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SUMMARY

The stability of the non-linear periodic oscillations is discussed by solving
a variational equation which characterizes small variations from the periodic
states of equilibrium. This variational equation leads to a linear equation in
which the coefficient is periodic in the time. If all solutions of this equation
are bounded, then the oscillation is said to be stable, otherwise unstable. In
order to establish the stability criterion, the characteristic exponents for the
unbounded solutions are calculated by Whittaker’s method. Then, the general-
ized stability condition is derived by comparing the said characteristic exponents
with the damping of the system considered. Since the solutions of the varia-
tional equation have the form: e#* (sin (n#7-o)-+--- ], our stability condition
is secured not only for the unbounded solutions having the fundamental frequency
(n==1), but also for the unbounded solutions with higher harmonic frequencies
(n=2, 3, 4, - ). Hence the generalized stability condition obtained in this way
is particularly effective in studying the oscillations in which the higher harmonics
are excited. Finally our investigation is compared with one of the stability
conditions derived by Mandelstam and Papalexi for the subharmonic oscillations.

In the appendix, the characteristic exponents are calculated at some length
for the unbounded solutions of a variational equation in which the periodic
coefficient involves sine series as well as cosine series.

1. Introduction

Non-linear oscillations governed by the differential equation :

Ga=F(nghs), '
with (11>
Fls, 2 err) =F(v,z—z,r)

are not seldom encountered in several different kinds of physical problems. It has
been pointed out by Trefftz (1) that if the solution of (1.1) is stable, it must
finally lead to a periodic solution in which the period is equal to the period T of
the external force, or as its least period equal to an integral multiple (different
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from unity) of T.* Consequently, a non-periodic oscillation, if established, must be
unstable.

In the following lines we confine our attention to the periodic solutions which
are essentially either harmonic or subharmonic even if higher harmonics may
predominate. It is known from the theory of differential equations that (1.1)
possesses such solutions »(r) that are uniquely determined once the values of v(0)
and (dv/dt).-p, i.e. the initial conditions, are prescribed. It is, however, the
distinctive character of non-linear oscillations that the various types of periodic
golutions of (1.1) may exist corresponding to the different values of the initial
conditions prescribed.

Contrary to many cases of linear differential equations, it is hardly possible
to find the general solution of (1.1) for the given initial conditions. Moreover,
since explicit solutions in terms of the elementary functions are not to be expected,
the differential equation (1.1) is treatad by various analytic approximation methods.
As mentioned above, so long' as we confine the problem to the periodic oscillations,
our conventional method of solution is to assume for v(r) a Fourier series develop-
ment with undetermined coefficients, and then to fix them by the non-linear relations
obtained by substituting the series into the original equation (1.1). It should,
however, be noticed that this method of solution is merely to find out the periodic
states of equilibrium which are not always sustained, but are only able to last out
so long as they are stable. The circumstances under which this condition obtains
are determined by a further stability investigation. '

2. Stability of the periodic solutions

A state of equilibrium is said to be stable or unstable according to whether
any variation from this state caused by a sufficiently small perturbation attenuates
or not with the lapse of time. As a typical case of equation (1.1), we now consider
the following non-linear differential equation:

B TR g = oo,
with : I @1
e(t+T) =e(1).
Let the periodic solution of (2.1) be expressed by
v(r) = 0(7), 2.2

in which the period is equal to the period T of the external force, or as its least

* ' Corresponding to these two cases the terms “harmonic” and “subharmomc" osc1llatlons are
respectively applied. :
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period equal to an integral multiple of 7. If the small variation from this periodic
state is denoted by &, we obtain the following variational equatxon for £ by the
substitution of v(r)+§ in place. of v(z), i.e.,

s I [U 28—, e
or
j S+ FOE Lo =0, ‘ 2.0

in which F(r) and G(z) are periodic functions of 7, determined by the substitution
of (2.2) into (2.3). Now, introducing a new variable 7 with the following relation :

§ = exp| —L{F(rar) -y, | 2.5)
equation (2.4) is transformed as follows: 4
dF .
P (6w -L9E _ Lipyyy =0, @®

This is a linear equation in which the coefficient of % is a periodic function of =
and may be developed into a Fourier series.
By Floquet’s theorem (2) the general solution of (2. 6) is given by

7 = 16" ¢(t)+ coe=*"P(1), ¢y, c2: constants, Q.7

where pu is the characteristic exponent determined by the coefficients of the Fourier
series in (2.6), and ¢(%), ¢(¢) are periodic functions of 7 in which the period is
the same or twice as much as the period of the Fourier series.

Now we turn to the present stability investigation. As one readily sees from
(2.5) and (2.7), the variation £ tends to zero with the increase of r if the
real part of —%Fo:t o is negative, F, being the constant term in the series of F(),
and the corresponding periodic state of equilibrium is stable. On the contrary, if
the real part of ——%Fo:t p is positive, the variation £ diverges boundlessly with
the increase of r, and the corresponding periodic state is unstable. Hence, for
establishing the stability criterion, it is necessary to evaluate the characteristic
exponent # in (2.7), and this will be discussed in the following section.

3. The stability problem for Hill’s equation

As mentioned in the foregoing section, the variational equation associated with
the stability of the periodic solution is reduced to the linear equation (2.6) witha
periodic function of r as its coefficient. The representative one of (2. 6) is what is
called a Hill’s equation of the form:
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d2 00
Tz_z-'+<ﬂo+2§10v cos2vr)77=0. : @G3.D
We shall now briefly discuss the solution of this equation by use of Whit-

taker's method of change of parameter.*
Substituting a solution :

| 7 = e"¢(r) 3.2
into (3.1), we obtain :
Z,ﬁ+2y +[00+l-¢ +2}_.0 cost-r]¢ 0. 3.3

According to Whittaker the periodic function ¢(¢) in the #-th unstable region
may be assumed to a first approximation in the form:

¢(r) =sin(nr—0), #=1,2,3,-, G4

in which ¢ is a new patameter to be determined presently. Substituting (3. 4) into
(3. 3) and equatmg to zero the coefficients of sin nr and cos nt respectlvely, we
obtain

(3.5)

2un sino+ (fo+ p2—m2) coso~Oncose =0, }
2un cos ¢ —(0y+p2—n?) sing—0s sine=0.

Hence the characteristic exponent ¢ and the parameter ¢ are given by

‘ m= —%sin 20,
with ‘ 0 (3.6
o 0o = n%+0n cos 26— (21) sm22a

from which we obtain, by eliminating o,

= —(o+n)t) o+ 0% - 3.7

* This method of solution was introduced by Whittaker (3) in obtaining the quasi-periodic
solution in the nelghbourhood of the characteristic functions (i.e. Mathieu functions) ce)(7)
and sey(7) ot Mathieu’s equation—a special case of Hill’s equation in which the periodic coef-
ficient ias a simple harmonic function of 7 [i. e., 0g==03=«.... =0 in (3.1)]). He assumed the -
solution in the form:

1" (sin(T — o)+ ++ J+c2e=T (sin(T+He)4 0 ],

where ¢; and ¢, are arbitrary constants and ¢ is a new parameter, This solution reduces to
the Mathieu function ce1(7) for o==—m/2, and to se;(7) for o==0. Generally s has a value
lying between: —7/2 and O for the unbounded solution in which the characteristic exponent u
may be considered as real.

Later, Young (4) has applied this method of solution to obtam the quasi-periodic solution
in the neighbourhood of the Mathieu functions ce;(7), fes(7) and ces(T), ses(7). .

In our paper, we define the n-th unstable region in 0y, 0;-plane as associated with the un-
bounded solutions interposed between ce,(7) and se,(7), and apply the same term to the
case of Hill’s equation.
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Since the characteristic exponent # may be assumed to be purely imaginary or
real according to whether the solution is bounded or not for all positive values of
the time, we have u2>>0 for the unbounded solution [cf. equation (2.7)). This
condition is transformed by (3.7) to

(00‘“”24‘073)(00“—”2_0”) <0 ’ }
|0a]>100—n2] .

Since u# = 0 on the boundanes between the stable and unstable regions, the boundary
hnes of the n-th unstable region are given by

3.8

“or

00‘ = nzzi:(?,., ' (3. 9)

which are also derived directly by putting‘ 6=-—x/2 and ¢=0 in the second
equation of (3.6).

It is apparent from these equatlons that the values of ¢, ¢ and consequently
the boundarlw of the ‘n—th unsmbIe regmn are determmed only by o and 6x , and
are not affected by other parameters This is because we have confined our
calculation to the first approximation. By the closer approximation, however, the
remaining parameters will be related to them, as will be shown in the appendix
where the var1at10na1 equation conmdered contams the periodic coefficient involv-
ing sine series as well as cosine series.

‘4. Condition for the stability of the non-lihear'periodic oscillations

Following the preceding considerations, we shall derive the stability condition
for the periodic oscillations governed by the following equation:

mfii L 26 EMOET ON 4D
in which 28 is a constant damping coefficient, /(») a non-linear term and e(zr) a
periodic external force. Let the variation of » be §. Then. corresponding to (2.5)
and (2.6), we have ' ‘ ' '

and
B (Y )y =o. | (4.2)

Now, once the periodic state of equilibrium is determined (usually by applying
either iteration or perturbation methods), the coefficient of 7 in the last equation
may be developed into a Fourier series, so that (4.2) leads to

2 o ’
2—2‘ + [00 +2z_‘,1 0, cos 2yt~ e,,)] p=0. ; (4.3
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According to. the investigation in Section 2, the stability condition in this
case is given by 0 >|u|, or substituting (3.7) we obtain*

(Bo—n2)*+2(0+n2)02+0*>0%, n=1,2,3,. 4.4)

This is the stability condition (to a first approximation**) for the »-th unstable
region, so that, in order that the periodic state of equilibrium is stable, the condition
(4.4) must be satisfied for all values of # simultaneously.

" 5, Some complementary remarks on the stability condition

In this sectlon we shall compare the stability condition obmuned in the foregomg
section with the one hitherto reported, and explain the physical meaning of the
instability in the n-th unstable region.

Stability investigations in non-linear oscillations are to be found in many
physical and technical journals. Here the one reported by Mandelstam and
Papalexi (5) with elegant form will be taken up for comparison. They have
discussed the subbarmonic oscillations in vacuum tube circuits governed. by the
following equation :

Z—v+v—AF( ,Z)+Bcosur, v=2,34,--, G.D
in which the parametric coefficient i of .the non-linear function F(v,dv/dt) is
sufficiently small. They have treated the problem by the perturbation method, and
obtained the followmg periodic solution for the subharmonic oscillation of order
1/y, i.e.,

v = xsint+¥ cost+w cos yr, w='1—fy—2. (5.2)
in which the amplitudes x and y are to be determined by the conditions:
Sz‘d)(x, y,7)sintdr =0

S:“p(x; Y, T)_ c0s vdr =0 ) (5. 3)

where
¢(x,y,7) =F(xsint+y cosv+w cosvr ,
. Xxcost—ysint—ywsinyr) .

This is quite the same relation as that obtained by substituting (5.2) into (5.1)

* So long as we confine our calculation to a first approximation, equation (3.7) may be
applied in case of &,==0.

** In the case when the stability condition of the higher order approximation is preferable,
we should refer to the appendix for the closer evaluation of w.



98 C. HavasHr

and equating to zero the coefficients of sin = and cos r respectively. Then, as for
the stability condition, they have derived the following relation:

‘ Sz‘ 99 sin rdt S”Q‘E cos rdt

ox 7]
ox o 0x >0, (5. 4)
£ 2%
Sz gﬁ sin rdr S %% cos tdt

which has been deduced from the considéfation that the variations of the ampli-
tudes x and ¥ of the subharmonic oscillation tend to zero with the lapse of time 7.

On the other hénd, in our preceding investigation, the differential equation
which governs the oscillation is given by (4.1), in which the damping coefficient
24 is constant, but not necessarily small. In order to investigate the subharmonic
oscillations, the external force e(z) in (4.1) may conveniently be expressed by
Bcos v, and then the perlodic solution will be given by (5. 2).

Now we shall proceed to show that the stability condition (5. 4) is included in
our equation (4.4) as one of the conditions corresponding to #=1. Since v(r) is
a periodic function of r (cf. equation (5.2)), df /dv in (4.2) may be expanded in a
Fourier series as: ‘

%= G +ay cos 2t +az cos 4dr + ---
+b sin 2t +by sindr+ -,
where .
- 21df
@y = zﬂSo d‘l)dr’ . (5.5)
=

o do cos2vtdr,(v=1,2,3,---),

ra
2
b, = %So‘%{) sin 2vrdr,(v=1,2,8,---) .

Substituting this into (4.2), and comparing with (4. 3), we obtain

00 = ao—(?’ ’
} (5.6)

20, =1 az+b2, e = arctanf—:‘i .

v

Hence the stability condition (4.4) may be written as:
(o —mEY +4m3? > T (ad +83) ,

and further, substituting for &g, an, and b their values as given by (5.5), we héve

[SZ‘ (‘31{, ﬂz)dr] +16 7127292 >[ X Zﬁ cos 2nt dr] [So 31’; sin 2nr dr:]z,
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or
S:‘(%-—rﬁ) sin2nr dz- Sh(“g ”z) cos®nr dr

[S - (% ”2) sin nt cosnt d‘r] Hantn*er >0,

This stability condition may be rewritten in a form similar to that of (5.4) as:

2% 2%
S ¥, sin nr dr S Y,cosnrdr )
2r 22 \ > 0,
S Py sin nr dr So Yycosnr dr
in which 6D

W= (z—i—nz) sin nt +2n_6 cos 17,

Vy= (%—n’) cos nt —2nd sinnt .

7

Now the stability condition (5.4) may be derived by putting #=1 in (5.7),
i.e., upon comparing (5.1) with (4.1), we have

o2, T)=F( .20)=-—[v -f(v) — 26‘1"’]

and hence, by (5.2),

gil_ _1_( —_ %) sin ngia—cos T = —%E‘I’mjnﬂ ’
gg’; ( Z::) cos T+szln T = --%E‘I’vjnq .

. The substitution of these two relations into (5.7) will yield (5. 4).

Therefore, the stability condition given by Mandelstam and Papalexi offers no
information for # =2. This is because they have discussed the problem by the
perturbation method, assuminhg that the non-linearity expressed By Ain (5.1) is
sufficiently small. Whereas in our investigation, the generalized stability condition
(4. 8) or (5.7) for the #n~th unstable region will furnish the criterion to distinguish
the stability for the n#-th harmonic of the fundamental oscillation. This will be
clear from the following consideration that an oscillation with 2z times the funda-
mental frequency is excited in the z-th unstable region, for the solution of the
variational equation in this region has the form : ¢“"-(sin (nr —g¢) +higher order
terms in 6., 0;,---].

Our generalized condition is effective when we investigate the harmonic oscilla-
tion in which the higher harmonics are predominantly superposed with negative
damping. Our condition is also effective in the case when we discuss the stability
of the subharmonic oscillations;-— e. g., in studying the subharmonic oscillation of
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order 1/3, we are frequently encountered with the self-excitation of the second har-

monic of the subharmonic oscillation, i.e. the oscillation of order 2/3, which will

no longer permit the continuation of the original subharmonic oscillation. Thus,

the stability condition for the first unstablé region is not sufficient in this case,

and the instability above-mentioned may be detected by putting =2 in (4.4) or

5. S ) . A e _
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APPENDIX
Evaluation of the characteristic exponent for the variational equation (4.3)

As has been indicated in Section 4, the variational equation associated with
the periodic oscillation is given by (4.3). If all the arguments ¢,’s are zero,
equation (4.3) reduces to a Hill’s equation. As far as we are aware, there has
been no report on the unbounded solution of (4.3) in which the periodic coefficient
involves sine series as well as cosine series. As noticed in the text, the closer
evaluation of the characteristic exponent will be necessary in the case when the
stability condition of the higher order approximation is desired. We shall, therefore,
write down some expansions for the characteristic exponent x4 by Whittaker’s .
method for the following equation :

9 4
Z—TZ + [00 +2\§1 o, gos (vt —ey)]‘ﬂ =0.

(a) For the unbounded solution associated with the first unstable region:—
The characteristic exponent g is given by the following expansion :
u =-12-01 sin 20 +%0102 sin (26 +2s1—¢2)
+—2]-Z 0203 sin (20‘ +e1+ez —€3>

+411§ 030, sin (20 +e1+ez3—eg)+ -+ ’

* An application of the generalized stability condition to the subharmonic oscillation of order
1/3 will be reported in the following paper.
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in which the parameter ¢ is to be determined by

bo = 1+ 01 cos‘Za + (—} + % cos 4a) liH —-:‘—1—‘ 03‘
-0 63 + 2016 cos (2 -+2e1—e2)
1]:20203 COS (20‘ +e1+¢e2 -‘53)

+§110304 08 (20-+e1+e5—8) ++or .

(b) For the unbounded solution associated with the second unstable region -~
Similarly to the preceding case, the expansions for x and 6, are given by

pn= 71—02 sin 2¢— 1601 sin (2«1 2e1+e2) »
+ 2120103 sin(Za +¢1+e2 '—Es)

+ —1“0204 sin (20 +2s2—€4) + -,

o = 4+85 cos 2a+[ cos(Za 251+€z)]01
+(—T16+3l2cos4a/0§ ~ 6% - 5.0

+%0103 cos (20 +e1+ez—e3)

116 026, cos (26 +2e5—4) + -

(c) For the unbounded solution associated with the third unstable region : —

n== 0 sin 20 — 1 0102 8in (20 --e1—e2+¢3)

+418 104 8in Qo +e;teg—eg4) +o0,

1 1

0%+ 1002+( 1 1cos4a) 62

8o = 9+8; cos 20+ 36 75

_1%103"%0102 COS(20'—61*—52+€3)

+%0104 cos (20 +e1+eg—eq)+-er.

The periodic functions ¢(z) and ¢(7) in the solutions (cf. equation (2.7)] are
obtained at the same time. They have, however, no direct concern to the stability
problem, so that the lengthy expansions for ¢(7z) and ¢(z) will be omitted here.
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