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SUMMARY 

This paper deals with the subharmonic oscillations which occur in systems 

with non-linear restoring force. It is first investigated that the order of the 

subharmonics has the close connection to the form of the non-linear characteristics. 

Then the subharmonic oscillation of order 1/3, i.e., the oscillation whose fun­

damental frequency is one-third that of the applied force, is particularly investigated 

for the cases in which the non-linear characteristics are expressed by (1) cubic 

and (2) quintic functions. In both cases the stability problem of the periodic 

solutions is discussed in detail following the stability criterion given previously 

by the present author.I The analysis has revealed that in the latter case (2) the 

second higher-harmonc of the subharmonic, i.e., the oscillation of order 2/3 causes 

the collapse of the original subharmonic oscillation under certain circumstances. 

1. Introduction 

Subharmonic oscillations whose frequency is a fraction l/11 (11=2, 3, 4, ... ) 

of that of the applied fore:, may not seldom occur in non-linear systems. We 

consider the differential equation 

d 2v dv -~+2a-+ f(v) = Bcosll', 
dr2 dr ' 

(1.1) 

in which 2a is a constant damping coefficient and /(v) is a term characterizing 

the non-linear restoring force. It will be noticed that, since the period of the 

applied force is 2rr:/11, the subharmonic oscillation of order 1/11 has the period 

2rr and may be expressed by a linear combination of sin r and cos r. 

In the following lines we shall first investigate the relationship between 

the non-linear characteristics expressed by the term f (v) and the order l/11 of 

the subharmonic oscillations. Then the subharmonic oscillation of order 1/3 

1 C. Hayashi, Memoirs of the Faculty of Eng. Kyoto Univ. 14, 92 (1952). 
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is particularly investigated with special attention directed to the stability of 

the periodic oscillation. (The discussion throughout the present paper is confined 

to the steady states of oscillations. A brief discussion on the transient states 

has previously been reported by the author.2 ) 

2. Relationship between the non-linear characteristics 

and the order of subharmonic oseillations 

In order to investigate this we shall consider the following polynomial for 

the restoring force f(v); i.e., 

I 
f(v) = c1v+c2v2+cav3+ ···, (2.1) 

where c1 , c2 , c3 , •·· are constants determined by the non-linear characteristics 

and subjected, without loss of generality, to the condition 

(2.2) 

In so far as we deal with the steady states of oscillations, the periodic 

solution of equation (1.1) may be approximated by 

v = Vo+ x sin -r + y cos -r + w cos J.l't" , (2.3) 

in which only the constant term v0 , the subharmonic oscillation x sin -r+ y cos -r, 

and the oscillation having the applied frequency w cos J.1-r are considered on 

account of their prime importance.* Following Mandelstam and Papalexi,3 the 

amplitude w may further be approximated by 

(2.4) 

This approximation is legitimate in the case when the non-linearity iJ:; small. 

But, as will be shown later, the relation (2.4) is a fairly good approximation 

even when the departure from linearity is large. 

Substituting ( 2. 3) into ( 1. 1 ), and equating to zero the coefficients of sin -r 

and cos -r respectively, we have the following cases according to the form of 

the non-linear characteristics (2.1). 

Case 1. When the non-linearity is given by f(v) = c1v+cav3 

Under such a case that the non-linearity is symmetrical, i.e., /(v) is odd in v, 

2 C. Hayashi, Memoirs of the Faculty of Eng. Kyoto Univ. 13, 180 (1951). 
* It is tacitly assumed that the damping coefficient 2a is not so large that the term 

containing sin v't" may be discarded in equation (2,3). 
a L. Mandelstam and N. Papalexi, Z. f. Phys. 73, 227 (1932). 
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the constant term v0 in equation (2. 3) is usually discarded, and, for 11=2, 4, 5, · ·· , 

the substitution above-mentioned leads to 

[1- ! (x2 + y2 )-}w2]x+ky = 0, l 
[1- ! (x2 + y2)- ~ w2] y-kx = 0, J 

(2.5) 

where k=2a/c3 • These simultaneous equations of x and y have no roots other 

than x= y=O. Hence the subharmonic oscillations of orders 1/2, 1/4, 1/5, ··· 

cannot occur in this case. However, as will be investigated in the following 

section, real roots of x and y which are not simultaneously zero may be obtained 

in the case of 11=3, and some of them are maintained in stable states. t Hence 

it is concluded that the subharmonic oscillation of order 1/3 may occur in the 

case when the non-linear term c3v3 is contained in equation (2.1). 

Case 2. When the non-linearity is given by f(v)=c 1v+c2v2 +c3v3 

The non-linearity is unsymmetrical and the constant term Vo in equation 

(2. 3) must be considered. The subharmonic oscillation of order 1/2 occurs 

predominantly in this case. It takes a considerable length to analyse the 

subharmonic oscillation of order 1/2, so that the detailed discussion will be 

deferred to another paper. :i: 

Case 3. When the non-linearity is given by /(v)=c1v+c5v5 

Although the non-linear term c3v3 is absent in this case, the subharmonic 

oscillation of order 1/3 is maintained. The investigation will be given in 

Section 4. The subharmonic oscillation of order 1/5 is also maintained in this 

case. 

From the foregoing considerations, it may be deduced in general that the 

presence of the term CvVV in equation (2.1) is the sufficient condition for the 

occurrence of the subharmonic oscillation of order v. However, this is not the 

necessary condition as one sees in Case 3. It may also be concluded that the 

subharmonic oscillation of order v does not occur when the highest degree of 

the power of the non-linear terms in equation (2.1) is less than v. 

t These real roots represent the states of equilibrium which are not always sustained, 
but are only able to last so long as they are stable. 

:i:· It is only mentioned here that, by a closer investigation in which the term v0 is taken 
into account, the subharmonic oscillation of order 1/2 may narrowly take place even in the 
case when c2 = 0 in equation (2.1). This result is also verified by experiments, though the 
range of occurrence is considerably constricted. Therefore, strictly speaking, the conclusion 
in case 1 should be modified in this respect. 
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3. Subharmonic oscillation of order 1/3 with the 

non-linear characteristic: u=c1v+c3va 
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We shall hereafter investigate the subharmonic oscillation of order 1/3 in 

detail. 

(1) Non-dissipative case 

Putting 

1,1= 3, 

C2 = C4 = Cs = · · · = 0 , 1 k=O, 

in equations (1. 1) and (2.1), and remembering the condition (2. 2), we have 

the following equation for the subharmonic oscillation of order 1/3 ; i.e., 

(3.1) 

By the use of equation (2,4), the periodic solution will be given by 

with 
v = x sin ..- + y cos ..- + w cos 3r , l 

1 1 
w = 1_32B = --8-B. 

(3.2) 

Substituting (3. 2) into (3.1), and equating to zero the coefficients of sin..- and 

cos -r respectively, we have 

(3.3) 

Multiplying the first equation by y, the second by x, and subtracting the 

products so formed, we obtain 

x=O or x= ±✓:fy. 

For each value of x we have two pairs of roots, hence we obtain six pairs of 

equilibrium states in all. But we are sufficed only with the investigation of 

the equilibrium states in which x=O, because, as will be shown later, the other 

states have the same amplitude, but differ in phase by (2/3)rc or ( 4/3)rc radians 

in -r, viz., one or two ce>mplete cycles of the applied force. This is a plausible 

result since we are concerned with the subharmonic oscillation of order 1/3. 

For x=O, assuming y=jc:O in the second equation of (3. 3), we obtain 
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(3.4) 

This equation shows the relationship between the amplitude w ( which is here 

assumed to be proportional to the applied force B) and the amplitude y of the 

subharmonic oscillation, and is plotted by a part of an ellipse in Fig. 1. 

We are now to determine the stability of the equilibrium states given by 

/ 

I 
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I 
\ 
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~ ...... .. 
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~ .. .... _ 

1.5 
equation ( 3. 4 ). The condition for the 

stability of the periodic solution is 

obtained by examining whether any 

1.0 variation from this state caused by a 

0.5 

:::,-

-0.5 

sufficiently small perturbation atten­

uates or not with the lapse of time. 

If this variation is denoted by ~. then 

with v(-r)+~ for v(-r) in equation 

(3.1), we obtain the following varia-

tional equation 

...... --... 
-1.0 

-1.0 -0.8 -0.6 . -0.4 -02 
111-

-15 
0 

FIG. 1. Amplitude characteristic of 1/3-
harmonic oscillation (non-linearity 

by cubic function). 

Substituting into this the equilibrium 

states represented by 

V = y COS T + W COS 3-r , 

the following equation of Hill's type 

is derived ; i.e., 

d2~ [ ] d-r2 + 80+281 cos 2-r+282 cos4-r+283 cos6-r ~ = 0, 

where 
3 

Bo= c1 + 2 c3(y~+w2), 

3 
fl1 = 4~C3(y2 +2yw), 

(3.5) 

3 
82 = 2C3YW ' 

Since w and y are determined by equations (3. 2) and (3. 4) respectively, the 

parameters B's in equations (3. 5) may readily be calculated. 
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According to the previous investigation,1 the stability conditions of the 

first approximation are given by 

or 
IB,.l<lflo-n2 1 , n=l, 2, 3, .... 

l 
f 

(3.6) 

The condition for n=l examines the stability against building up of the 

unstable oscillation having the same frequency as that of the subharmonic. By 

the use of equations (3.4) and (3.5) this condition leads to 

2y> -w. (3.7) 

Hence the equilibrium states represented by the dotted-line curve in Fig. 1 are 

unstable and do not exist actually. Fig. 2 shows the trajectories of(},,. (n=l, 2, 3) 

2r---------~---r---------, 

t 

-1 

FIG. 2. Trajectories of e's in (3.5) with varying w. 

which are drawn by varying the value of w ( or B) for the limiting case of 

c1=0 and c3 =1. As expected from the stability condition for n=l, th enters 

into the first unstable region in the dotted-line interval ab. At the critical 

points a and b, 

2y= -w, 

and the~e points correspond respectively to A and B in Fig. 1. 
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It is clear from Fig. 2 that neither fl 2 nor fl3 enters into their corresponding 

unstable regions. Thus we see that, since the conditions (3.6) for n=2 and 

n=3 are satisfied, the only condition (3. 7) is sufficient to determine the stability 

in the present case.* Hence, in the end, we see that the part of the curve 

(in Fig. 1) which lies between A and B represents the stable oscillations. 

(2) Dissipative case 

When the damping is considered in non-linear systems, the fundamental 

equation takes the form 

(3.8) 

and the periodic solution is expressed by 

with (3.9) 

Substituting (3. 9) into (3. 8), and equating .to zero the coefficients of sin, and 

cos, respectively, we have 

where 

3w 
Ax+ky = - 4 •2xY, 

3w Ay-kx = - 4 (x2- yz), 

3 3 -
A= l-4Cx2+ y2)-2w2, 

20 
k= ---. 

Cs 

Squaring and adding the first two equations, we obtain 

(3w)2 A2+k2 = T r2, r2 = xz+ y2, 

or, by putting r2 =R and w2=W, this leads to 

(3.10) 

(3.11) 

(3.12) 

* If em(m;;;:;2) enters into the m-th unstable region, the stability conditions (3.6) are not 
satisfied for n = m, and the unstable oscillation of order m/3 will take place. If this oscil­
lation grows up predominantly, the original subharmonic oscillation of order 1/3 may no 
longer be maintained. An example for such a case (m=2) will be given later in.Section 4. 
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Hence the relationship between W and R, and consequently the amplitude r 
of the subharmonic oscillation are determined and depicted in Fig. 3 a, b for 
various values ot k. 
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FIG. 3a. Relationship between W and R in (3.12). b. Amplitude characteristic 
of 1/3-harmonic oscillation. 

The components x, y of the amplitude r may readily be obtained as follows. 

By equations (3.10) and (3.11), we have 

3 kR x3 --Rx--- -=0, 4 3w 
and 

Hence the components x, y are given by 

with 

x = -rcosO, 

y = -r sin O, 

-r cos (8+120°), 

-r sin (8+120°), 

4k cos38= --. 3wr 

-r cos (8+240°). l 
-r sin (8+240°), 

J 
(3.13) 



214 C. HAYASHI 

The stability problem may be treated in the same manner as in the preceding 

case. The equation which characterizes the small variation from the periodic 

states of equilibrium is 

By the well-known transformation ~=e- 3T•r;, this leads to 

Substituting the periodic solution (3. 9), we obtain the following Hill's 

equation 

where 

d2r; [ d-r-2+ 80+281 cos (2-r--e1)+282 cos ( 4-r--e2) 

+ 283 cos ( 6, - e3)] r; = 0 , 

{}2 {}2 {}2 ct 8 ns "= ... + n<, en= ar an 8--' 
ne 

n = 1, 2,3, 

3 
fl2s = 2 C3XW , 

3 
8u= 2 c3JW, 

The stability conditions in dissipative systems are given by 1 

(3.14) 

(3.15) 

The condition for n=l is obtained by substituting 80 and 81 in (3.14) into (3.15), 

and further by virtue of (3.10) and (3.12), we ultimately find 

(3.16) 

Hence the equilibrium states represented by the dotted-line curves in Fig. 3 are 

unstable and do not actually exist. Fig. 4 shows the trajectories of 8,.(n=l, 2, 3) 

which are drawn by varying the value of w (or B) for the case of c1 =0, c3 =1, 
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o= o.t 

t 1.0 

err 0.5 

0 '""· ____ ......._ ____ _,_ ____ _._ ___ _.. 
0.5 1.0 1.5 2.0 2.5 

Bo-
FIG. 4. Trajectories of e's in (3. 14) with varying w. 

and o=O.l. As illustrated in the figure, the boundary curve of the first unstable 

region is given by a hyperbola,* and f'1 enters into this region in the dotted-line 

interval ab. At the critical points a and b, we have 

and these points correspond respectively to A and B in Fig. 3. It is also 

obvious from Fig. 4 that neither (}2 nor (}3 enters into their corresponding unstable 

regions. Hence, in the end, the condition (3.16) for n=l is sufficient to deter­

mine the stability of equilibrium states in the case when the non-linearity is 

characterized by a cubic function. 

(3) Some remarks on the approximation in the foregoing analysis 

As shown in Figs. 1 or 3, the stable range of equilibrium states is interposed 

between the critical points A and B at which w bas its limiting values. Since 

w is proportional to B by equations (3. 2) or (3. 9), these stability limits take 

place when the applied force also has its limiting values. This is a plausible 

result from the physical point of view. 

* In the case of o=O, this hyperbola is reduced to the straight lines (drawn by chain 
lines in Fig. 4) which intersect the abscissa at the point (1, 0), [cf. Fig. 2]. 
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However, as mentioned before, the approximation (2. 4) is only legitimate 

so long as the non-linearity is small, viz., C3 ,t'.c1 in the foregoing analysis. 

Thus, it might seem improper to apply this assumption to the case of c1 =0, 

c3 =1 in Figs. 2 or 4. But it will be explained in the following that the relation 

(2.4) may be applied with a fairly good approximation even when the non­

linearity is predominant, and also that the stability limits above-mentioned are 

given by the condition that the applied force B has its limiting values. 

For the sake of simplicity, we consider the non-dissipative case, and putting 

c1 =0, C3=l in equation (3.1), we have 

Substituting the periodic solution 

V = y COS 'I"+ W COS 3.:- , 

and equating to zero the coefficients of cos -r and cos 3.:- respectively, we obtain 

4 y2+ yw+2w2- 3- = 0, 

1 3 3 
4_Y3+-2-y2w+4-w3-9w = B. 

l (3. 17) 

Fig. 5 is obtained by plotting (3.17). 

Thus we see that the approximation 

w = - B/8 may be applied without serious 

error. It is also noticed that, since B is 

no longer proportional to w, the limiting 

values of B and w do not take place 

simultaneously. 

We shall next show that the stability 

limits are given by the limiting values of 

B, in other words, the parameters (J's in 

Hill's equation (3. 5) take the characteristic 

values when B = 0 or maximum.* For 

these limiting values of B, y and w are 

calculated by (3.17), and the parameters 

(J's are found from (3. 5). They are shown 

in Table I below. 

1.2 

0.8 

! Q4 

~ 
:::r, 

-0.4 

-0.8 

8 

-1.2· .__ _________ ..., 

FJG. 5. Relationship between 
B and y, w in (3. 17). 

* In the case when the non-dissipative system is considered, the characteristic exponent 
in the solution of Hill's equation becomes zero at the stability limits. 
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Table I. t Values of y, w, and B's for B=0 and B=Max. 

y 

1.127 

0.284 

w 

0.0510 

-0.8655 

1.9092 

1.2443 

1.0392 

-0.3078 

0.0862 

-0.3681 

0.0019 

0.5619 
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t For the case in which the non-linear characteristilf is give by a cubic function. 

The boundaries of the first unstable region are given by equations (3. 6), 

namely, 

(3.18) 

and, substituting the values of 81 in Table I, we obtain 

llo = 2.0392 for B = 0, 

Oo = 1.3078 for B = Max. 

These values differ from those given in Table I by 6.8¾ and 5.1¾ respectively. 

This is due to the deficiency of approximation in e,quation (3.18). Hence, for 

the accurate values of y, w calculated by equations (3.17), we have to apply 

the closer approximation given, for example, by the following development4 

(3.19) 

Now, substituting the values of 01~03 in Table I into equation (3.19), we obtain 

llo = 1.9038 for B = 0, 

Oo = 1.2352 for B = Max., 

which differ from the values given in Table I by 0.28¾ and 0.73¾ respectively. 

Thus the discrepancies are considerably reduced, and we may conclude that 

the stability limits are given by the condition that the applied force B has its 

limiting values.* 

----------------

4 E. L. Ince, Monthly Notices of the Roy. Astron. Soc. 75, 436 (1915). 
* A more complete discussion on the stability limits will be reported later. 
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4. Subharmonic oscillation of order 1 /3 with the 
non-linear characteristic: u=c1v+c5v 5 

For the brevity of calculation, we consider the non-dissipative case only. 

,, 
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0.2 

Putting 

µ = 3' 

C2 = C3 = C4 = C6 = ... = 0 ' l 
o =0, 

in equations ( 1. 1) and ( 2. 1 ), and n: 

membering the condition (2. 2), we have 

d 2v d-r2+v=cs(v-v5 )+Bcos3-r. (4.1) 

Substituting the periodic solution 

-1.0 -0.8 -0.6 -0.4 -0.2 
1Jt--

v = y cos -r + w cos 3-r , w = - B /8 , 

into ( 4. 1 ), and equating to zero the 

coefficient of cos -r, we obtain 

5 8 
y4+2y3w+6y2w2+3yw3+3w4- -5- = 0. 

(4.2) 
FIG. 6. Amplitude characteristic of 

1/3-harmonic oscillation (non­
linearity by quintic function). The relationship between y and w is 

illustrated in Fig. 6. The negative part of y is omitted in the figure, because, 

as will be shown later, the equilibrium states in this part are unstable. 

The stability problem may be treated in the same manner as in the preceding 

section, and the variational equation leads to the following Hill's equation 

d2~ [ 6 ] -d 2+ Oo+2 ~ O, cos 2s-r ~ = 0, 
'r •=l 

where 
5 

Oo = c1 + 8 cs (3y4 +4y3w+12y2w2 +3w4 ), 

5 
01 = 4 cs (y 4 + 3y3w+3y2w 2 +3yw3), 

5 th= 16 cs (y4+12y3w+6y2w2+12yw3), (4.3) 

5 
03 = 4 cs (y3w+3y2w 2 +w4 ), 

5 
(J4 = 8 cs (3y2w2-1-2yw3), 

5 
Os·= 4 csJW3 , 

5 
//6 = 16csw4 



Subharmonic Oscillations in Non-linear Systems 219 

The stability condition for n=l is obtained by substituting (} 0 and (}1 into (3. 6), 

and further by virtue of ( 4. 2), we ultimately find 

(4.4) 

Referring to Fig. 6, the equilibrium states in the range between A and B satisfy 

the condition ( 4. 4 ). The stability limits A and B are given by the conditions 

that w=O and w=Max. respectively. 

Fig. 7 shows the trajectories of On (n=l, 2, 3) which are drawn by varying 

the value of w (or B) for the limiting case of c1=0 and c5=1. As expected 

2 
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cI5' 
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-2 

\ 
\ 
\ 
\ 
\ 
\ 

' \82 
I 

' I ', I ........ .,, 

5 6 

FIG. 7. Trajectories of e's in (4.3) with varying w. 

from the stability condition for n=l, (}1 enters into the first unstable region in 

the dotted-line interval ab. We see moreover tl:iat (}2 enters into the second 

unstable region in the dotted-line interval ed. Hence the stability condition for 

n=2 is no more satisfied in the interval cd, and the oscillation of order 2/3 will 

be excited, disturbing the continuation of the original subharmonic oscillation. 

As mentioned above, the curves in Fig. 7 are drawn for the case of c1 =0 

and cs=l. With increasing c1 (or decreasing c5), however, these curves move 

towards the point (1, 0), as one sees by the expressions for fJ's in equations 

( 4. 3 ). Hence, as the departure from linearity is reduced, the interval cd in 
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the second unstable region contracts and finally disappears. One sees also that 

in no case the parameters 83~86 enter into their corresponding unstable regions. 

Hence, in the end, it may be concluded that the stability conditions for n=2 

as well as for n=l must be considered in the case when the non-linearity is 

characterized by a quintic function. The points A, B, C, D in Fig. 6 correspond 

respectively to the critical points a, b, c, d in Fig. 7, so that the subharmonic 

oscillation of order 1/3 is maintained only in the intervals AC and BD. 

We shall now discuss the approximation in the foregoing analysis as we 

have done at the end of the preceding section. Let the differential equation 

be given by 
d 2v . di2 +v5 = B cos 3?". 

Substituting the periodic solution 

v = ycosT+wcos3T, 

and equating to zero the coefficients of cos T and cos 3?" respectively, we obtain 

(4.5) 

Fig. 8 is obtained by plotting ( 4. 5 ). Thus 

we see that the approximation w= - B /8 t.2 

may also be applied without serious error. 

For B=O and B=Max., the values of 

y, w and the parameters 80 ~83 in equations 

( 4. 3) are calculated and shown in Table 

II below. 

Substituting the values of 81 into 

equation (3. 18), we have 

80=3.0327 for B=O, 

Bo= 1.3385 for B = Max. 

These values differ from those given in 

Table II by 9.1¾ and 5.8¾ respectively. 

Applying again the closer approximation 

(3.19) instead of (3.18), we obtain 

Ho= 2.7234 for B = 0, 

Uo = 1.2415 for B = Max. 

0.8 

t OA 

~ 
::,-, 

-0.8 

FIG. 8. Relationship between 
B and y, w in (4.5). 
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1 able II. t Values of y, w, and e's for B=0 and B=Max. 

y 

1.0759 

0.1542 

w 

0.0716 

-0.8818 

Bo 

2.7795 

1.2651 

2.0327 

-0.3385 

0.7655 

-0.3736 

0.1337 

0.8210 

t For the case in which the non-linear characteristic is given by a quintic function. 
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The discrepancies are reduced down to 1.9¾ and 2.0¾ respectively, and we 

may conclude that the stability limits of the first unstable region are given by 

the condition that the applied force B has its limiting values. 

We have so far discussed the stability limits of the first unstable region. 

A similar investigation may be carried out for the second unstable region. But 

in this case the stability limits have no particular relation to the applied force, 

and besides, as one will see in a later experiment, the small parasitic oscillation 

of order 2/3 can coexist with the original subharmonic oscillation in the 

neighborhood of the stability limits. Hence the points c, d in Fig. 7, however 

accurately they might be determined, would not represent the exact critical 

points at which the original subharmonic oscillation is interrupted. Therefore, 

further investigation into the stability limits of the second unstable region is 

not so important and is omitted here. 

5. Experimental considerations 

In the present section we shall compare the theoretical results (in the 

preceding sections) with some experiments conducted for an electrical oscillatory 

circuit containing a saturable iron-core inductance and a capacitance. As 

shown previously by the author,2 the circuit equation has the form of (1.1) 

when an alternating voltage (60 c.p.s. in our case) is applied to the circuit. 

With appropriately prescribed initial conditions, the subharmonic oscillation of 

order 1/3, i.e., of 20 c.p.s., may easily be started in the circuit. 

Now, making use of a transformer core inductance as the non-linear element, 

we have first determined the region in which the subharmonic oscillation of 

order 1/3 is sustained. In Fig. 9a this region is depicted by hatched lines. 

The appearance of the vacant part inside the sustainin_g region is an arresting 

feature and was previously reported by the present author5 and others.6 But 

no theoretical consideration was given at that time. 

From the preceding analysis, however, it will be deduced that the vacant 

fi C. Hayashi, Mitsubishi Denki 18, 128 (1942), [in Japanese]. 
'' For instance, J. D. McCrumm, Trans. Amer. Inst. Elec. Eng. 60, 533 (1941). 



222 C. HAYASHT 

µF µF 
500 500r-----r""l"<'<~=~~~"""""" 

400 400 .. 
9! 
C: 

~ 
300 C: 

0 u 

t .. 
C: 
a, 

"O 300 C: 
0 u 

0 0 
]; 200 ·;:; 
"' 0.. 

"' u 

]; 200 ·;:; .. 
0.. .. u 

1QO 100 

200 300 400V 
Applied voltage 

0 . 
0 100 200 300 400V 

Applied voltage 

(a) Magnetization curve by (5.1). (b) Magnetization curve by (5.2). 

FIG. 9. Sustaining regions of 1/3-harmonic oscillation. 

part above-mentioned corresponds to the unstable regions of order n>2, because 

the non-linear characteristic of the ordinary transformer core is expressed by 

in which the coefficients Cs, 

c1, · • • predominate over c1, C3. 

If we use a core whose char-

acteristic is expressed by 

f(v) = C1V+C3V3 , (5.2) 

the vacant part inside the 

sustaining region shall be 

eliminated. Such a core is not 

available in practice, but we 

can obtain the characteristic 

( 5. 2) by connecting a number 

of inductance coils in series 

and adjusting the length of 

the air-gap which is interposed 

(5.1) 

V 
1000 

800 
a, 
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FIG. 10. Combined characteristic approximated to 
a cubic curve: (1) without air-gap, (2) with air­
gap, (3) combined characteristic of (1) and (2). 

* Physically, equation (5.1) represents the magnetization curve of the core, i.e., the relation­
ship between the magnetic flux v and the magnetizing current f(v). 
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in each core. Fig. 10 shows an example in which two cores are used, one with 

air-gap and the other without. The resultant characteristic shows a fairly good 
approximation to equation ( 5. 2). By making use of this composite inductance, 

the sustaining region of the subharmonic osciIIation of order 1/3 is determined 
and plotted in Fig. 9b. We see that the unstable oscillations corresponding 

to the unstable regions of order n>-2 are completely excluded, and so the 

experimental verification is quite satisfactory. 
We have further measured the harmonic contents in those oscillations with 

a heterodyne harmonic analyser. Fig. 11 a, b shows the result for the cases in 
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(a) Magnetization curve by (5.1). (b) Magnetization curve by (5. 2). 

FIG. 11. Harmonic analysis of oscillations. 

which the non-linearities are given by equations (5.1) and (5. 2) respectively. 
In Fig. lla, we observe the higher harmonics of orders 2/3, 5/3, 7 /3, ... , an;iong 

which the oscillation of order 2/3 is significant, because it is this oscillation 
(related to the second unstable region) that grows up rapidly and interrupts 
the original subharmonic oscillation (see Figs. 7 and 9a). Whereas, in Fig. 11 b, 
no such obstructive oscillation is observed, and the subharmonic oscillation of 

order 1/3 is sustained in the whole region (see Figs. 2 and 9b). 
Finally it is added that the subharmonic oscillation of order 1/5 can occur 

when the non-linearity is given by equation (5.1), but this oscillation is by no 
means observed when the non-linearity is given by equation (5. 2). These 
results also agree with the investigation in Section 2. 
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