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Synopsis

“The state of the electrical field in an electrolytic cell cannot be explained com-
pletely by the electrostatic or electromagnetic theory, because in this field the chemical
polarization always appears near the electrode surface. But we will neglect the
effects of this polarization, and present the two-dimensional discussions on the forms
of the electrolytic cell or field. The effects of the polarization can be introduced
very easily by our previous research, so the following discussions will be directly
useful from the point of view of the chemical or electrochemical engineering.

In this paper, ’

a) A Krebs Amalgam Type Chlorine Cell,

b) The Graphite Anode with Many Grooves of a Horizontal Amalgam Type

Chlorine Cell, and '

¢) A Rectangular Electrolytic Cell

are included.

¢)) Introduction

When the electrochemical reaction takes place, the chemical polarization always
appears. There are different kinds of chemical polarization, and they produce very
difficult problems in electrochemistry. Therefore, many people have studied on the
subject. But their researches have been conducted on one-dimensional problems.

According to our previous worksy, the chemical polarizations—the activated
overpotential and the concentration polarization--near the perfect conductive electrode
surface are constant or uniform, or in other words, independent of the coordinate
of the point on the electrode surface under consideration, at constant external
applied voltage. So, the ohmic voltage drop, V§, which is represented as

1) Okada, Yoshizawa and Hine: “On the Distributions of the Electrolytic Potential in Solution.”’,
J. Electrochem. Soc., Japan, 18- , (1950- )-
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VE=Vot+nm, (ml)

where V, and n; are the terminol voltage and the polarization factor, respectively,
becomes constant, when the electrodes are the perfect conductive metals. Therefore,
this field can be analyzed by the conformal mapping method as the electrostatic field.

The electric field in the electrochemical prbcess is only in the cell, so when
Schwarz-Christoffels’ transformation is done, there are to be taken into account
some square root factors, which are corresponding to the apexes of the right angle
at the z-plane, in this relative equation. Therefore, that equation must be calculated
by the elliptic integral. Several examples of this problem are shown in the
following pages.

(XD A Krebs Amalgam Type Chlorine Cell.

The developement of the artificial fibre and plastic industries in these days
requires the best quality and a great quantity of caustic soda and chlorine gas.
For this reason, the amalgam process in the caustic soda industry has become very
important, and the electrical current of each cell has been increased. Therefore,
the various problems must be reconsidered. The potential distribution is one of
these problems. Mbreover, the form of the graphite anode has to be discussed.
The grooves on the surface of the graphite anode, which will be explained in the
next section, are one of the examples. .

The details of the mathematical treatment of the potential distribution of a
Krebs amalgam type chlorine cell will be explained at the first meeting of the
National Union of Theoretical and Applied Mechanics in Japan, dated November,
3rd, 1951. So in this paper, we will explain very simply.

The widths of the cell and of the graphite anode are much larger than the
thickness of the anode, the distances between the electrodes, between the graphite
anode and the free surface of brine, and the gap between the anode and the insu-
lating wall of this cell. Therefore, for convenience’s sake, we assume that the cell
and the graphite anode are semi-infinite,

and moreover we take the symmetrical ¥y
porfile. The profile of this cell is shown N 5§ |
in Fig. 1. And parameter plane ¢ and Do o c D
potentidl plane w are represented in - DA S“a =N N ;\\\\\\\
Figs. 2 and 3, respectively. And the :::::‘::: ::}:\\‘ : \\\\\' ANNRNSY
{-plane is transformed again as follows : A B! B g A
C=snu, (1) AN\ NNRNNRNNRNNNNY @\\\\\\\\\\\\\Ax
and the other parameter, or Jacobi’s - z-plane

elliptic function, is shown in Fig. 4. Fig. 1
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In the ¢{-plane, the coordinate of point A must be noticed, i.e., constant & must
take a complex number such as

b = ¢+ jK’
where ¢ represents an arbitrary real number, and by Jacobi’s transformation, we

obtain
1/k-snb = snc<l .

The relations of the above-shown variables are as follows:

igyu 6, Ou—a) B . 6(u-b)
z*(a+]8)'K—?log 8ura) = log CICEY)) (2)
and
¢ i -0 .
W= T g SROCTEIVE (3)

where «, 8,7, 6, @ and b are the constants, and

¢ = cos~! (g@a
s

nb) , 0 =cos~1(ksna-snu) .

At present, the scales of each part of the cell are being taken as follows:

g = 0.5Cm.,
7y = 4.0Cm.,
and d = 2.0Cm.
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And we take two cases for «:
i) when ¢«=1.0Cm., and
ii) when «=0.2Cm.
Also, the length of the graphite anode is about 40Cm. Hence, the percentage of
the current along each surface of the anode, AB, BC and CD in Fig. 1, is shown as
Case i) AB 96.88%

BC 2.63%
CD 0.487%
Case ii) AB 97.78%
BC 219%
CD 0.033%

From these results, we can neglect the currents along the side surface and the
upper surface of the graphite anode.

(II1) The Graphite Anode with Many Grooves of a Horizontal Amalgam Type
Chlorine Cell.

Récently, the graphite anode with many grooves came to be used in caustic
soda industry. As a result, we must consider or discuss the following two problems :
i) The sectional area of the graphite anode is increased, so that the total current

will be increased.

ii) The relaxation time of the generated chlorine gas under the anode is decreased,
and so electric resistance by the gas film will decay.

The second problem may be all right, but the first problem must be closely examined,

the problem of the amount of the total electrical current being not so simple. We

will consider this subject as this field is

the electostatic field. ki,

The distance between the graphite ﬂﬂ" 0 A —1
anode and the mercury cathode is much Ml R / B
smaller than the distance between the
two neighbouring grooves, so that we can LCL,MMMZB' N B /;. I///////lé
assume that the potential distribution [HTTTTTTTTTTTTIT T 7 I7 7777 777777777
near one groove is not effected by the ‘ Jy z-plane
other. The profile of this field, the z—plane, Fig. 5
and parameter plane { are e
shown in Fig. 5 and Fig. 6, A
respectively. And the upper M __C! B! Al A B g
half of the ¢-plane is mapped -1/k-sne, -1/k, -1, 1, 1/k, 1/kesnc,
into the z-plane by Schwarz- -plane

Christoffels’ transformation : Fig. 6
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£ = A’S \/52 —%
VETL (i)
By substituting the relation
¢ = snu
in Eq. (4), we obtain

- 1— kzsnzt;
z= AS 1--kZsnicsniu

where
A= —A-ksn?c .
Eq. (5) is integrated :

= [ " sne- dnc 1 a, c)]

67

(4)

(5)

(65

(7)

Here the integral constant is zero, because the origin of the z-plane is transformed

into the origin of the {-plane.

Next, we must define constant A. Let us take a very small circular arc at point

C in the {~plane. When its radius tends to zero, we obtain

jas

1
ksnch-pe l B

joelt

JB+T)
j dz = —lim A’g
s p>0

" A= 2 _snc-dnc

4 cne

By substituting this in Eq. (7),

o 2 [snec-dnc
4—71;[ e 4 II(u,c)].

J 1 2 1
° ‘/l(kjm+pe”) -1 (ksnc+p ) " Rsn%c

(85

Moreover, by considering the correspondence of the coordinate at point A, we obtain

~z@],

By substituting Eq (9) in Eq. (8),
%, 2 _
z——Ku+ 7r7‘[uZ(c) H(u,c)] .

But we have a well-knovqn relation

(9)
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I(u,c)—uZ(c) = % log _%gz;zg

And so by substituting this in the above equation, we obtain

T O(u—c) (10)

=%u-1T
EEKYT 7 %% 8(uto) "

Further, if we take the correspondence at point B, then from Eq. (10),
wtjB = at jE (K —70) .
Here, a well-known relation
(K + K, ) = K-Z(o)+ j{K/-2(0) + 5}
is used, and from the imaginary part of this equation we obtain

BK = aK’—yc . an

Constants & and ¢ are known from Egs. (9) and (11).

Next, we consider the potential plane. The relation between the (-plane and
the w-plane, both of which are shown in Fig. 7, is obtained By Schwarz-Christoffels’
transformation as follows :

_B'__a! A B Joa gk, Kagk,
~ D ' M C B} -
Vo
c! I q 0 A
K,
w-plane u-plane -
Fig. 7
dw=A—9_
C2_¥];, -
_ Rsn’c
or this integral is
fo L
w = ’24'k-snc-log ks1m+B .
C+i—
ksnc

When a circular arc is considered at point C in the ¢-plane, the relation

¢
ro

A _
7k-snc—— -
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is introduced ; hence, by substituting this in the above equation we have

But at point O
s = Ylog(~1)+B

is obtained, and then we obtain B=0; therefore,

Vu og ksnc-snu-—1 a

w= € ksnc-snu+1

is obtained. The w-plane and the the u-plane are shown in Fig. 7.
For example, the size of each part of the field is given as follows:

Case i) «=025Cm., Bf=25Cm., 7r=05Cm,
Case ii) a=05Cm., B=25Cm., r=05Cm.
In the first place, the constants are defined as follows:
Case i) k=379%10"7, K =15707963, K’ = 16.1719637,

¢ = 0.4640007,
Case ii) k=17.019232%x10-%, K = 31415927, K’ = 55054761,
¢ = 0.794000.

We will calculate the rate of the current at each part of the graphite anode. For
this purpose, we must find the corresponding point on the {-plane which is defined
by the length of the lower surface of the graphite anode. To expedite this calcu-
lation, Eq. (10) is transformed, i.e., the term of @-function is

log O —c+jK’)
@(u +c+ K "

But we have a well-known equation

1 M

iy = g S KN s T Tk g (4]

6Cut JK") = Bul et jop) =g *e 2K (ZK )
s0 we ‘obtain
_].n(u/—c) '

o e 2K 01(5421{0): e, | D3 (u’ZKc)

g _].n(u’+c) oy J 2 (u +c) )
el 2K 01(‘2}{) WK

By substituting this in Eq. (10), the real part of this equation is obtained as follows :
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u—c )
v I'éu/_tloga_l(__ffi) . a3)
<)

But ¢ is much smaller than the others, and therefore, we obtain

3

P(a) = Zq*(sin mo—q° sin 3mat e ) = 2q:‘f sinra .

By substituting this eqation in Eq. (13),

4

sin% ~°¢

_ % T 2K
x——Ku - lop:Sinu,+c
2K

is obtained.

Now, when the length of the lower surface of the graphite anode is given as
3 Cm., the corresponding coordinate value of each case is as follows:

Case i) U = c+2439%x10-3,
Case ii) & = c+5.64648x10-5.

And the rate of the anode is calculated and the results follow :

Case 1) On the lower surface  98.50%

On the side surface 1.495%
Case ii) On the lower surface  93.95%
On the side surface 6.053% .

Further, the rate of the total current of these cases to the case of the anode with-
out grooves is as follows:

Case i) 87.80%
Case ii) 71.04% .

Hence, from the point of electrical power it is not strongly recommended that the
anode with many grooves be used, but since the loss of the anode is very uniform,
from such a point of view this anode will be better than the other.

(IV) A Rectangular Electrolytic Cell.

In experiments of electrochemistry, a cell which is formed as the z-plane in
Fig. 8 is frequently used. In such cases, the potential and the current distribution
do not agree with these in the case of the field which is shown in Fig. 9, with
the exception of the neighbourhood of the electrode. In other words, the effect of
the insulating wall must be examined. We will consider this problem. The upper
half of the ¢-plane can be transformed into the z-plane by Schwarz-Christoffels’
transformation as follows:
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Let us take
¢ = sn?u , 15)
and by substituting this relation in Eq. (14), we obtain
_ _2C  1—Fk®-sn®b-sn’u
dz = ksn2b snu du , (16
or this integral is
= 2C [ _smu ~1(dnu
2= ksn?b 1Op"[cmhwinu] 2C cosh ( 1’4 )+B ’

where B is the integral constant. Now, we consider the correspondence of point
in the z- and u-planes; then

- 1 J  oeh-1 }
O_ZC{k-snzb log % cosh~1(0); + B
is obtained, but
log%, = ; log(—1)-—-logk = %jn——logk’ ,
and cosh~1(0) is not recognized as existing in the real domain, and we must
remark that »
cosh jo=cosw=0,

S0
cosh™1(0) = jn/2 .
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Therefore, we obtain

B= —2c{jg—(F:—néz—1)~,Tslm-1ogk'} .

Next, a small circular arc at point C on the ¢{-plane is considered, and from Eq.
(14)

vk sn2b
T

C=-

B = -2 iog k' + jrlksn2b—1)

s
is introduced. And by substituting this relation in z, we obtain

_E{ cnutdnu o oop _1(@ } b sm2B
2= log ¥ snit + k-sn%b-cosh 7 ) + jr(k-sn®b-1) .
Moreover, the correspondence at point D is considered as

2r

B = ?{log 1+ k-sn®b-cosh™ (DD} + jr(k-snb-1)

and from the imaginary part of this equation,

onib = ,517.(3+2r> an
is obtained.
By substituting Eq. (17) in 2, we obtain
=2 pgenutdnu 2 p oy o poa(dnn)
2 = L 1og MLEIML 2 (gt o7)-cosh=2 (D) + (B +7) . (8)

Next, when we consider the correspondence at point B,

z=uatjp, ¢= 1/k2-sri2b at point B.

So,
u=>b+jK’
is reduced, but clearly we know
1/k%-sn%6 >0 ;
hence, if we take
b= jec,

by Jacobi’s transformation, we obtain the following relatiohs:
Firstly, by substituting jc¢ in Eq. (18) the first term is shown as

[_Q‘EE‘_L - o
E-snc  sme (dnc+k) (dnc+k) -
log | —————— =1 — ) = — ) —J5
* in cne o8 J¥ -enc E\W-enc) 72
— R = )

ksnc
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and the second term is represented as
cosh=1( —1/¥ -snc) .

But as the hyperbolic sine cannot take the negative value in the real domain, let
us take

cosh~1(—x) = p+ jg (x is a real and positive number),
and again we take the inverse function as

cosh(p+jg) = —x

cosh p-cos g+ j-sinh p-sing = —x ;

hence,
cosh p-cosqg = —x, (19a)
sinh p-sing=0 . (19b)

From Eq. (19a), we obtain

sinhp=0 or sing=0.
First, we consider the case of sinh p=0. From Eq. (19b)

cosqg= —x

q=rmtcos~lx ;
hence,

cosh~1(—x) = j(m+cos™1x) (20a)
is introduced.
Next, from sin ¢=0,

coshp-='x , g4g=m,
because we have the relation

.coshp-oosq= —-X .
Hence,

cosh™3(—x) = cosh~1x+ jx (20b)
is reduced. Eqgs. (20a) and (20b) are the same, essentially. Because if we take that

jecosTix =7,
the relation:

cos (—cos~1x) = cos (§3)
is introduced. But the cosine is a even function, so we have

x=cos(jp) =coshy or 7% =cosh~lx .
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Thus we have proved that Egs. (20a) and (20b) are the same essentially.
Now, if we use Eq. (20a), we obtain

cosh~1(dnu/k’) = j{n+cos‘1(1/k’-m—c)} , at B

and by substituting this in Eq. (18),

wrjp=2 ("”" LRy 42 <ﬂ+2,>§m cos( .1 )}H(Bm ,
E -snc
s0 we obtain
Torr b/
o= 2r log M) (21a)
k cnc
and
' d Fcos"1 ——=1)=0., (21b)
Ssne
And from Eq. (21b),
Esnc= —1 (21¢)
is reduced.
Next, on the potential plane, we obtain
1
dw=A————= 22

by Schwarz-Christoffels’ transformation. Now, if we take ¢ =C“§};z »

w—Alog{ﬁJr «/0 2kz—)§+B

is introduced.
From the correspondence at point 0 and C

A—;k , and B= —Y;glog (2}{2)

are obtained, so

( ) ) —_ V" Osh-—l(sz(j)
2kz
By substituting ¢ in this equation, v;fe obtain

w= ﬁ cosh~1(2k%—1) . . (23)

The above-shown analysis is very difficult. If we have the symmetrical profile, we
can analyze more easily. Of this problem, we will explain simply as follows:
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The profile of this field, the z-plane, parameter plane { and potential plane w are
shown in Fig. 10. And the potential of electrode A’B’C’ is equal to that of

B
M
c! —-&—-l—i G’
B! ] S S
_ o A B G
A! 0 Pl A | a b c
z-plane - § -plane
3
B' ¢! ¢ ’ B
. j'V'o
Al P ) A
w-plane .
Fig. 10

electrode ABC. So that the relation between the parameter plane is essentially
simillar to the above-shown case of a Krebs amalgam type chlorine cell. So we
do not explain the relation. The relation between the z-plane and the C—plane is
shown as follows by Schwarz-Chrlstoffels transformation :

dz _ c2 .
= Aaea - @0

And the integral of this equation is

g A __!g_ (-a, 8-
- alalx log £ g+ g

1 ggﬁ;—]+B .

From the correspondences at points A and C, we obtain

A= _%ﬂ agqitg_) (252)

and

2 _. 2

respectively. Further, if we consider the correspondence at the origin,

= ;5
B=—j 2A
is obtained, so

~ B iogSra T gt b B oy jagtt=dh (26)

g 08 s rler
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From Eqgs. (25a) and (25b),

a y
B = ws @D

is reduced, and from Eq. (27), we can define the constant. Fig. 11 represents the
state of this field. '

Insulating Wall

Insulating
¥all

Insulating

¥all

Electrode

Flectrode
Fig. 11
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