Formänderung der hyperbolischen Paraboloidschale

Von

Prof. Dr. Ing. Shizuo BAN, Kioto Univ.

(Eingegangen am 1. Juni 1952)

1. Einteilung

Die Theorie der hyperbolischen Paraboloidschale ist heute soweit entwickelt, dass die Membranspannung tür die verschiedenen Belastungen ausreichend bekannt ist. Die Formänderung, die man den Bedingungen der Membrantheorie nach zu erwarten hat, ist meines Wissens bisher noch ungeklärt geblieben, was vermutlich der Verbreitung dieser Anwendung hinderlich war. Um diese Lücke auszufüllen legt der Verfasser hier eine Arbeit vor, in der die Differentialgleichung für die Verformung der allgemeinen Translationsschale aufgestellt wird. Für die hyperbolische Paraboloidschale ist es mir gelungen, die Lösung zu errechnen.

2. Geometrische Beziehungen der Schalenfläche (s. Abb. 1)

 $z=\frac{1}{n}xy$

Die Gleichung der Schalenfläche:

Neigung der Flächengeraden gegen die x-Richtung: $\tan \varphi = \frac{\partial z}{\partial x} = \frac{y}{n}$ Neigung der Flächengeraden gegen die y-Richtung: $\tan \psi = \frac{\partial z}{\partial y} = \frac{x}{n}$

Der von den die beiden Geraden gebildete Winkel:

Der zwischen den beiden Diagonalen des Flächenteilchens befindliche Winkel:

wobei der Einfachheit halber dx=dy angenommen ist.

Die Richtungskosinus der Flächennormalen sind

$$\cos \alpha = \frac{\tan \varphi}{\sqrt{1 + \tan^2 \varphi + \tan^2 \psi}} = \frac{y}{R},$$

$$\cos \beta = \frac{\tan \psi}{\sqrt{1 + \tan^2 \varphi + \tan^2 \psi}} = \frac{x}{R},$$

$$\cos \gamma = \frac{1}{\sqrt{1 + \tan^2 \varphi + \tan^2 \psi}} = \frac{1}{R},$$
(5)

wobei $R = \sqrt{n^2 + x^2 + y^2}$ gesetzt ist.

Das Flächenteilchen der Schale berechnet sich aus

und die Seitenlänge des Teilchens aus

$$ds_{\varphi} = \frac{dx}{\cos \varphi} = \frac{1}{n} \sqrt{n^2 + y^2} dx,$$

$$ds_{\psi} = \frac{dy}{\cos \psi} = \frac{1}{n} \sqrt{n^2 + x^2} dy.$$
(7)

3. Die Membrankräfte

Die Membrankräfte werden mit N_{φ} , N_{Ψ} , T bezeichnet und die Teilkräfte der ausseren Lasten in der Achsenrichtung mit X, Y, Z, wobei letztere Gruppe auf die Flächeneinheit den Grundrisses bezogen ist. Aus den wertvollen Veröffentlichungen von A. Pucher¹⁾ und K. G. Tester²⁾ ergeben sich

$$T = \tau h = -\frac{\partial^2 F}{\partial x \partial y} = -\frac{n}{2} Z + \frac{1}{2} (Xy + Yx), \qquad (8)$$

$$N_{\varphi} = \sigma_{\varphi} h = \frac{\cos \psi}{\cos \varphi} \left\{ \frac{\partial^2 F}{\partial y^2} - \int_0^x X dx \right\} = -\frac{\cos \psi}{\cos \varphi} \left\{ \int \left(\frac{\partial T}{\partial y} + X \right) dx + C_1(y) \right\}, (9)$$

$$N_{\psi} = \sigma_{\psi} h = \frac{\cos \varphi}{\cos \psi} \left\{ \frac{\partial^2 F}{\partial x^2} - \int_0^y Y dy \right\} = -\frac{\cos \varphi}{\cos \psi} \left\{ \int \left(\frac{\partial T}{\partial x} + Y \right) dy + C_2(x) \right\}, (10)$$

wo h die Schalendicke bedeutet.

Auf die einzelnen Belastungsfälle gehe ich hier nicht ein.

4. Verzerrung bei schiefwinkligem Spannungszustand

Entsprechend der Grundrissprojektion $dx \cdot dy$ formt das Schalenteilchen ein Parallelogram, dessen Seite mit der Richtung der inneren Kräfte T, N_{φ}, N_{ψ} übereinstimmt. Wir bezeichnen die Spännungen mit $\sigma_{\varphi}, \sigma_{\psi}, \tau$ und die Verzerrungen in derselben Richtungen mit $\varepsilon_{\varphi}, \varepsilon_{\psi}, \gamma$. Da die Längsspannung σ_{φ} schiefwinklig zur Schnittfläche gerichtet ist, ergibt sich die Verzerrung zu $\sigma_{\varphi}/$

 $E \sin \delta$ in der φ -Richtung und $\nu \sigma_{\varphi}/E \sin \delta$ in der dazu rechtwinkligen Richtung. Es lässt sich leicht beweisen, dass die Verzerrung in der ψ -Richtung mit $\nu \sigma_{\varphi}/E$ sin δ übereinstimmt. Dann erhalten wir

Unsere weitere Aufgabe besteht nun in der Feststellung der Beziehung zwischen τ und γ . In Abb. 3 nimmt man an, dass längs der Seiten *AB* und *AC* nur Schubspannung angebracht wird. Dieser

Spannungszustand wird durch zwei diagonal gerichtete Längsspannungen σ_{a_1} und σ_{a_2} ersetzt. Das Gleichgewicht der Spannungen in dem Dreieck *ABC* bezw. *ACD* erfordert

$$\sigma_{a_1} = \tau \frac{AD}{BC} = \tau \frac{\sqrt{2} + (\tan \psi + \tan \varphi)^2}{\sqrt{2} + (\tan \psi - \tan \varphi)^2}, \quad (13)$$
$$\sigma_{a_2} = \tau \frac{BC}{AD} = -\tau \frac{\sqrt{2} + (\tan \psi - \tan \varphi)^2}{\sqrt{2} + (\tan \psi + \tan \varphi)^2}, \quad (14)$$

wobei dy als dx gesetzt ist. Da die beiden Diagonalen zueinander den Winkel θ bilden, ergibt sich die Verkürzung der Diagonalen *BC* zu

$$\Delta BC = BC \times \frac{1}{E \sin \theta} (\sigma_{d_2} - \nu \sigma_{d_1}). \qquad (15)$$

Da längs der Seiten AB und AC keine Längenänderung eintritt wird die Aenderung des Winkels δ nur durch die Verkürzung der Seite BC hervorgerufen. Bezeichnet man die Winkeländerung mit γ , so lautet

$$\begin{split} \gamma &= \frac{BC}{AB \cdot AC \cdot \sin \delta} \, \Delta BC \\ &= \frac{BC^2}{AB \cdot AC \cdot \sin \delta} \frac{1}{E \sin \theta} (-\sigma_{d_2} + \nu \sigma_{d_1}) \end{split}$$

wobei das positive Vorzeichen die Verkleinerung des Winkels bedeutet. Setzt man Gl. (13), (14) und (15) in die obige Gleichung ein, so erhält man

$$\gamma = \frac{\cos\varphi\cos\psi}{\sin\delta} \frac{2 + (\tan\psi - \tan\varphi)^2}{2\nu/1 + \tan^2\varphi + \tan^2\psi} \times \left[(2 + (\tan\psi - \tan\varphi)^2 + \nu\left\{2 + (\tan\psi + \tan\varphi)^2\right\} \right] \frac{\tau}{E} .$$

Für die hyperbolische Paraboloidschale nach der Gl. (1) geht dieser Ausdruck über in:

wo

$$R = \sqrt{n^2 + x^2 + y^2}$$
(18)
$$\Gamma = \left[2n^2 + (x - y)^2 \right] \left[2n^2 + (x - y)^2 + \nu \left\{ 2n^2 + (x + y)^2 \right\} \right]$$
(19)

sind. Bei quadratischem Flächenelement sind einzusetzen

 $\sigma_{d_1} = \tau$, $\sigma_{d_2} = -\tau$, $BC = \sqrt{2} AC = \sqrt{2} AB$, $\sin \delta = 1$. $\sin \theta = 1$, und der Ausdruck für dieses vereinfacht sich bekanntlich auf

$$\gamma = \frac{2}{E} \left(1 + \nu \right) \tau = \frac{\tau}{G} \, .$$

5. Aufstellung der Differentialgleichung für die Formänderung

Wir nehmen die Verschiebungen in der x, y und z Richtung und bezeichnen diese mit u, v und w. Zuerst ziehen wir die Teilverschiebung ugesondert in Betracht und deswegen die Flächengerade AC, die sich parallel zur xz-Ebene erstreckt. Z (s. Abb. 4) Die Abb. 4 stellt eine Flächengerade AC vor und nach der Verformung dar, woraus zu Abb. 4 entnehmen ist, dass der Zuwachs $\frac{\partial u}{\partial x} dx$ die Längenänderung $\frac{\partial u}{\partial x} dx \cos \varphi$ und ebenso die Verdrehung $-\frac{\partial u}{\partial x} dx \sin \varphi \frac{\cos \varphi}{dx}$ bewirkt. Durch die Verdrehung ändert sich der Richtungskosinus und im Zusammenhang damit der Winkel δ zwischen AC und AB. Die Richtungskosinus sind

vor der Verformung $\cos \varphi$, 0, $\sin \varphi$, und nach der Verformung $\cos\left(\varphi - \frac{\partial u}{\partial x}\cos\varphi\sin\varphi\right)$, 0, $\sin\left(\varphi - \frac{\partial u}{\partial x}\cos\varphi\sin\varphi\right)$.

Die Längenänderung und Drehung, die durch andere Ursachen herbeigeführt werden, lassen sich in ähnlicher Weise ermitteln. Für sämtliche Verschiebungen sind alle nötigen Zuwachse, Verdrehungen sowie Richtungskosinus in der Tabelle 1 zusammengestellt.

Та	bel	le	1

Gerade	Zu- wachs	Längen- änderung	Drehung	Richtungskosinus l m n
	$\frac{\partial u}{\partial x} dx$	$\frac{\partial u}{\partial x} dx \cos \varphi$	$-\frac{\partial u}{\partial x}\sin\varphi\cos\varphi$	$= \cos\left(\varphi - \frac{\partial \boldsymbol{u}}{\partial x} \cos \varphi \sin \varphi\right) 0 \sin\left(\varphi - \frac{\partial \boldsymbol{u}}{\partial x} \cos \varphi \sin \varphi\right)$
AC	$\frac{\partial v}{\partial x} dx$	0	$-\frac{\partial v}{\partial x}\cos\varphi$	$\cos\varphi \frac{\partial u}{\partial x}\cos\varphi \qquad \sin\varphi$
	$\frac{\partial w}{\partial x} dx$	$\frac{\partial w}{\partial x} dx \sin \varphi$	$\frac{\partial w}{\partial x} \cos^2 \varphi$	$\cos\left(\varphi + \frac{\partial w}{\partial x}\cos^2\varphi\right) \qquad 0 \sin\left(\varphi + \frac{\partial w}{\partial x}\cos^2\varphi\right)$

	$\frac{\partial u}{\partial y} dy$	0	$-\frac{\partial u}{\partial y}\cos\psi$	$\frac{\partial u}{\partial y}\cos\psi$	cos ψ	sin Ý
	$\frac{\partial v}{\partial y} dy$	$\frac{\partial v}{\partial y} dy \cos \psi$	$-\frac{\partial v}{\partial y}\sin\psi\cos\psi$	0	$\cos\left(\psi-\frac{\partial v}{\partial y}\sin\psi\cos\psi\right)$	$\sin\left(\psi + \frac{\partial v}{\partial t}\right)$
АВ	$\frac{\partial w}{\partial y} dy$	$\frac{\partial w}{\partial y} dy \sin \psi$	$\frac{\partial w}{\partial v} \cos^2 \psi$	0	$\cos\left(\psi + \frac{\partial w}{\partial x}\cos^2\psi\right)$	$\frac{\partial y}{\partial y} \sin \psi \cos \psi$ $\sin (\psi + \psi)$
	• • •					$\frac{\partial w}{\partial y} \cos^2 \psi \Big)$

Dividiert man die Längenänderung durch die Seitenlänge $dx/\cos\varphi$ bezw. $dy/\cos\varphi$, so erhält man die Verzerrungen:

An Hand der Richtungskosinus gewinnt man nun die dritte Gleichung der Verformung, indem man die Aenderung des Winkels δ berechnet. Zum Beispiel berechnen wir die Winkeländerung infolge der senkrechten Verschiebung w, die mit γ_w bezeichnet und als positiv gesetzt wird, wenn der Winkel sich verkleinert. Der bekannten raumgemetrischen Beziehung nach erhalten wir

$$\cos\left(\delta-\gamma_{w}\right)=\sin\left(\varphi+\frac{\partial w}{\partial x}\cos^{2}\varphi\right)\sin\left(\psi+\frac{\partial w}{\partial y}\cos^{2}\psi\right)$$

oder

$$\cos \delta + \gamma_w \sin \delta = \sin \varphi \sin \psi + \frac{\partial w}{\partial x} \cos^3 \varphi \sin \psi + \frac{\partial w}{\partial y} \cos^3 \psi \sin \varphi$$

Setzen wir Gl. (3) ein, so erhalten wir

$$\gamma_w = \left(\frac{\partial w}{\partial x}\cos^3\varphi\sin\psi + \frac{\partial w}{\partial y}\cos^3\psi\sin\varphi\right)\frac{1}{\sin\delta}$$

Die anderen infolge der Verschiebung w oder v eintretenden Winkeländerungen werden in ähnlicher Weise ausgerechnet; schliesslich erhalten wir

Die Gl. (20), (21) und (22) sind die gesuchten Beziehungen, die nun für die Berechnung der Verformung zur Verfügung stehen.

6. Lösung der homogegen Differentialgleichungen

Setzt man $\varepsilon_{\varphi} = \varepsilon_{\psi} = \gamma = 0$ in die Gl. (20), (21) und (22) ein, so erhält man die homogenen Differentialgleichungen, deren Lösungen wie folgt sind.

1.	u = konstant,	v = konst.,	w = konst.	(Parallelverschiebungen)
2.	u = -c v	v = cx.	w=0	(Drehung um die z-Achse)

		0 0,0,	-	(
3.	u =0,	v = -cxy/n,	w = cy	(Drehung um die x-Achse)
4.	u = -cxy/n,	v = 0,	w = cx	(Drehung um die y-Achse)

Durch Einsetzen in die Gleichungen lässt sich ohne weiteres beweisen, dass diese Lösungen richtig sind. Um die Råndbedingungen erfüllen zu können, werden diese spannungslosen Vertormungen derjenigen überlagert, die die Schale unter gegebenen Belastungen annimmt.

7. Partikularlösung der inhomogenen Differentialgleichung

Um eine Partikularlösung zu gewinnen, nehmen wir eine Berechnung der drei Stufen vor, wie dies in Tabelle 2 ersichtlich ist.

	Fali 1	Fall 2	Fall 3	1+2+3
w	<i>w</i> ₁	w ₂	w ₃	$w_1 + w_2 + w_3$
u	$u_1 = w_1 \cot \varphi$	$u_2 = -w_2 \tan \varphi$	$\boldsymbol{u}_3 = -\boldsymbol{w}_3 \tan \varphi \cdot$	$u_1+u_2+u_3$
v	$v_1 = -w_1 \tan \psi$	$v_2 = w_2 \cot \psi$	$v_3 = -w_3 \tan \psi$	$v_1 + v_2 + v_3$
εφ	$\varepsilon_{\varphi_1} = \varepsilon_{\varphi_2}$, 0	0	ε_{φ}
ε_{ψ}	0	$\varepsilon_{\psi_2} = \varepsilon_{\psi}$	0	ε, ,
Y	Υ1	Y2	$\gamma_3 = \gamma - \gamma_1 - \gamma_2$	Υ

Tabelle	2
---------	----------

Fall 1,

Nehmen wir an

 $u_1 = w_1 \cot \varphi = w_1 \frac{n}{y}$ und $v_1 = -w_1 \tan \psi = -w \frac{x}{n}$,(23) so erhalten wir

$$\frac{\partial u_1}{\partial x} = \frac{\partial w_1}{\partial x} \frac{1}{\tan \varphi}, \qquad \qquad \frac{\partial v_1}{\partial y} = -\frac{\partial w_1}{\partial y} \tan \psi$$
$$\frac{\partial u_1}{\partial y} = \frac{\partial w_1}{\partial y} \frac{1}{\tan \varphi} - w_1 \frac{n}{y^2}, \qquad \qquad \frac{\partial v_1}{\partial x} = -\frac{\partial w_1}{\partial x} \tan \psi - \frac{w_1}{n}.$$

Setzt man diese Beziehungen in die Gl. (20) bezw. Gl. (21) ein, so erhält man sogleich

$$w_{1} = \int \varepsilon_{\varphi} \tan \varphi \, dx ,$$

$$\varepsilon_{\psi_{1}} = 0 ,$$

$$(24)$$

und ferner aus Gl. (22)

$$\gamma_1 = -\frac{\cos\varphi\cos\psi}{\sin\delta} \left\{ \varepsilon_{\varphi} \tan\varphi \tan\psi + \frac{w_1}{n} \frac{1}{\sin^2\varphi} - \frac{\partial w_1}{\partial y} (\cot\varphi + \tan\psi) \right\} \cdots (25)$$

Fall 2.

Durch Einsetzen von

x

$$u_2 = -w_2 \tan \varphi$$
 und $v_2 = w_2 \cot \psi$ (26)

erhalten wir in derselben Weise

 $\begin{aligned} \varepsilon_{\varphi_2} &= 0, \\ w_2 &= \int \varepsilon_{\psi} \tan \psi \, dy. \end{aligned}$ (27)

und

$$\gamma_2 = -\frac{\cos\varphi\cos\psi}{\sin\delta} \left\{ \varepsilon_{\psi} \tan\psi \tan\varphi + \frac{w_2}{n} \frac{1}{\sin^2\psi} - \frac{\partial w_2}{\partial x} \left(\cot\psi + \tan\psi \right) \right\}. \quad \dots (28)$$

Fall 3.

Mit den Lösungsansätzen

$$u_3 = -w_3 \tan \varphi$$
 und $v_3 = -w_3 \tan \psi$,(29)

bekommt man

$$\varepsilon_{\varphi_3}=0$$
 und $\varepsilon_{\psi_3}=0$.

Die Winkelabnahme kann berechnet werden, ohne dass die Integration ausgeführt werden muss. Es wird

$$\gamma_3 = -\frac{2w_3}{n} \frac{\cos\varphi\cos\psi}{\sin\delta}.$$

Dammit nun die Summe der Verschiebungen $w=w_1+w_2+w_4$ die gesuchte Lösung der inhomogenen Differentialgleichungen mit den gegebenen Belastungsgliedern ε_{φ} , ε_{ψ} und γ sein kann ist es nötig $\gamma_3=\gamma-\gamma_1-\gamma_2$ zu wählen, woraus sich dann ergibt:

$$w_3 = -\frac{n\sin\delta}{2\cos\varphi\cos\psi} (\gamma - \gamma_1 - \gamma_2). \qquad (30)$$

Zusammenfassend ist die Lösung wie folgt:

worin

$$w = w_1 + w_2 + w_3$$

$$u = w_1 \cot \varphi - w_2 \tan \varphi - w_3 \tan \varphi$$

$$v = -w_1 \cot \psi + w_2 \tan \psi - w_3 \tan \psi$$
,

$$w_1 = \int \varepsilon_{\varphi} \tan \varphi \, dx = \frac{y}{n} \int \varepsilon_{\varphi} \, dx$$

$$w_2 = \int \varepsilon_{\psi} \tan \psi \, dy = \frac{x}{n} \int \varepsilon_{\psi} \, dy$$

$$w_3 = -\frac{n}{2} \frac{\sin \delta}{\cos \varphi \cos \psi} (\gamma - \gamma_1 - \gamma_2)$$

Die Werte von γ_1 und γ_2 werden aus der Gl. (25) und (28) berechnet. Um die Randbedingung zu erfüllen, fügt man hierzu die spannungslose Verformung hinzu.

8. Abgekürzte Ausdrücke und Hilfsformeln

In den folgenden Berechnungen benutzt der Verfasser nachstehende Abkürzungen:

$$R = \sqrt{x^2 + y^2 + n^2},$$

$$F_x = \sqrt{x^2 + n^2}, \quad F_y = \sqrt{y^2 + n^2},$$

$$\Gamma = \left[2n^2 + (x - y)^2\right] \left[2n^2 + (x - y)^2 + \nu \left\{2n^2 + (x + y)^2\right\}\right].$$

Hier gibt er auch einige Differentiation- und Integrationsformeln tür die Funktionen von R, die bei der Berechnung vorkommen.

$$\frac{\partial}{\partial x} R = \frac{x}{R}$$

$$\frac{\partial}{\partial x} \frac{1}{R} = -\frac{x}{R^3}$$

$$\frac{\partial}{\partial x} \frac{1}{R} = -\frac{x}{R^3}$$

$$\frac{\partial}{\partial x} Rx = R + \frac{x^2}{R}$$

$$\frac{\partial}{\partial x} \frac{x}{R} = \frac{1}{R} - \frac{x^2}{R^2} = \frac{F_y^2}{R^3}$$

$$\frac{\partial}{\partial x} \ln|x+R| = \frac{1}{R}$$

$$\frac{\partial}{\partial x} \ln|y+R| = \frac{1}{R} \frac{x}{y+R}$$

$$\int \frac{Rdx}{R} \frac{1}{2} xR + \frac{1}{2} F_y^2 \ln|x+R|$$

$$\int \frac{x}{R^2} dx = \ln|x+R|$$

$$\int \frac{x}{R^2} dx = \frac{1}{2} x^2 - F_y^2 \ln R$$

$$\int \frac{x^3}{R^4} dx = \ln R + \frac{1}{2} - F_y^2 \frac{1}{R^2}$$

Um die Integration in rascher und übersichtlicher Weise zu ermöglichen, ist es zweckmässig, sich des nachstehenden Ausdrucks zu bedienen.

$$\ln|x+R| - \ln F_{y} = \frac{1}{2} \ln \frac{R+x}{R-x} \\ = \frac{x}{R} + \frac{1}{3} \frac{x^{3}}{R^{3}} + \frac{1}{5} \frac{x^{5}}{R^{5}} + \dots$$
(32)

Es sei noch darauf aufmerksam gemacht, dass der Verfasser in den folgenden Beispielen immer dieselben Randbedingungen annimmt, d. h.

$$N_{\varphi} = 0$$
 für $y = 0$ und $N_{\psi} = 0$ für $x = 0$

Diese Randbeingungen sind meines Erachtens sehr passend, wenn das Schalendach, wie man in Abb. 5 sieht, aus vier hyperbolischen Paraboloidflächen zusammengesetzt ist.

9. Anwendung auf einige Belastungsfälle

(a) Gleichförmige Belastung des Grundrisses (Schneebelastung)

188

Die Teilbelastungen sind

$$X = Y = 0$$
, $Z = q$ (konst.).

Bekanntlich haben wir in diesem Fall

$$N_{\varphi}=N_{\psi}=0$$
 und $T=-rac{1}{2}$ nq.

In diesem besonderen Spannungszustand ist der Fall 3 für sich allein massgebend, da die Längenverzerrungen ε_{φ} und ε_{ψ} in der ganzen Schalenfläche verschwinden. Wir erhalten aus Gl. (17) und (30)

$$w = w_3 = -\frac{\Gamma}{R} \frac{q}{8Ehn}, \qquad (33)$$

wobei h die Schalendicke bedeutet.

. .

Als Zahlenbeispiel gibt der Verfasser in Tabelle 2 und 3 die senkrechte und wagerechte Verschiebung, wobei die Grundrissfläche der Schale 5×5 m beträgt und n=10 m angenommen ist. Bei der Auswertung ist $\nu=0.3$ zu Grunde gelegt. Die Randbedingungen sind folgendermassen gewählt:

w = 0 für x = y = 5 m; u = 0 für y = 0; v = 0 für x = 0.

y x y	0	1	2	3	4	5 m
0	470	497	575	706	899	1154
1	497	442	440	450	611	782
2	575	440	367	347	389	490
3	706	450	347	250	220	259
4	899	611	389	220	131	93
5m	_. 1154	782	490	295	93	0

Tabelle 3. w in q/8 Ehn

Tabelle 4. u in q/8 Ehn

(Für v vertausche man x und y miteinander)

y x	0	1	2	3	4	5m
0	0	0	0	0	0	0
1	- 523	- 517	- 517	- 518	- 534	- 552
2	-1061	- 1034	1019	-1015	-1024	-1044
3	1631	- 1553	-1523	-1491	-1485	-1496
4	-2252	- 2136	-2049	1981	- 1945	1930
5m	- 2942	-2756	- 2610	- 2494	- 2411	- 2365

(b) Gleichförmiger Saug im Flächennormal (Windbelastung im Wirbelbereich)

.

Mit den Belastungen

$$X = q - \frac{y}{n}$$
, $Y = q - \frac{x}{n}$ und $Z = -q$ (34)

•

lässt sich gewinnen als Schnittkraft

$$T = \tau h = \frac{1}{2n} qR^{2},$$

$$N_{\varphi} = \sigma_{\varphi}h = -\frac{\cos \psi}{\cos \varphi} \frac{2}{n} qxy = -\frac{2q}{n} xy \frac{F_{x}}{F_{y}},$$

$$N_{\psi} = \sigma_{\psi}h = -\frac{2q}{n} xy \frac{F_{y}}{F_{x}},$$
(35)

Hieraus erhalten wir

$$\varepsilon_{\varphi} = -\frac{2q}{n^{2}hE} \frac{xy}{R} (F_{y}^{2} - \nu F_{z}^{2}),$$

$$\varepsilon_{\psi} = -\frac{2q}{n^{2}hE} \frac{xy}{R} (F_{z}^{2} - \nu F_{y}^{2}),$$

$$\gamma = \frac{qR}{4n^{4}hE} \frac{\cos \varphi \cos \psi}{\sin \delta} \Gamma.$$
(36)

Fall 1. Aus Gl. (24) ergibt sich

und nach längeren Zwischenrechnungen gelangt man zu

worin

$$\Gamma_{1} \equiv \frac{x^{2}y^{2}}{R} \left(F_{y^{2}} - \nu F_{z^{2}}\right) + F_{y^{2}} \left\{F_{y^{2}}R - \nu R\left(\frac{1}{3}R^{2} - y^{2}\right)\right\} - F_{y^{2}} \left\{2(2y^{2} + n^{2})R + y^{2}F_{y^{2}}\frac{1}{R} - \nu R\left(\frac{2}{3}R^{2} - 3y^{2} - \frac{y^{4}}{R^{2}}\right)\right\}$$
(39)

ist.

Fall 2. In ähnlicher Weise erhalten wir

$$\gamma_2 = \frac{2q}{n^4 E h} \frac{\cos \varphi \cos \psi}{\sin \delta} \Gamma_2, \qquad (41)$$

$$\Gamma_{2} = \frac{x_{2}y_{2}}{R} \left(F_{x}^{2} - \nu F_{y}^{2} \right) + F_{z}^{2} \left\{ F_{x}^{2} R - \nu R \left(\frac{1}{3} R^{2} - x^{2} \right) \right\}$$
(42)

$$-F_{x^{2}}\left\{2(2x^{2}+n^{2})R+x^{2}F_{x^{2}}\frac{1}{R}-\nu R\left(\frac{2}{3}R^{2}-3x^{2}-\frac{x^{4}}{R^{2}}\right)\right\}\cdot\int_{0}^{\infty}$$

Fall 3. Aus Gl. (30) erhalten wir

(c) Gleichförmige Belastung der Oberfläche (Eigengewicht) Mit

$$Z=\frac{g_0}{n}R, \quad X=Y=0,$$

ergibt sich aus Gl. (11)

$$N_{\varphi} = \frac{\cos \psi}{\cos \varphi} \frac{g_0}{2} y \left\{ \ln |x+R| - \ln F_y \right\},\,$$

Um die Integration leichter durchführen zu können setzt man den Ausdruck nach Gl. (32) in die obenstehende Gleichung ein. Daraus folgt

$$N_{\varphi} = \sigma_{\varphi}h = \frac{g_0}{2} \frac{F_v}{F_x} y\left(\frac{x}{R} + \frac{1}{3} \frac{x^3}{R^3}\right), \qquad (46a)$$

wobei die Glieder von goringem Einfluss ausser Acht gelassen sind. Da ferner

$$N = \sigma_{\psi}h = \frac{g_0}{2} \frac{F_x}{F_y} x \left(\frac{y}{R} + \frac{1}{3} \frac{y^3}{R^3}\right), \qquad (46b)$$

$$T = \tau h = -\frac{g_0}{2} R, \qquad (46c)$$

erhalten wir

und

$$\varepsilon_{\varphi} = \frac{g_{0}}{2Ehn} \left\{ yF_{y^{2}} \left(\frac{x}{R^{2}} + \frac{1}{3} \frac{x^{3}}{R^{4}} \right) - \nu xF_{x^{2}} \left(\frac{y}{R^{2}} + \frac{1}{3} \frac{y^{3}}{R^{4}} \right) \right\}, \\ \varepsilon_{4} = \frac{g_{0}}{2Ehn} \left\{ xF_{x^{2}} \left(\frac{y}{R^{2}} + \frac{1}{3} \frac{y^{3}}{R^{4}} \right) - \nu yF_{y^{2}} \left(\frac{x}{R^{2}} + \frac{1}{3} \frac{x^{3}}{R^{4}} \right) \right\}, \\ \gamma = -\frac{\cos \varphi \cos \psi}{\sin \delta} \frac{g_{0}}{2Eh} \frac{1}{2n^{3}} \Gamma.$$

$$(47)$$

Aus diesen Gleichungen ergeben sich

$$w_{1} = \frac{g_{0}}{2Ehn^{2}} y^{2} \left\{ F_{y^{2}} \left(\frac{4}{3} \ln R + \frac{1}{6} \frac{F_{y^{2}}}{R^{2}} \right) - \nu \left(\frac{1}{2} x^{2} - \frac{2}{3} y^{2} \ln R + \frac{1}{6} \frac{y^{4}}{R^{2}} \right) \right\}, \quad (48)$$

$$\gamma_1 = \frac{g_0}{2Ehn^3} \frac{\cos\varphi\cos\psi}{\sin\delta} \Gamma_1, \qquad (49)$$

$$\Gamma_{1} = x^{2} y^{2} \left\{ \frac{F_{y^{2}}}{R^{2}} \left(1 + \frac{1}{3} \frac{x^{2}}{R^{2}} \right) - \nu \frac{F_{x^{2}}}{R^{2}} \left(1 + \frac{1}{3} \frac{y^{2}}{R^{2}} \right) \right\} + F_{y^{2}} \left\{ \frac{4}{3} \left(3y^{2} + n^{2} \right) \ln R + \frac{1}{6} \frac{1}{R^{2}} \right\} \\ \times \left(13y^{4} + 14n^{2} y^{2} + n^{4} \right) - \frac{1}{3} y^{2} \frac{F_{y^{2}}}{R^{4}} - \nu \left(\frac{1}{2} x^{2} - 2y^{2} \ln R + \frac{1}{6} \frac{y^{4}}{R^{2}} - \frac{1}{3} \frac{y^{6}}{R^{4}} \right) \right\},$$

$$(50)$$

Für w_2 und γ_2 vertauscht man x und y sowie F_x und F_y miteinander. Es ist ausserdem

(d) Gleichförmige Belastung in der y-Richtung (Erdbebenbelastung)

Ist a der wagerechte seismische Koeffizient und g_0 das Eigengewicht der Schale von Einheitsfläche, so ergibt sich die Massenkraft zu

Daraus folgt

$$T = \tau h = \frac{1}{2} \frac{ag_0}{n} xR,$$

$$N_{\varphi} = \sigma_{\varphi} h = -\frac{1}{2} \frac{ag_0}{n} \frac{F_y}{F_x} y(R - F_y),$$

$$N_{\psi} = \sigma_{\psi} h = -\frac{1}{2} \frac{ag_0}{n} \frac{F_x}{F_y} \left\{ \frac{3}{2} yR + \frac{3n^2 + 5x^2}{2} (\ln|y + R| - \ln F_x) \right\},$$
(53)

und ferner

$$\varepsilon_{\varphi} = -\frac{\mu g_{0}}{2\hbar E n^{2}} \frac{1}{R} \left[-yF_{y}^{3} + yF_{y}^{2}R - \nu \left\{ \frac{3}{2} F_{x}^{2} yR + \frac{3n^{2} + 5x^{2}}{2} F_{x}^{2} (\ln|y + R| - \ln F_{x}) \right\} \right],$$

$$\varepsilon_{\psi} = -\frac{\mu g_{0}}{2\hbar E n^{2}} \frac{1}{R} \left[\frac{3}{2} yF_{x}^{2}R + \frac{3n^{2} + 5x^{2}}{2} F_{x}^{2} (\ln|y + R| - \ln F_{x}) - \nu yF_{y}^{2} (R - F_{y}) \right].$$

Damit die Integration ohne Mühe durchgeführt werden kann, ist es zweckmässig, einen angenäherten Ausdruck für den Faktor $(\ln|y+R| - \ln F_x)$ und $(R-F_y)$ einzuführen, falls er mit ν multipliziert ist:

$$\nu (\ln |y+R| - \ln F_x) \doteq \nu \frac{y}{R}$$
$$\cdot \nu (R - F_y) \doteq \nu \frac{1}{2} \frac{x^2}{R}$$

Diese Annäherung ist zulässig, da ν klein ist. Dann erhalten wir

$$\varepsilon_{\varphi} = -\frac{ag_{0}}{2Ehn^{2}} \left\{ yF_{y^{2}} \left(1 - \frac{F_{y}}{R} \right) - \nu \left(\frac{3}{2} F_{x^{2}}y + \frac{3n^{2} + 5x^{2}}{2} y \frac{F_{x^{2}}}{R^{2}} \right) \right\},\$$

$$\varepsilon_{\psi} = -\frac{ag_{0}}{2Ehn^{2}} \left\{ \frac{3}{2} yF_{x^{2}} + \frac{3n^{2} + 5x^{2}}{2} \frac{F_{x^{2}}}{R} \left(\ln|y + R| - \ln F_{x} \right) - \nu \frac{1}{2} yx^{2} \frac{F_{y^{2}}}{R^{2}} \right\},\$$

$$\gamma = \frac{ag_{0}}{4Ehn^{4}} \frac{\cos\varphi\cos\psi}{\sin\delta} \Gamma.$$
(54)

Ein langwieriger Rechnungsvorgang, den wir hier übergehen wollen, führt zu

$$w_{1} = -\frac{ag_{0}}{2Ehn^{3}} y^{2} \left[F_{y^{2}} \left(x - F_{y} \ln |x + R| -\nu \left\{ \frac{8}{6} x^{3} - \frac{5y^{2} - 6n^{2}}{2} x + \left(\frac{5}{2} F_{y^{3}} - 4n^{2} F_{y} + \frac{3}{2} \frac{n^{4}}{F_{y}} \right) \tan^{-1} \frac{x}{F_{y}} \right\} \right],$$

$$\gamma_{1} = \frac{ag_{0}}{2Ehn^{4}} \frac{\cos \varphi \cos \psi}{\sin \delta} \Gamma_{1}, \qquad (58)$$

$$\Gamma_{1} = xy^{2} \left\{ F_{y^{2}} \left(1 - \frac{F_{y}}{R} \right) - \nu \left(\frac{3}{2} F_{x^{2}} + \frac{3n^{2} + 5x^{2}}{2R^{2}} F_{x^{2}} \right) \right\} + F_{y^{2}} \left\{ F_{y} \left(3y^{2} + F_{y^{2}} \right) \ln |x + R| + \frac{F_{y^{3}}y^{2}}{R(R + x)} - x(F_{y^{2}} + 2y^{2}) \right\} - \nu F_{y^{2}} \left[-\frac{8}{6} x^{3} + \frac{15}{2} y^{2}x - 3n^{2}x + \left(\frac{5}{2} F_{y^{2}} - 4n^{2} + \frac{3}{2} - \frac{n^{4}}{F_{y^{2}}} \right) \frac{xy^{2}}{R^{2}} + \left\{ -\frac{5}{2} F_{y^{3}} + 4n^{2}F_{y} - \frac{3}{2} \frac{n^{4}}{F_{y}} - \left(\frac{15}{2} F_{y} - 4n^{2} \frac{1}{F_{y}} - \frac{3}{2} - \frac{n^{4}}{F_{y^{3}}} \right) y^{2} \right\} \tan^{-1} \frac{x}{F_{y}} \right],$$
(59)

192

Formänderung der hyperbolischen Paraboloidschale

$$w_{2} = -\frac{\alpha g_{0}}{2Ehn^{3}} x \left[\frac{3}{4} F_{x}^{2} y^{2} + \frac{3n^{2} + 5x^{2}}{2} F_{x}^{2} \left(\frac{1}{2} \ln|y + R| - \ln F_{x} \right) \ln|y + R| - \frac{1}{2} \frac{x^{2}}{2} \left(\frac{1}{2} y^{2} - x^{2} \ln R \right) \right]$$

$$(60)$$

$$\gamma_{2} = \frac{ag_{0}}{2Ehn^{4}} \frac{\cos \varphi \cos \psi}{\sin \delta} \Gamma_{2} \qquad (61)$$

$$\Gamma_{2} = \frac{1}{2} \left[xy \left\{ 3F_{x}^{2}y + \frac{3n^{2} + 5x^{2}}{R} F_{x}^{2} (\ln|y+R| - \ln F_{x}) - \nu yF_{y}^{2} \frac{x^{2}}{R^{2}} \right\} + \frac{F_{x}^{2}}{x} \left\{ -4x^{2} (4n^{2} + 5x^{2}) \ln|y+R| \cdot \left(\frac{1}{2} \ln|y+R| - \ln F_{x}\right) - 3x^{2}y^{2} - (3n^{2} + 5x^{2}) F_{x}^{2}x \left(\frac{x}{R(R+y)} \ln|y+R| - \frac{x}{R(R+y)} \ln F_{x} - \frac{x}{F_{x}^{2}} \ln|y+R| \right) - \nu x^{2} \left(-y^{2} + 4x^{2} \ln R + \frac{x^{4}}{R^{2}} \right) \right\} \right]$$

und

 $w_3 = -\frac{ag_0}{4Ehn^3} \left(\frac{x}{2} \Gamma - \Gamma_1 - \Gamma_2 \right) \qquad (63)$

10. Bemerkungen zur Konstruktion und Ausführung

Da es nur eine Integrationskonstante in der Gl. (9) gibt, ist es unmöglich, die beiden gegenüberliegenden Ränder der Teilfläche gleichzeitig frei von Längsspannung zu halten. Nimmt man die Bedingung $N_{\varphi}=0$ oder $N_{\psi}=0$ an dem

Firstbalken an, so muss die dreieckige Binderscheibe imstande sein, die senkrecht zu der Scheibenebene gerichtete Teilkraft zusätzlich aufzunehmen. Falls man dagegen die Bedingung $N_{\varphi}=0$ oder $N_{\psi}=0$ an der Binderscheibe annimmt, ist der Firstbalken in der Lage, eine senkrechte oder wagerechte Reaktion aufzunehmen, je nachdem das ganze Dach symmetrisch oder antisymmetrisch belastet ist. Die zusam-

mengesetzte hyperbolische Paraboloidschale unterscheidet sich dadurch von der gewöhnlichen Translationsschale, dass sie Unstetigkeit an dem Dachfirst besitzt, die letztere aber nicht. Es ist zu betonen, dass auf Grund der Kenntnis der Verformung das zusammengesetzte Schalendach nach Abb. 5 nicht biegungsfrei sein kann, wenn es monolithisch aus Eisenbeton aufgebaut ist. Um den biegungsfreien Zustand zu erhalten wenigstens für die ständige Belastung, empfiehlt es sich, vier Teilflächen je mit Randbalken nachträglich miteinander zu verbinden, d. h. erst nachdem der Schalenteil abgerüstet worden ist. Hierbei ist zu beachten, dass die vorläufige Raumfuge zwischen den Randbalken genügend klaffen muss, damit die Verformung der Schale frei erfolgen kann.

193

Wenn die Schale nach dem Aufbau belastet wird, wie dies bei Winddruck der Fall ist, so wird die Schubverformung verhindert, und demnach das Eintreten eines biegungsfreien Spannungszustandes ausgeschlossen.

11. Schlussfolgerung

Der Verfasser gibt zuerst die Beziehungen zwischen Spannung und Verzerrung an, die in dem parallelogrammförmigen Schalenteilchen erzeugt werden. Dann wird die Differentialgleichung für die Verschiebungen aufgestellt, die allgemeine Anwendung für beliebige Translationsschalen findet. Die hyperbolische Paraboloidschale betreffend ist die Lösung der Differentialgleichung möglich geworden: Sie wurde an einigen Belastungsfällen erprobt. Wenn es sich um eine zusammengesetzte Schale wie in Abb. 5 handelt, zeigt der Verfasser wie die Montage der Schale erfolgen muss, damit ein biegungsfreier Spannungszustand erreicht werden kann.

Literatur

1) A. Pucher: Beten und Eisen 1934.

2) K. Tester: Ing. Arch. 1947~48.