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Synopsis 

A method giving an approximate solution is explained by the application of 

a formula analogous to that of the slope deflection method used in the solution 

of rigid frames to the case when a symmetrical load is applied to a circular plate 

whose thickness is only a function of the radial distance. 

1. introduction· 

Circular plates of non-uniform thickness are sometimes encountered in the 

design of machine parts, such as diaphragms of steam turbines and pistons of 

reciprocating engines. The thickness of such plates is usually a function of the 

radial distance, and the acting load is symmetrical with respect to the center of 

the plate. 

The investigation of the bending of the circular plates of non-uniform thickness 

was made about such cases first by H. Holzer1) and latter in detail by 0. Pichler2 ), 

R. Gran Olsson3 ) and H. D. Conway4). 

Criticizing some of these investigations, Pichler's meth'Jd by the form of power 

series and Olsson's by the hypergeometric series are both very complicated as they 

faithfully solve according to the equation of thickness, viz. flexural rigidity. 

For the solution of rectangular plates of non-uniform thickness, the author bas 

formerly derived a formula analogous to the slope deflection method used in the 

solution of rigid frames and by applying this formula has shown that a satisfactorily 

approximate solution can be easily obtained without troublesome calculation5.\ A 

solution was done following the same principle in the case of a circular plate of 

non-uniform thickness, and as satisfactory results were obtained, a general outline 

will be explained in the following. 

2. Derivation of the fundamental equation. 

As shown in Fig. 1, the case when a ring plate w.ith a uniform thickness is 

subjected to a uniform load P symmetrical about the center will be considered. 



2 M. NARUOKA 

As the differential equation_ of deflection 

surface is unrelated to (} in this ·case, 

where, w: deflection 

N = Eh3 /12(1- J.12): flexural rigidity · 

h: thickness of plate 

J.1 : Poisson's ratio 

Solving eq. (1) and putting r/a=p give3, 

pa4 
w = 64Np4 +C1+C2p2 +C3p2logp+C41ogp 

(2) 

From the above equation ,t ~ 

' ~ 

~~=¾{~tp3 +2C2p+C3p(l+2logp)+~
4

} F=- a 

( 3) Fig. 1 

p 

2c1+J.1) [Pa4 3-FY 2 { 3+Y } c4 1-J.1 l Mr= -a2~N f6N, 2(l+Yt +C2+Cs 2(1+y)+logp - P2•2(1+y) 

Pr=_ 4N. Cs_Pap 
a3 p 2 

(4) 

(5) 

Where, Mr= radial bending moment 

Pr = radial shearing force 

Now, let the deflection and the deflection angle at both circumferences p=(J.=1 

and p=/j (O<0<1) be represented a3 follows, 

A: p=(J.=1 w=o.A., dw/dr=(}.A. 

B: p = 0 w = o B , dw I dr = 0 B 
For the sake of convenience the next notations will be used, 

(3+Y)/2(l+Y) = e, (1-y)/2(l+Y) =I, ,1.2-02 = g, (J.2 log(J.-/j2 log 0 = h, 
log(J.-log/j=j, e+Iogr1.=k, f/,1.2 =l, e+logfj=m, f/02 =n, 

(,((1+2 log(J.) = q, 0(1+2 log/j) = s 

(6) 

Using the above notations, the following three equations are derived from eq. (2), 

(3) and (6), 
C2•g+Cs·h+_C4. j = (oA-oB)-pa1(o.4 -/j4 )/64N 

2C2•r1.+C3 •q +C4(1/r1.) = afl.A.-pa4 •(J.3 /16N ( 7) 

2C2·0 +Ca•s +C4(1/0) = atJB-Pa'1·03 /16N 
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The values of C2, Ca and C4 are obtained as follows by solving eq. (7), 

J•C2 = (pa1 /16N)D+(o,1·-0B)E+a8,1•F+a8B·G 

4·Ca = (pa1 /16N)H +(o,1-0B)1 +a0,1•]+a8B·K 

J•C4 = (pa~/16N)L+(o,1-{J.B)M+a0,1•P+a8B•Q 

where 4 = (l/u.)(2{3h- gs)+ (l/{3)(gq-'b1.h)+2j(a.s-{3q), 

1 1 D = 4Cf34-<J.4)E-<J.aF--{3aG' H = 4Cf34-u.4)I ·-a.a]-{33K' • 

(8) 

L = !({34-<J.4)M ~<J.3P -{33Q E = _q_ -~ F = -(_J,,_-s1·) G = -(qJl _ _!,,_) 
4 ' (3 (J. ' {3 ' (J. ' 

I = ~~ - ~'-, J = - ( 2(3 j --f) , K = - ( ! - 'bJ.j) , M = 'bJ.S - 2{3q , 

P = -(sg-2{3h), Q = -(2<J.h--gq) 

Following the example of eq. (6), the radial bending moment and the radial 

shearing force at both circumferences will be represented as, 

A : p = fJ. = l , Mr = Mr, A, 

B: p={1 , Mr=Mr,B, 

Therefore, from eq. (4), (5), (8) and (9)6) 

Pr= Pr,A 

Pr= Pr,B 

Mr, A= - 2
(
1 
:: )N {~~(et1.2 + D+ kH -IL)+ (0,1 -oB)(E + kl -lM) 

+afJ ,1(F +k]-lP)+afJB(G+ kK-lQ)} 

2(1 + J.1 )N{ pa4 M .. ,B = - a2 16N(e{32 +D+mH-lL)+(oB-oB)(E+ml-nM) 

+ afJ ,1(F + m]-nP) + a(}B ( G+ mK -nQ)} 

"'--A= - 4N_{(o,1-oB)L+afJ,1L+afJB!i}-(Pll_<J.+P.<± H) 
PT, a3 {/. <J. tJ. 2 4 a 

4N{ I ] K} (Pa pa H) Pr,B = -7 (o,1-oB)0+afh0+aOrif - 2.0+4([ 

Simplifying the above equations gives, 

Mr, A=~( c'8,1 + d'llB-~B ~ 0Ae') + s'(pa2 ) 

Mr, B = N(f18,1+ g'{}B- OB- 0Bh') + t'(pa2 ) 
a a . l 

P- 4N(·'o .,0 aB-aAk') 'CP ) l r,A = -7 i ,1+J B-~
0
~ +u a 

4N(t'fl ,0 aB-oAh') 'C ) ' Pr,B = -- 7 ,1+m B---a-- +v pa I 

(9) 

(10) 

(11) 

If the rule of signs adopted in the slope deflection method used in the solution of 
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rigid frame3 is employed here for the sake of convenience, then 

1. In eq. (10), Mr,A become3-Mr,AB, Mr,B become3 Mr,BA and the sign stands 

as it is. 

2. The signs of 8 ,1. and 8 B remain unchanged. 

3. As for the signs of s' and t', only s' change3 in accordance with 1. 

4. In eq. (11), as Pe=O, suffix r is omitted, and Pr,A and Pr,B are expres3ed 

as PAB and .PBA-

By rewritting eq. (10) and (11) following the above explanation, the next two 

fundamental equations are finally derived7). . . 

Mr,AB = ~ (cf/A+df/B-~!1~ 0Ae) +s(pa'l.) 

Mr,BA = ~(Jt1,1.+gf/B-~~ 0Ah)+t(pa2) 
) (12) 

(13) 

If the coefficients of the above equations are calculated for the four case3 of 

0=4/5, 3/4, 2/3 and 1/2 when ri=l, the resu.lt is as shown in Table 1, where 11 

is assumed as 0.3 . 

Table 1. Values of several coefficients. 

"=1, ~=4/5 C<=l, ~=3/4 x=I, ~=2/3 ,x=l, ~=1/2 
·----- -

C 19.285 538 15,281 077 11.273 4-61 7.256 414 

d 8.948 278 6.932 972 4.905 348 2.838 228 

e - 139.689 902 - 87.683 915 - 47.677 338 - 19.668 074 

I 11.185 364 9.243 991 7.358 039 5.676 456 
g 20.856 963 16.908 145 13.010 216 9.312 827 

h - 162.060 727 -106.171 681 - 62.393 412 - 31.020 988 

i 34.922 472 21.920 952 11.919 334 4.917 018 

j 32.412 133 19.907 203 10.398 899 3.877 623 

k - 338.057 754 -168.463 392 - 67.866 966 - 18.282 213 

l 43.653 093 29.227 936 17.879 001 9.834 037 

m 40.515 167 26.542 937 15.598 349 7.7~5 247 

n - 422.584 693 - 224.617 856 - 101.800 449 - 36,5p4 427 

s 0.003 220 0.OOi 946 0.008 624 0,018 657 

t - 0.003 498 - 0.005 551 - -0.010 149 - 0.024 689 

u - 0.095 333 - 0.117 705 - 0.157 387 - 0.220 793 

V 0.105 834 0.134 727 0.186 119 0.303 414 
-~~-· -----·----
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Next, the case when a circular plate of a radius a is subjected to a uniform 

load p and a radial bending moment is uniformly distributed at the circum­

ference will be considered (Fig. 2). This is the case when Cs and C4=0 in 

equations (1) and the following eq. are obtained. 

Fig. 2 

- pa4 4 C C 2 <f,_Z!!_ - l( pa4 s 2C ) 
w - 64.NP + 1 + 2P ' dr - a 16NP + 2P 

M __ 2(l+v)N{f!_<!_~ . __l_±y~ 2 +c} 
,. - a2 16N 2(1+v)P 2 

Putting p=l, dw/dr=8A in the above equation gives, 

If expressed following the expression of the slope deflection method, 

N pa2 
Mr,AO = a(l+v)8A+g (14) 

· In this case, PAo= _PJ is easily obtained. 

3. Solution of a circular plate of non-uniform thickness by the slope deflection 

method8 \ 

Here, a circular plate whose flexural rigidity is a function of the radial distance 

is refered to as a circular plate of non-uniform thickness and the case when the 

load is symmetrical with re3pect to the center of the plate will be considered. 

The following method is applied to obtain the bending, the deflection and etc. 

of a circular plate of non-uniform thickness by the slope deflection method. 

Fig. 3 shows the circular plate of which the bending, the deflection and etc. will 

be obtained. Let the rigidity at the center of the phte be repre3ented as N 0 and 

the radius as a. The plate is divided into n-1 circuhr ring plates and a center 

circular plate. It is convenient to make the width of the rings constant. 

The rigidity of each circular ring and the center circular plate is considered 

as approximately constant. Thus, the rigidity of the original circular plate changes 

step by step. In the calculation of a circular plate of non-uniform thickness by 
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the slope deflection method, the circular plate 

is substituted by the above mentioned step 

shaped circular plate, and the calculation is 

done concerning the step shaped circular 

plate. Therefore, the result of the calculation 

is that for the step shaped circular. plate 

and not that for the actual given plate. How­

ever, by increasing the number of circular 

ring plates into which the circular plate is 

divided, a value which is practically 

sufficient is obtained. 

Next let us consider the load. As for the 

load, it is usual to consider a uniform load 

for such a problem, but when it is a distri­

buted load which is a function of the radial 

distance then the load is divided in the same 

manner as the plate was, the load being 

considered as constant where the rigidity of 

the ring and the center circular plate are 

assumed constant. That is, the load is con­

sidered as step shaped just like the rigidity 

of the plate was. 
Fig. 3 

As shown in Fig. 3, numbers 1, 2, 3, ... , m, ... , n will be attached to the stepped 

points of the step shaped circular plate which was substituted for the plate of 

non-uniform thickness whose bending, deflection and etc. are to be obtained. 

At any stepped point m, equilibrium equations between the bending moments 

and between the shearing forces must exist. The equilibrium condition equation of 

the radial bending moment at point m is 

(15) 

The equlibrium condition equation of the shearing force is as follows except 

the case when the ring load exists along the division circle between the neighbouring 

two circular ring plates 

·-Pm-(m-1) + Pm-(m+l) ·= 0 (16) 

For the case of the ring load, the right hand of the above equation is substituted 

by the intensity of the ring load instead of 0. 

There is no need of comidering the condition of the deflection and the deflection 

angle at the stepped point, as they are already shown in formula (12) and (13). 
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As for the boundary conditions, o =0 and M =0 can be used if simply supported, 

and o=O and 0=0, if fixed. 

The value3 of o and O are obtained by solving the equation of the first order 

concerning o and tJ, derived from eq. (12)-(16), and the value of M,. is obtained 

from eq. (12). The deflection and the bending moment at the center circular plate 

can al30 be obtained from the well known formulas9l. The tangential bending 

moment can be obtained by the method explained in the next article. 

4. Numerical Example 

a) The case when a circular plate with N =N0 •exp ( -1.5 p4), as shown in 

Fig. 4, is subjected to a uniform load p will be solved10l. 

f 11111111 llf 1111111111 r 
N-di 'a.gllarn 

Fig. 4 

The value of N for the various value3 of p from O to 1.0 are shown below. 

p= M hl ~ M M M M ~ M M W 

N /NO = 1.00000 0.99985 0.99760 0.98792 0.96233 0.91051 0.82333 0.69757 0.54096 0.37374 0.22313 

As is clear from the above values, the change in the value of N is very small 

while the value of p range3 from O to 0.4. Thus, the given circular plate will be 

divided into three ring phtes and a center circular plate, the dividing radius being 

p=0.8, 0.6 and 0.4. As for the plate rigidity which is assumed constant, half of 

that of both ends may be taken, but in this case as the number of division is 

small, the rigidity of the middle point p=0.9, 0.7, 0.5 and 0.2 is taken for the sake 

of convenience. 

As the ratios of inner and outer radii of the rings are 4/5, 3/4 and 2/3, Table 

1 can be employed. 

7 
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The equlibrium condition equation of the radial bending moment becomes as 

shown in Table 2 and that of the shearing force as shown in Table 3. Table 4 gives 

the values of O and o obtained by solving the above equations. Computing Mr from 

Table 4 gives Table 5. The computed values of M m-cm-Il take negative signs, but 

become positive when changed to the ordinary rule of sign of bending moment. 

Table 2. 

1. 

2. 

o.373
:
4 

No_ { 19.285538 00+ 8.948278 01 - ( -139.689902) ~ } +0.003220 pa2=0 

0
·
373

:
4 

No { 11.185364 00+20.856963 01 - ( -162.060727) 

0.69757 No { • . + --0:8a- - 15.281077 01 + 6.932972 Oz - ( - 87.683915) 

3. 
0.69757 No { 
-·-o.Sa - 9.24399101 +16.908145 Oz - ( -106.171681) 

~ } - 0.003498 paz 

0
~_;;1 } +0.004946 p (0.8a)Z=O 

0
~_;;1 

} -0.00555lp (0.8a)2 

0.91051 No r 09-02 } + -0_6a-·- j_ll.27346102+ 4.90534803 -(- 47.677338) 0_6a +0.008624p(0.6a)2=0 

4. ~
91fefa No { 7.35803902 +13.010216 03 - ( - 62.393412) .ibi!.L} -0.010149 p (0.6a)Z 

i--0.99Y1~ No 1.3 03 

Table 3. 

0.37374 No { 
1. 4 - --a2--- 43.653093 00+40.51516101 - c -422.584693) 

0.69757 No { 
- 4 (0.8a)Z 21.92095201+19.90720302-(-168.463392) 

0.69757 No { 
2. 4 (0}ia)2 - 29.227936 01 +26.542937 01 - ( -224.617856) 

0.91051 No { 
- 4 (0.6a)i- ll.91933402+10.39889903-(- 67.866966) 

0.91051 No r 
3. 4 (0.6a)2 · j_ 17.87900102+15.598349 03 - ( -101.800449) 

Table 4. 

point 0 1 2 3 

0 -0.134 981 -0.120 374 -0.095 463 -0.066 825 

o (pat/No) I 0.0 0.026 2851 0.048 174 0.064 558 

+0.125 p (0.4a)2=0 

.i1_ 
a } +0.105834 pa 

02-01 
0.8a } - 0.117705 p (0.8a) =0 

02 - 01 } 
O.Ba +0.134727 p (0.8a) 

03 - 02 } o.6a - 0.157387 p (0.6a) =0 

03 - 152 } 
0_6a +0.186119 p (0.6a) 

-0.5 p (0.4a)=O 

Table 5. ( unit pa2) 

Mr, 1 M,-,2 I~ M,.,3 __ 

0.085 944 0.151 732 I 0.196 658 

Next, the deflectiom and the.bending moments of points p=0.2 and 0.0 will be 

obtained. As the center part is assumed as a circular plate with a rigidity 

0.99760 N O , the formuh for the circular plate with a comtant rigidity subjected to 

a uniform.load p and uniformly distributed bending moment M,-, 3 =0.196658pa2 at 

the circumference p=0.4 can be applied. Thus, the deflection and the bending 

moment at the center are, respectively9) 
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~ = 0 +P(O.4a)~. 5_::f:..:v+Mr,a•(O.4a)2 = 0064558 + (O.4)4 
• 5.3 

05 3 64N l+J.1 2N(l+Y) . 64·0.99760 1.3 

O.196658· (O.4)2 _ pa1 

+ 2 .0.99760 .1,3 = 0.064558+0.001635+0.012141 = 0.078324 N~ 

Mr,s = p(~:a)
2
(3+J.1)+Mr,1 = (~!)23.3+0.196658=0.229658pa2 

At point p=O.2 

_ p(O.4a)2 { } Mr,a·(O.4a)2 

04 - oa+64N(l+J.1) 2(3+J.1)¢1-(l+J.1)¢0 + 2N(l+Y) </>1 

= 0.070807';~(·: </>o = 1-(0.5)4 = 0.9375, </>1 = 1-(0.5)2 = 0.75 ,) 

Mr, 4 = p(~:a)
2
(3+J.1)¢1+M,., 3 = O.2214O8Pa2 

9 

A comparison of the obtained values with the solution of R. Gran Olsson 

computed by using hypergrnmetric series is shown in Table 6 in which the calcu­

lation is done concerning-the values of o/aq(q=pa3 /2N0 ) and 11r/<10 =(6Mr/h2 )/ 

(3pa2 /h0)=(2M,./pa2 )(h0 /h)2 , where ho is the thickness at the center. 

author p= 

a/a'J 
M. Naruoka 

o/aq 

0.0 

0.1566 

0.4593 

0.1566 

Table 6. 

0.2 

0.1496 

0.4435 

0.1495 

0.4 

0.1291 

0.4035 

0.1289 

0.6 

0.0963 

0.3454 

0.0960 

0.8 i.O 

0.0526 0.0000 

0.2589 0.0000 

0.0523 0.0000 
R G. Olsson ----1----'--- ---1----1----1~---- --

- ___________ __ "r~~°--- _o.4~~3 J_ 0.4453 ___ o.~<>3~1 __ 0.3454, _____ ~.2~~ 0.0000 

Next, the tangential bending moment M, is obtained as follows. 

Here, the values of Mr and (} are obtained from Tables 5 and 4, and the actual 

value of N must be used. 
Mt can 'be obtained by substituting the value of d(}/dr obtained from the 

first equation into the second eciuation. 

As for the value of Mt, 4 , it is calculated from the formula for a circular plate 

with a radius of 0.4a subjected to a uniform load p and a bending moment of 

0.196658 pa2 uniformly distributed at the circumference p=0.4. l\1ore:>ver it is clea,r 

that Mf,r.=Mr,s. 
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If the values of the tangential bending moment obtained above are shown in 

Table 7, they are as follows. 

Table 7. 

__ author _____ 1----p_= __ ! 0.0 I 0.2 ]_.~J 0.6 0.8 

__ l\,t_Naru~~-----i och i 0.4593 0.4505 I 0.4212 l_o_.'3_7_50_11--o_.3_008 __ 1 

1.0 

0.1491 

0.1460 j I 0.4613 0.4518 I 0.4237 ! 0.'3779 0.'3032 
----------------- --~------

R. G. Olsson 

b) The case when a fixed 

circular plate of non-uniform 

thickness h = h0 •exp (-p2 /6), 

shown in Fig. 5, is subjected 

to a uni form load will be 

solved 1°. 
The method of division is 

quite the same as before. Show­

ing only the result obtained by 

solving the given plate as a 

step shaped plate of 0.66698N O, 

0.78271N 0,0.88250N 0,0.98020N 0, 

it becomes as given in Table 8. 

For comparison, the result 

obtained by Otto Pichler who 

solved by using the power series 

is shown together. 

p 
i 

0.0 
I 

0.2 0.4 

o/a1 I 0.0392 

I 

0.0363 0.0284 

I 
0.0398 0.0370 0.0289 

or/oo 
0.1843 0.1700 0.1247 

0.1869 0.1718 0.1250 
------

otf oo 0.1843 0.1781 0.1475 

0.1869 0.1779 0.1498 
--~ ----- ---

5. Cnnclusion 

- -
L 

SU 

-

Table 8. 

I 0.6 
i --

I 
0.0171 

! 
0.0175 

0.0368 

0.0377 

0.0)74 

0.0~91 

N- dia. g12am 
I -- -

' 

I 

bst ifu+ecl N-dw gn.a In 

I 

-'f 4 ! 
- > 0 

Fig. 5 

I 0.8 1.0 I author I I 
I --

I 
! 0.0056 0.0000 M. Naruoka 

0.0058 0.0000 I 0. Pichler 
I i , ____ -- ---

j - 0.1060 : - 0.3295 M. Naruot<-.a 

I - 0.1052 
1 

- 0.3293 0. Pichler 
I ______ _ 

I 0.0187 - 0.0989 ! M. Naruoka 

I 0,0198 I - 0.0988_ 0. Pichler 

Many solutiom which have been propo3ed in the past are either so complicated 

that they are not suitable for engineers or are solutions for so special cases that 
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they are not applicable to other cases when flexural rigidity is somewhat different 

from the treated special cases. 

Author's solution by the slope deflection method applied to a circular plate of 

non-uniform thickne.:.'"'S, that is, variable flexural rigidity is always possible, so far 

as the flexural rigidity and intensity of the distributed load are only a function of 

the radial distance and the plate is symmetrically loaded. Als:> the obtained result 

coincides satisfactorily with the strictly solved re3ult as can be seen from the 

two examples. 

The values of the coefficients necessary to the calculation can be given before­

hand. If the table is given in various values of 0 for a=l, a result very approxi­

mate to the true value can be obtained. 
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