhausen. Pohlhausen has solved these equations for 

a.ir in the form of power series, adopting Schmidt and Beckmann's experimental 

results as the value of-~~~ \~=O~md ~}l~=o· Therefore its solution can not be 
applied to other fluids. But we think that Eqs. (15) and (16) or Eqs. (18) and 

(19) may be solved for :my kinds of fluids by means of Runge-Kutw.'s3) method, 

in stead of Pohlhausen's, but since this method is very troublesome to calculate, we 

have analysed by the following three approximate methods. 

2. The first method 

When the fluid flows along a wall, the boundary layer exists near the surface 
of the wall. Now let o be the thickness of the velocity layer and o' the thickness 

of the temperature layer, then the momentum equation for o becomes 

-1.x ~: pu2dy= ~:pgjj(T- To) dy-µ(-:;)y=O' (20) 

and the energy equation for o' becomes 

[ d ~8' d ~8' ] ( 8T ) ]Cp -- puTdy- To---- pudy = - j). - -- . 
d.x o d.x o 8y y=O (21) 

Since the pressure is constant (the variation of pressure with height is neglected), 
the density p for fluid is expressed by the equation 

(22) 

3) C. Runge: Mathematische Annalen, Vol. 46, 1895 p. 167. 
W. Kutta : Zeit. f. Mathe. u. Physik, Vol. 46, 1901 p. 435. 
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and in the case of gas 

µT = Po To. 

For gas, Eqs. (20) and (21) are transformed by using Eq. (23): 

__!J_ fll IC)__ u2dy = g ro (1- _To_) dy-11 (Ju) 
dx Jo T Jo T fJy y=O' 

_d_ fll' u(l- To) dy = -k[-~(]'-)] . 
dx Jo T fJy To y=O 

(23) 

(20') 

(21') 

For liquid, (3 is less than the thermal expansion of gas, and is so small that 

{3(T- To) is less than (T- To)/ To: therefore, we can neglect the variation of 

density p with temperature when the temperature difference ( Ti. - To) is small as 

compared with To; hence Eqs. (20) and (21) become 

d ~o ~a (au) -- u2dy = g {3(T- To) dy-i, - -
dx o o fJy y=O ' 

d ~o' ( fJT) --- u(T-- To) dy = -k -- . 
dx o fJy y=O 

(20'') 

(21") 

Here the suitable approximate expressions for u and T which satisfy the b0tm

dary conditions are demanded. For this purpose, we approximate u and T to the 

following expressions containing unknown factors : 

u = A 0(x)+Ai(x) y+A2(x) y 2 +A3(x) y3, 

T = Bo(x)+Bi(x) y+B2(x) y2+B3(x) y3, 

and decide Ao, Bo, Ai, Bi, etc. from the following boundary conditions: 

For u-

(i) 

(ii) 

(iii) 

(iv) 

For T-

( i ) 

u=O at y =0 

u = v = 0 at y = 0, hence from Eq. (1) 

fJ2u , 
gf3(1l-T.i)+11--I =o o f)y2 :y=O 

u = 0 at y = iJ 

-01'-- = 0 at y ~ iJ. f)y 

T= 1i at y = 0 

(ii) u = v = 0 at y = 0, hence from Eq. (2) 

I :;r-1y=O = 0 

(iii) T = To at y = o' 

(iv) {; = 0 at y = o'. 

(24) 

(25) 
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Then we obtain u and T as functions of y Jo and y Jo' : 

u = g/3( 
1L- ro) a2[ ~ -2 ( ~ r + ( ~ rJ (26) 

8 = T- ¥, = 1-1-L+1-(L)3 
(27) 

7i - o 2 o' 2 o' · 
Because the natural convection occurs owing to the difference of gravitational 

forces due to the temperature difference in the fluid, we can consider the velocity 

field is closely related with the temperature field. Now, we put o as approximately 

equal to o', and we use only the energy equation for the temperature layer, and 

assume ( Ti- To)/ To<l for gas, so that from Eq. (27) we can obtain 

To= 1-( 1i- To)[1-1-Y_+l_(L) 8
] 

T To 2 o' 2 o' . (27') 

to a sufficient approximation. With these expressions for u and T, the energy 

equation (21') becomes 

(28) 

when the temperature of surface is constant.4> (The following discussion is only 

for the case of the constant temperature of surface.) This equation can be solved 

easily, and we obtain the following result from the boundary condition that o' =0 

at x=0: 

o' = [210]¼ p,. -¼[g( Ti_-__TcJJ-¼ x¼. 
112 To 

Similarly we obtain for liquid by using Eq. (21"), 

o' = [210]¼ Pr - ¼ [ g/3( ~
2
- To)]-¼ x¼ . 

The local coefficient of surface heat transmission at x is given as follows : 

<k = --7i ~ To ( ~~) y=O. 

And the mean coefficient of surface heat transmission from -zero to x is 

1 ~., <J.m= - <kdX. 
X o 

(29) 

(29') 

(30) 

(31) 

When we use Eqs. (27), (30), (31) and (29) or Eq. (29'), we obtain the following 

relation among non dimensional numbers Num, P,. and G,. for both gas and liquid: 

¼ ¼ Num=0•525Pr G,. , (32) 

4) For the case where the temperature of surface is not constant, we have prepared another 
paper that was read at the lecture meeting of J. S. M. E. at Kobe, Dec. 3, 1949. 
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(J.m)C 
N Um = - A - Nusselt number 

J,I 
P,. = -,i' Prandtl number , 

G,. = g/3( Ti.::-::_ 1Ji) X
3 

Grashoff number, 
J,12 

and in the case of gas, 

g( 1i -- To) X3 
Gr= - --- ~- -----

J.12 To 

This result agrees well with Schmidt and Beckmann's experimental results for 

air which are shown in Fig. 3, but the velocity gradient on the surface in the 

direction of y is about 8¾ higher than their experimen~l results. 

3. The second method 

In the first method, we have assumed that u is independent of T and that the 

thickness of velocity layer is equal to that of temperature layer. But for the natural 

convection, the veloc_ity distribution is closely related with the temperature distri

bution, so that it becomes necessary to consider the relation between temperature 

field and velocity field. For this purpose, we assume that velocitf u is a function 

of temperature T, that is, 

u = f(T). 

Then Eq. (1) becomes 

!lu __ (u 1_!____ + v fJT ) = g/3( T - To)+ J.I 1!!!.. 
dT ax oy ay2 • 

and by putting Eq. (2) into this equation, 

82T du [( fJT ) 2 d 2u 82T du ] 
k f)y2 dT - g{3(T- To)+ J.1 oy dT2 + fJy2 dT ' 

and by using Prandtl number, the above equation becomes 

d2u + p,.-1 a2T ( fJT )-2 du +g/3(T- To) ( fJT )-2 _ O (33) 
dT2 p,. oy2 fJy dT J.1 f)y - . 

By substituting 8 for T, Eq. (33) is trrinsformed as follows: 

d2u +P,.-1 828 ( 80 )- 2 !l_tt__+g/3( Ti-:- To) f:J ( 88 )-2 _ O (33,) 
df:J2 p,. ay2 f)y df:J ),I By ~ . 

This equation expresses that, when 88 joy and 828 J8y2 are given as functions 

of 0, the 'relation between u and T is obtainable, and that this relation varies with 

Prandtl number which is constant for gas. [For liquid, Prandtl number varies with 

temperature, so that Eq. (33') can not be solved so easily. But if we assume 
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( 11- To)/ To<l, we may adopt its m~m value as Pra.ndtl number of liquid.] Now, 

from the above assumption u=/(T), 

ou du 88 
ay = de oy 

82u d 2u ( 88 ) 2 du 828 
8y2 = de2 oy +tff:f oy2 - · 

When we transform Eq. (33') with these relations, the following equation is 

obtained: 

(34) 

Here we assume that iJ is equal to iJ' as in the 1st method, and both u and T are 

functions of yjiJ only, then Eq. (34) becomes 

where 

d2u _ _!__ d28 ( d8 )-1 du +g(1( 11- Tti) (JiJ2 = o 
d712 Pr dYJ2 dYJ dYJ 1,1 ' 

YJ=y/iJ. 

(35) 

Vje approximate 8 to the following expressions which satisfy the boundary condi

tions as in the 1st method : 

(36) 

or 

(37) 

Putting Eq. (36) or (37) into Eq. (35), we can solve the differential equation from 

the boundary conditions that u=0 at y=0 and u=0 at y=iJ. 

(I) Using Eq. (36), we obtain : 

1. for Pr=2, 

U = g(1( 11- To) y-li:]2 [1•429 {1/2 sin-l YJ+ 1/2 YJC1-YJ2)'½} 

-1/4 (sin- 1 '1/)2 -1/2 YJCl-YJ2).¼ -7 /6 '1/+ 1/ 4'1/2 + 4/9 YJ3 -1/30 715
) (38) 

2. for Pr=l, 

u = g(1( 11- To) 1,1- 1l]2 [ {l/3 (YJ+ 1)3 -(YJ+ 1)2} log (YJ+ 1)-1/20 YJ5 + 1/12 YJ3 

-1/9 ('1/+ 1)3 + 1/2 (YJ+ 1)2+ 182· 132/720( -1/3 713 +YJ)-7 /18) (39) 

3. for Pr=l/2, 

. U = 1/2 g(1( 11- To) y-li:]2 [l/25 (YJ+ 1)5 - 1/4 (YJ+ 1)4 +4/9 (YJ+ 1)3 

+ 1/4 '1/4-1/3 YJ3 - 1/2 712 +YJ- {l/5 (YJ+ 1)5- (71+ 1)4 + 4/3 ('1/+ 1)3 } log ('1/+ 1) 

-250-579/480 (1/5 YJ5 -2/3 '1/3 +71)-211/900) (40) 
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4. for Pr=l/3, 

U = 1/2 g#( 7i.- To) y-lo2 [3/8 {1/7 (1-7))7-(1-7))6 +12/5 (1-7))5 

-2(1-7))4} log (1-7))-3/8 {1/49 (1-7))7 - 1/6 (1-7))6 + 12/25 (1-7))5 

-1/2 (1-7))4 } +3/8{1/7 (1+7)) 7 -(1+7))6 + 12/5 (1+7J) 5 -2(1+7))4}log (1+7)) 

+0•070 (1 +7))7 -0·605 (1+7))6 + 1•972 (1 + 7)) 5 -2-773 (1 + 7))4 + (1 + 7)) 3 

+ (1+7))2-0-727]. (41) 

(11) Using Eq. (37), we obtain 

1. for Pr=2, 

U = 1/4096 g#( 7i.- To) y- 1o2 [1/21 (47)+2)6-8/7 (47)+2)5 +8 (47)+2)'' 

+32 (47)+2)3 -432 (47)+2)2 -3937-595/16 {2/5 (47)+2)512-4 (47)+2):1/2} 

-849·916] (42) 

2. for Pr=l, 

U = 1/64 g#( 7i. - To) y-lo2 [ 4 {4/3 7)6 -47)5 +3/2 '1]4 + 13/3 7)3 -27)2 -37)} 

+3/16 {l/16 ( 47)+2)4 - 4/3 ( 47)+ 2)3 +9 ( 47)+2)2} -3/16 {1/ 4 ( 47)+2)4 

-4 ( 47)+ 2)3 + 18 ( 47)+2)2} log ( 47)+2) +20-898 (7)4 -27)3 + 27)) +0•781] ( 43) 

3. for Pr=l/2, 

U = 1/ 4 g#( 7i. - To) y- 1o2 [0• 178 (16/7 7)7 - 87)6 + 36/5 '1]5 + 47)4 -87)3 -\- 47)) 

+32/441 (1-7))7-2/27 (1-7))6 -2/25 (1-7))5 -2/9 {16/7 (1-'1])7 -8(1-7))6 

+36/5 (1-7))5 } log (1-7))-1/ 4608 {1/7 ( 47)+2)7- 4 ( 47)+ 2)6 + 216/5 ( 47)+2) 5 

-216 (47)+2)4 +432 (47J+2)3 } log (47)+2)+ 1/4608 {1/49 (47)+2)7 

-2/3 (47)+2)6 +216/25 (47)+2) 5 -54 (47)+2)4 + 144 (47)+2)3 } +0·140]. (44) 

Next, we calculate the thickness of boundary layer by means of the energy 

equation, and obtain the following result: 

(45) 

where P(P,.) is a function of Prandtl number only and its value is given in 

Table 1. 
Table 1. 

P,. 2 I ¼ .¼ 

P1 3·125 3·817 4·739 5-412 

P2 3·912 4·833 6-083 

The local coefficient of surface heat transmission <1.e and its average value <J.m 

are obtained from Eqs. (30) and (31). ·Then the relation among non dimensional 

numbers Num, P,. and G,. becomes as follows: 
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Nu.,.=K(Pr)Gr¼. (46) 

K(Pr) is a function of Prandtl number only and its value is given in Table 2. 

Now we. plot the value of K 1 and K 2 in the logarithmic graph as Fig. 2 ; then · the 

calculated points are situated on a straight line which has the same gradient in 

both cases (K1 and K2) for Prandtl number, and the gradient is about 1/3. Hence, 
Eq. ( 46) becomes 

(I) 

(II) 

Table 2. 

P,. 2 I ¾ ½ 

K1 0·640 0-524 0·422 0-369 

K2 0-681 0·552 0-438 

·8,-----,---,----,---,---,,---,----,---,-----,---

~ •7f-·---+---i--i--t----1r--t--t--t----1----p--l 

•61----+---+--+--+-t-+-t-+----:::-"''::::j,,.-,,,:::C.-+----i 

·3 
·2 ·'4 ·5 ·6 •7 ·3 ·9 I 

Fig. 2. 

½ ¼ Nu.,.= 0·525 Pr Gr , 

Nu.,.= 0•550Pr½ Gr¼. 

l•S Pr 2 

(47) 

(48) 

These relations show that Nusselt number is proportional to Gr¼ and Pr½. But 

the relation obtained by the 1st method indicates in Eq. (32) that Nusselt number 

is proportional to G/i Pr¼, and this relation well agrees with the expression 

obtained from the law of similarity, if it is assumed that the natural convection is 

a "slack flow" and in the equation of motion the terms of inertia force are neglected 

when compared with the gravitaitional force and the frictional force. When we 

compare Eq. (47) or (48) with Eq. (32), we find the difference between them that 

while one is proportional to Pr½, the other is proportional to Pr¼. This difference 

is due to the fact that, in the 2nd method, u is dependent of T. That is to say, 

we solve the equation of motion and temperature distribution according to the rela

tion u= I (T) ; while in the 1st method, we use only the energy equation and assume 

u is independent of T, except a relation that 
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at y = 0, u = v = 0 ; hence from Eq. (1) 1 
g{1( 1i - To)+ ll I i~~ ly=O = o. 

(49) 

But since the relation in Eq. ( 49) is applicable likewise in the case of "slack flow", 

we can say that the relation deduced by the 1st method is owing to the assumption 

that the natural convection is a "slack flow". On the other hand, we believe that 

the relation obtained from the 2nd method satisfy more completely the fundamental 

differential equatioru1, and it is close to the experimental results. However, we can 

not compare very satisfactorily our theoretical results with the experimental results, 

since those kinds of fluids with which many investigators have conducted experi

ments are very few, namely, air, water5) and one kind of oiI.6) Now, when we 

compare Eq. (48) with the experimental results relative to air (Pr=0.733), we 
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5) C. W. Rice: Trans. Am. Inst. Elec. Engrs, 42, 1923 p. 653. 
6) H. H. Lorenz: Zeit. f. tech. Physik, Jahrg. 15, 1934 p. 362. 
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obtain Fig. 3. In this figure, the experimental results are shown by points, and 

the straight line shows Eq. (48). From this figure, we see that Eq. (48) agrees 

sufficiently well with the experimental results (to be precise, Eq. (48) is a few '¼ 
less than experimental results) over the range of log10 Gr from 4 to 9. 7) 

4. The third method 

In the two methods mentioned above, we assume that the thickness li of velocity 

layer is equal to the thickness li' of temperature layer. But li is not generally equal 

to li'. Hence we. must consider what difference appears on li' / li corresponding to 

the Prandtl number. For this purpose, we use the momentum equation (20") and . 
the energy equation (21") for fluid as simultaneous equations, and approximate u 

and T to the following expressions as in the 1st method : 

(I) U1 = g0( 1t- To) fi2 [~ -2 ( ~ r + ( ~ rJ. (50) 

(II) 

(51) 

(50') 

(51') 

Putting Eqs. (50) and (51) or Eqs. (50') and (51') into Eqs. (20") and (21"), we 

calculate as follows : 

(I) When Prandtl number is larger than unity, namely, li' fli<l, 

. 1 g/1( Ti- To)d(<is) = (3X-2) li (52) 
210 v2 dx 

1._g/1( n - To) L[x (1- x-1- x2+ _3_ xs) lJS] = l._ k 1.__!_ (53) 
4 v dx 10 12 14.0 2 x li ' 

1 and when Prandtl number is smaller than unity, namely, li' ID> 1, 

(54) 

(55) 

where X=li' /li, i.e., X is the ratio between the thickness of the temperature and the 

velocity layer. If we assume that X is independent of x, we can solve li and X 

from Eqs. (52) and (53) for Pr>l, and Eqs. (54) and (55) for Pr<l. Hence we 

obtain the following : 

7) In the range larger than 9, the boundary layer changes to the turbulent boundary iayer, and 
as for the range smaller than 4, a paper has been read by us at the lecture ~eeting of 
J. S. M. E. at Osaka, March 26, 1950. 
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21(3:x-2) (1-xs-1-x4+_3_:xs) == .l 
10 12 140 p,. 

a= [168]¼ (3:x-2)¼ [g,9( 7i - To) 11-2]- ¼ x¼ , 

21 ( 6 - 6 ! + i3 ) ( ~ -21 ! + 2~0 i3 ) X - ~,. 

a= [168]¼ (6-6! +is)¼ [g( ~ To To)J-¼ x¼. 

(II) Pr>l, :x<l 

(56) 

(57) 

(58) 

(59) 

2268(3 :X-1)(1 :X-1 :x2 + 9 :xa- 1 :x4):xz _ 1 ( 56') 
5 10 6 15 14 280 180 p,. 

a= (36; 88J~ (
1
3
0

:x- ~)¼[gi9( Ti-- To)11- 2J-¼ x¼ ,. (57') 

P,.<t, x>l 

2268(5 1 11 11)(1 11 1 1 11) 1 
5 6 - :X + 2 :X 3 - 5 :X 4 20 -30 :X + 140 :X3 - 504 :X4 :X - Pr (58') 

0 _ (36288] ¼ ( 5 _ 1 + 1 1 _ 1 1 ) ¼ [g( 1i - To)J- ¼ ¼ 
5 6 :X 2 :X 3 5 X4 112 To X ' 

(59') 

Fig. 4 shows the relation between X and Prandtl number. When we calculate the 

surface heat transmission according to Eqs. (30) and (31), we obtain the following 

relation among non dimensional numbers Num, P,. and G,-: 

3 

2 
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I 
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e., u • -

-
-

- ~-----------·-
3 .4 S 6 7 8 910 

Fig. 4. 

N - ( ) ¼ Um-M Pr Gr , 

Pr 20 

(60) 

M(P,.) is a function of Prandtl number only, and its values are plotted in. the 

logarithmic graph as Fig. 5, where a dotted line shows K2(P,.) in Eq. (46). From 

this figure, we find that the relation between Nusselt number and Prandtl number 
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obtained by the 3 rd method agrees well with the relation obtained from the 2 nd 
method except its absolute value. And we also find some interesting facts. They 

are: when Prandtl number is smaller than 0.6 or larger than 20, the relation differs 

from Eq. (48), and Nusselt number is not proportional to p/i. But we can not 

compare these facts with the . experimental results, because experiments have been 

carried out on:ly in relation to a few kinds of fluids such as air, water and one kind 

of oil as already mentioned. 


