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In this paper, the authors calculated the deflections of laterally loaded square 

plates under various edge conditions. The authors treated the problem assuming the 

plate is clamped or supported at the edges and deriving a fundamental solution 

suitable to any boundary condition, determined the coefficients included in the solution 

by the various boundary conditions. 

1. Fundamental Equation and Its Solution 

For the sake of simplicity, it is assumed that the distributed pressure p is 

uniform and the boundaries of plate are x=±l, y=±l. It is easy to extend the 

solution to that of rectangular plate and it also can to lead into solutions of any other 

form of load distribution. 

The deflection w of the plate which is loaded with uniform pressure p must 

satisfy the following fundamental differential equation 

.d1.d1w = p/D, (1) 

where. 1/D = 12(m2-l)/m2£/z3, 

a2 a2 
.d1 = ax2+ay2' 

m is Poisson's number, E the modulus of elasticity, and h the thickness of the plate. 

Putting it as 
(2) 

Eq. (1) becomes 

(3) 

This is Poisson's partial differential equation. Assigning W1 to the particular solution 

and W2 to the general solution of .d1 W =0, then we may put 

(4) 
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The particular solution W1 is easily obtained by 

(5) 

It is convenient to choose the form in which the particular solution is zero at the 

four points x=±l, y=±l. 

The boundary values of W 2 are supposed to be as follows ; 

As W2 satisfies the equation 

the solution is obtained as 

W2 l.,=1 = G(y), 

W2 l .. =-1 = G'(y), 

W2l11=1 = H(x), 

W2111=-1 = H'(x). 

(6) 

(7) 

Bn sinh n
2
rc (1 +y) + Bn' sinh n

2
rc (1-y) 

• . a 
+~ "h s111-2 (1+x), (8) 

... 1 sm mr _ 

where 

fl nrc 
A,. = J _

1 
G(y') sin 2 (1 + y')dy' , 

~

1 nrc An'= G'(y') sin -(1 +y')dy', 
-1 2 

f1 nrc B,. = J_
1
H(x') sin 2 (1+x')dx', 

(9) 

f1 nrc B,.' = L1H'(x') sin zCl+x')dx', 

Using Eqs. (2), (4), (5) and (8), 

J1w = p(x2 +yL2)/4D 

A,. sinh ~
2
!! (1 +x) + A,.' sinh n

2
rc (1-x) 

oo .a 
+2.J 'h sm-2 (1+y) 

n=I sm nrc 

00 
B,. sinh n

2
rc (1 + y) + B,.' sinh n

2
rc (1-y) 

.,_, . • nrc( + LJ . h sm -2 1 +x). 
n-1 sm nrc 

(10) 

Denoting the particular solution of Eq. (10) by W1 and the general solution of 

J1w=0 by w2 , then we may put 

(11) 
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We can choose the particular solution w1 as 

w1 = p[(x4 +y4)-6(x2 +y2 )+10]/48D 

+ f ( 2 
)2 . Ah,. [c1 +x) n2TC cosh (1 +x) n2TC -sinh (1 +x) n2TC] sin (1 +y) ~2.!E 

n= 1 nrc sin n-a 

,"'; 2 A,.' [c )nrc ( )nrc . h ( )nrc] . ( ) nrc +""" ~( ) 2 -.~h~ 1-x -
2 

cosh 1-x -2--sm 1-x -
2 

sm l+y -2 n= 1 nrc sin nrc 

+ f ( 2 )
2 

• Bh,._ [(1+y)n
2
rc cosh (l+y)n

2
rc -sinh (l+y)n

2
rc] sin (l+x)n

2
rc 

n= l nrc sin nrc 

+ iJ - 2--E-- [c1-y)1t__7L" cosh (1-y)nrc -sinh (1-y)nrc] sin(l+xlrc. (12) 
n=l (nrc)2 smh nrc 2 2 2 2 

Let the boundary values of w2 be as follows ; 

W2 l.,=1 = g(y), 

W2 l.,=-1 = g'(y), 

W2111=1 = h(x), 

w2 l11=-1 = h'(x). 

(13) 

The solution W2 has the same form as Eq. (8). However, the constants A,., A,.', B,. 
and B,.' are replaceable by a,., a,.', b,. and b,.' as: 

f1 nrc a,. = J _
1 
g(y') sin 2 (1 + y')dy' , 

fl nrc 
a,.' = Li g'(y') sin 2 (1 + y')dy', 

fl nrc 
b,. = Li h(x') sin 2 (1 + x')dx', 

fl nrc b,.' = J _
1 
h' (x') sin 2 (1 + x')dx' • 

Substituting w1 and w2 into Eq. (11), we obtain the solution of w by 

w = p[(x4 +y4)-6(x2 +y2) +10]/48D 

+ i3 ~( 2 
)2 . Ah.. [c1 + x) n2TC cosh (1 + x) n2TC - sinh (1 + x) n2TC] sin (1 + y) 1l21' 

n= 1 nrc sin nrc 
00 2 A' [ nrc . nrc - nrc] nrc + f

1 
(nrr) 2 sinh nrc (1-x) 2 cosh (1-x) 2 -sinh (1-x) 2 sin (1 +y) 2 

+ }j ( 2
)2 --.--!!h~ [c1 +y) n2TC cosh (1 + y) n2TC - sinh (1 + y) n2TC] sin (1 +x) n2TC 

n= 1 nrc sin nrc 

+ f - 2 - ~ [(1-y)nrc cosh (l-y)1t__1r __ shin (1-y)nrc] sin (l+x)nrc 
,._ 1 (nrc)2 smh nrc 2 2 2 2 

+ iJ --:--h1 [a,. sinh (1 +x) n
2
rc +a,.' sinh (1-x)n

2
rc] sin (1 +y) n

2
rc 

n=l sin nrc 

+ iJ --:--h1 [b,. sinh (1 + y) n
2
rc + b,.' sinh ( 1 - y) n

2
rc] sin ( 1 + x) n

2
rc . 

n=l sin nrc 

(14) 

(15) 
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The constants A,., A,.', B,., B,.1, a,., a,.', b,. and b,.' are determined by the boundary 

conditions whether or not the plate is supported or clamped at four edges. 

2. Boundary Conditions 

In the case of supported edges, the deflection and the moment along the boundary 

are b.oth zero. 

In the case of built-in, the deflection and the slope along the boundary are both 

zero. 

Suppose that the boundary coincides with J=Jo, then the boundary conditions 

can be written as follows ; 

i) in case of simply supported edge, 

(w)11~110 = 0 

(
82w 1 82w) -+-- =O 8y2 m 8x2 11=110 ' 

ii) in case of built-in edge, 

(w)11-110 = 0 

(aw) = 0 8y 11=110 • 

Plate may assume six kinds of edge conditions ; 

1. all four edges supported, 

2. all four edges built-in, 

3. three edges supported and one edge built-in, 

4. two opposite edges supported and the other two edges built-in, 

(16) 

(17) 

5. two neighbouring edges supported and the other two neighbouring edges 
built-in, 

6. one edge supported and the others built-in. 

The cases of 1~4 are solved by S. Timoshenkon and as for the cases of 1~4 

and 6 the solutions were obtained by calculation of finite differences equations2> 

changed from differential equations. 

3. Equations Representing Stresses 

Placing z-axis in the direction of thickness of the plate and the origine at the 

middle plane of the plate, we may write for the condition of a.=O 

d~ = t~2~~) Z ( m ~:~ + ~:~) , 

- mE (8 2w 82w) 
d11 = (m2-1) z "tfx2 +mf}y2 ' (18) 

-mE 82w 
.... = m + 1 z axay . 
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On the surface of the plate z=±h/2, the following maximum stresses are found 

mEh ( f)2w f)2w) 
a.,= 2(m2-1) max2 +f)y2 ' 

mEh (82w fJ2w) 
"11 = 2(m2-1) ax2 +mf)y2 . 

4. Solutions for Various Edge Conditions 

1. The case of all edges supported. 

From the condition of symmetry, it will be 

A,.= A,.'= B,. = B,.', 
a,. = a,.' = b,. = b,.' • 

By Eq. (15), it will consummate in 

w = p[(x4 +y4)-6(x2+y2) +10]/48D 
00 

2 A,. [{ nn: ( mr . mr + 2J -( )2 -.-h- (l+x)-2 cosh l+x)-2 -smh(l+x)-
2 n-1 nn: sm nrr 

n: odd' 

+ (1-x)nrr cosh (1-x/11t -sinh (1-x)nrr} sin (1 +y)nn: 
2 2 2 2 

{ 
nn: ( nrr . nrr + (l+y) 2 cosh l+y) 2 -smh(l+y)2 

(19) 

(20) 

+ (1- y) nn: cosh (1 ~ y) nn: -sinh (1-y)nil'} sin (1 + x)~1r] 
2 2 2 2 

+ i3 . ah,. [{sinh (1 +x)ii
2
1t+sinh (1-x)n

2
n:} sin (1 +y)n

2
_7!. 

n=l sin nn: 
n: odd 

+{sinh (1 + y)~ +sinh (1-y)W} sin (1 +x)~]. 

When the edge is supported, condition (16) is replaced by 

(w)11-110 = 0, 

(W)11=11o = 0. 

(21) 

(22) 

Hence the values of G(y), H(x) that W2 must satisfy along the boundary are 

Using Eq. (9), we get 

G(y) = G'(y) =P(l-y2)/4D, 

H(x) =H'(x) =P(l-x2)/4D. 

A,. = r1 L c1-y'2) sin tt__ii: (1 +y')dy' 
L14D 2 

p 4 
= D (nrr)S (1-cos nn:). 

Because n is odd number, it becomes 

(23) 
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(24) 

From these results, the boundary values of w2 , namely, g(y) and h(x) are determined 

to be 

g(y) = g'(y) 

= 
4
-SPD-(yL6y2+5)- iJ ( 2 ) 2 . Ah--"------[mr:coshmr:-sinhmc] sin (l+y)n2rc, 

,._ 1 nrc sin nrc 
n:mld 

h(x) = h'(x) 

= - P (xL 6x2 + 5) - iJ ~-~ [nrc cosh nrc - sinh nrc] sin (1 + x) nrc • 
48D ,._ 1 (nrc ) 2 smh nrc 2 

n:odd 

Operating the integrals of Eq. (14), we obtain 

a,. = - _DP_ ( 
16

) 5 (1, cos nrc )- ( 
2 

) 2 ~h__!!___ [nrc cosh mr:- sinh nrc] nrc nrc sm nrc 

(25) 

p 16 
= - D (nrc ) 5 (1 +nrc coth nrc) • (26) 

Table 1 gives the calculated values of A,. and a,. . 

Table 1. 

n I 1 I 3 I 5 I 7 9 
I 

A,.(xp/D) 

I 

0.258012 0.009556 0.002064 

I 

0.000752 0.000354 

a,.(xp/D) -0.217154 -0.002243 -0.000280 -0.000072 -0.000026 

Next, by denoting Wo for the deflection at x=0, y=0, we get 

4 P ~ 4 A,. [ hnrc 2 . nrc] . nrc 
Wo = 25 v+ ,.";;"1 (nrc)2 sinh nrc nrc cos 2-- smh 2 sm 2 

n:odd 

~ 4a,. . h nrc . nrc + L.J -.-- sm - sm -
n-1 smh nrc 2 2 

n:od<l 
n-1 

4 p 00 2( -1 y2 [ ( 1 nrc 2 ) ] 
= 25 D + ~1 nrc A,. nir coth 2 - (nrc)2 +a,. · 

n:odd cosh -2 

- (27) 

The following is obtained if the numerical values of A,. and a,. are substituted : 

Wo = 0.065946 P / D • 

Assuming that the side length of the square is a, we may express w0 as 

Wo = 0.004060 pa4/D. 

2. The case of all edges being built-in. 

(28) 

(29) 

In this case the preceding Eqs. (20) and (21) can be applied in their exact form. 



Deflections of Laterally Loaded Square Plates under Various Edge Conditions 203 

The deflection and slope along the boundary y= ±1 become 

wl11=±1 = 4fvCx4 -6x2 +5) 

+ iJ [2A"(cothnrc-l) +a,.] sin (1 +x)n
2
rc, 

n-1 nrc nrc 
n:odd 

aw/ p 
00 

[ nrc ( 1 )] . nrc ~ = 6D- 2J A,.+-2 a,. cothnrc--.-h~ sm(l+x)-2 vy 11=±1 n=l sin nrc 
1,: odd 

~ [ A,. ( hnrc 2 . hnrc) nrca,. . hnrc] hnrc + L.J -.-- cos ---sm - +-.--sm - cos -x 
n=l smh nrc 2 nrc 2 smh nrc 2 2 

n: odd 

..... -; [ A,. . h nrc] . h nrc + L.J -.-h-sm -2 xsm -2 x. 
n=l sm nrc 

'" odd 

Eqs. (30) and (31) must be zero regardless of x. 

If we put 

2A,. (coth nrc _ l) + a,. = K,. , 
. nrc nrc 

Eq. (30) becomes 

p oo • a 
wll/=±1 = 48D(x4 -6x2 +5)+ ~ K,.sm(l+x)z. 

n: odd 

(30) 

(31) 

(32) 

(33) 

The values of A,. and a,. in Table 1 should satisfy Eq. (30), and consequently 

they are supposed to satisfy Eq. (33) exactly. The relation between A,. and a,. can 

be known by Eq. (32), where K,. are determined by A,. and a,. shown in Table 1. 

Expanding hyperbolic functions into trigonometric series, we get 

where 

and 

where 

nrc 1 lrc 
cosh2x = zAo+~ AzCOSzX, 

Ao = ~ sinh nrc , 
nrc 

2n(-l)Z . 
Az = (n2 + z-i.;ir smh nrc 

. h nrc 1 , , " , , lrc x sm 2 x = 2 AO + 7 Az cos 2 x, 

Ao'= +[ncoshnrc-1._ sinhnrc], n11: 77: 

I - 4 [ n2 - [2 . ] I 
A1 - (n2 +z2)11: ncoshn11:-(n2 +l2)11:smhnrc (-1). 

To simplify the formulae, we put 

(34) 

(35) 
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. nrc -smh 2 A,. = A,., 
(36) 

. hnrc nrc sm 2 a,. = a,. . 

Eqs. (32) and (31) can be rewritten using .A,. and a,. as follows; 

2.A,.( h 1 ); . hnrc I . hnrc v tiir cot nrc - nrc sm -2 + a,. nrc sm 2 = n.,. , (37) 

awl p t', [ A,. i2,. ( h 1 )]c l)n-l nrc ·- ·= -+ L.J ---+---- cot nrc--.-- - 2 cos-x 
8y 1/=±l 6D n=l . hnrc 2 . h nrc smh nrc 2 

n:odd sm 2 sm 2 

~ [{A- ( h nrc 2) }2n{ 1 .._, n(-1)' Ire }] + ,t;:'1 " cot 2-nn: + On 1! 2n2 + ~ (n2 + /2) COS 2· X 
n: odd 

°'"°,4A-[1( h 1) + L.J ·-- " - 2 n cot nrc--
n=l re 2n re 

n: odd 

., (-lY ( n2-z2) Ire] 
+ f (n2+z2) ncothnrc-(n2 +l2 )rc cos 2 x • (38) 

Taking terms up to n=5, we set the constant term and each 

cos ; x and cos rcx terms at zero. The coefficients are. determined 

numerical calculation and the results are shown in Table 2. 

coefficient of 

after some 

Table 2. 

n I 1 I 3 I 5 

K,.(xp/D) -0.104568 -0.000430 -0.000034 

A,,.(xp/D) 0.45112 -0.02908 0.00195 

a,.(xp/D) -0.30142 0.00509 -0.00027 

The deflection of plate at the midpoint is 

Wo = 0.01992p/D (39) 

and 

Wo = 0.00124 pa4 /D. (40) 

3. The case of three edges supported and one edge built-in. 

Supposing the plate is built-in along the edge y= -1, we get 

A,.= A,.'= B,., 
a,.= a,.'·= b,.. 

(41) 

If we use the values of A,. and a,. shown in Table 1, the conditions of w=0 and 

of W =0 along x=l, x= -1 and y=l are satisfied. Further, it is necessary to satisfy 

the zero condition of the deflection and the slope along y= -1, We have 
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wl11=-1 = 4fvCx4 -6x2+5) 

00 

[2B 
1 

( 1 ) ] nrr + L! _n_ cothnrr-- +b,.' sin (l+x)-
2
-, 

n•l nrr nrr 
" odd 

aaw \ = GPD + }:J [Bn' + ~
2
rr(b,. 1 coth nrr --/!-----h")] sin ( 1 + x) n2rr Y J~-1 n-1 sm nrr 

and putting 

we obtain 

n: odd 

+ ~~ [ An ( th nrr 2 ) + nrra,. ] h nrr L..., co ---- --~ cos -x 
n-1 nrr 2 nrr nrr 2 

n: odd 2 cosh 2 2 cosh 2 

~[An] 'hnrr + L..J xsm -
2 

x, 
n-1 2 h nrr 

n: odd COS 2 

_ P + ~ [ . An ( th nrr 2 ) + nrra,. ] h nrr a-- L.J --- co --- ---- cos -x 
6D ,.. 1 2 hnrr 2 nrr 2 hnrr 2 

n: odd COS 2 COS -i 

+ }:J [ An ] x sinh n
2
rr x , 

n-1 2 hnrr 
n: odd COS 2-

- I nn:( I On
1 

) (3,. - B,. +-2 b,. coth nrr- -.-h- , 
sm nn: 

aw I 00 n-1 nrr 
a- = a+ L! /3n(-1)_2_cos -

2
• 

Y !l=-1 n•l 
n: odd 

To make the integral 

- dx=l ~1 [(aw) ]2 
0 ay 11--1 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

minimum, I is differentiated by '3n and put equal to zero, the following is obtained 

(48) 

Thus one relation between B,.' and b,.' is obtained by Eq. ( 45). 

On the other hand, another relation between B,.' and bn' is obtained from Eq. 

(42) as 

2Bn
1 

( h 1 ) b I v -- cot nrr-- +,. = nn, 
nrr nrr 

(49) 

here the values of K,. are shown in Table 2. As far as B,.' and bn' are bounded by 

Eq. (49), the condition of w=O along y= -_1 is satisfied. 

The values obtained from Eqs. ( 48) and ( 49) are shown in Table 3, 
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Table 3. 

n I I I 3 

fl,.(xp/D) 0.055248 0.000636 

A,.(xp/D) 0,258012 0.009556 

On(xp/D) -0.217154 -0.002243 

B,.(xp/D) 0.611555 0.039472 

b,.(xP/D) -0.371110 -0.008116 

The deflection at the centre becomes 

Wo = 0.044521 p/D, (50) 

and 

w0 = 0.002783 pa4 / D • (51) 

The deflection w0 does not agree strictly with the maximum deflection Wma,, • The 

maximum deflection is found to occur near the point x ,= 0, y = 0.184, and it is 

calculated as 

Wma,, = 0.04478 p/D, 
Wma,, = 0.00280 pa4 / D . 

But Wma,, does not differ much from w0 • Wma,, may be approximated with Wo. This 

fact is applicable in another unsymmetric case as far as they are square plate. 

4. The case of two opposite edges supported and the other two edges clamped. 

Supposing the plate is supported along the edges x = ±1 and clamped along the 

edges y= ±1, we have 

A,. = A,/ , B,. = B,.' , 

a,. = a,.' , b,. = b,.' • 
(52) 

The values A,. and a,. in Table 1 are again utilized for this problem to make the 

supporting condition along xd ±1 satisfied. 

Performing the calculation, we get the deflection and the slope along y= ±1 as 

wl11=±1 = 4fnCx4 -6x2 +5) 

+ £: [2B,. (coth nrr - _!_) + b,.] sin ( 1 + x) n
2
1r • 

11=1 nrr nrr 
(53) 

n: odd 

8w[ P ~ [ nrr ( 1 )] . nrr ~ = 6D- ~ B,.+-2 b,. cothnrr------;-----h - sm (l+x)-2 uy v=±l n=l sm nrr 
n: odd 

;; [ A,. ( h nrr 2 . h nrr) nrra,. . h nrr] hnrr + .L.J -.-h- cos -
2 

- - sm -2 +-.-h-- sm -2 cos -2 x 
n= 1 sm nrr nrr sm nrr 

n: odd 

;; [ A,. . h nrr] . h nrr + .L.J -.-h-- sm -2 x sm . -
2 

x . 
n=l sm nrr 

(54) 

n:oud 
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It is necessary that Eqs. (53) and (54) are always zero for any value of x. In 

Eqs. (53) and (54), it suffices to consider the coefficients B., and b., for odd number 
nrc . nrc 

of n. Because the constant terms, x4, x2 , cosh 2 x and x smh 2 x are even func-

tions, sin (1 +x) n; must be an even function or the coefficients must be zero if it 

is an odd function. When n is an odd number, sin (1 +x) n; is an even function and 

if n is an even number, sin (1 +x) n
2
rc is an odd function. Hence, from Eqs. (53) 

and (54), 

2B"(cothnrc-1-) +b,. = 0, 
nrc nrc 

nrc ( 1 ) B,. +-
2 

b,. coth nrc --.-h- = 0 , 
sm nrc 

are obtained. To satisfy the Eq. (55), the conditions 

(B,.)n:even = 0, 

(bn)n:even = 0 

are necessary. 

They are put, as before, as 

?!l_n (coth nrc - 1-) + b,. = K,. , 
nrc nrc 

(55) 

(n: even) 

(56) 

(57) 

where K., are the values shown in Table 2. Thus condition w=O along y=±l is 

satisfied. 

By putting a the same as in Eq. (44) and also as 

Eq. (54) is reduced to 

If we denote 

0,.' = B,,. + n
2
rc b,,. (coth nrc - ----,------hl) . 

sm nrr 

awl "", , n-l nrc 
a- = a+ 2, 0 .. ( -1) 2 cos -- . 
Y 11-±l n=l 2 ,i: odd 

r1 [(aw) ]2 d _ I' Jo ay 11=±1 X - ' 

differentiate I' by 0,.' and make these derivatives zero as 

a11 
a0 .. ' = 0 

• 

(58) 

(59) 

(60) 

(61) 

0,.' can be determined which are the most suitable values for satisfying the zero 

condition of the slope along the boundary. 

Calculating Eq. (61), we have 

(62) 
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This is the same as the preceding Eq. (48). 

Using these results, the constants 0n', Bn and b,. are found as shown in Table 4. 

Table 4. 

n I 1 

f3~(xp/D) 0.055248 

An(xp/D) 0.258012 

an(xp/D) -0.217154 

B,.(xp/D) 0.554438 

bn(xp/D) -0.346502 

The deflection at x=0, y=0 becomes : 

Wo = 0.030537 p/D, 
and also 

Wo = 0.001909 pa4/D. 

I 
3 

0.001272 

0.009556 

-0.002243 

0.023384 

-0.004866 

(63) 

(64) 

5. The case of two neighbouring edges supported and the other two neighbouring 

edges built-in. 

The plate supported along the edges x=l and y=l and clamped along the edges 

x= -1 and y= -1 is considered. 

The relations 
A,. = B,. , A,.' = B,.' , 

a,. = b,. , a,.' ·= b,.' , 

are brought about as in cases (3) and (4). 

(65) 

By applying the values A,. and a,. shown in Table 1, the boundary conditions in 

which both the deflection and the moment are zero along the edges X=l, y=l, are 

satisfied. 

Calculating the value of the deflection and the slope along the edge x= -1, we have 

+ iJ [2A,.'(cothmr:-l.) +a,.'] sin (1 +y)n
2
rr, 

n-1 nrr nrr 
(66) 

~wl = _
5
PD+ iJ [A,.'+n

2
rr(cothnrr•a,.'-. ah,. )]sin(l+y)~

2
~ 

uX :o=-l n=l sin nrr 

+ i3 nrrS - l )" [{ca .. +a,.') - 2cA .. +A,.')~ sinh nrr +A,.+ A,.' cosh nrr] cosh mr: Y 
n=l 2 smh nrr: (nrr:)2 I 2 nrr 2 2 

- ~ nrr:S-l)"[{ca,.-a,.')-2(A,.-A,.' )} coshnrr: + A,.-A,.' sinh nrr:] sinh ~IE Y 
,t:-'1 2 smh nrr: (nrr: ) 2 2 nrr: 2 2 

~ mr:( -l)"[A,. -A,.' h nrr:] h nrr: - LJ . ---'-'-~cos - ycos -y 
n= 1 2 smh nrr: nrr: 2 2 

~ n'rr:(-l)"[A,.+A,.' . hnrr] . hnrr + L.J 2 . h sm -2 ysm -2 y. 
n= 1 sm nrr nrr 

(67) 



Deflections of Lateraily Loaded Square Piates under Various Edge Conditions 209 

The deflection and the slope along x= -1 must be zero regardless of y. 

If we put 

2A '( 1) _n_ coth nrr - - + an' = Kn 
mr: nrr 

(68) 

and adopt the values Kn shown in Table 2, the deflection along x= -1 becomes zero. 

When n is even number, An and an in Table 2 are zero hence Kn are zero. 

Expressing an' by An' according to Eq. (68) and substituting an' into Eq. (67), 

we obtain Eq. (67) containing unknown An' series. 

Making minimum the integral ~:[(::)., __ J2
dx and taking some a;proximation, 

we determine the constants An' and an'• Table 5 shows these results. 

Table 5. 

n I 1 I 2 I 3 

A,.(xp/D) 0.258012 0.0000 0.009556 

a,.(xp/D) -0.217154 0.0000 -0.002243 

B,.(xp/D) 0.52309 0.0438 0.005 

b,.(xpf D) -0.33282 0.0117 -0.001 

The deflection Wo becomes as follows ; 

Wo = 0.03408 P / D (69) 

and 

Wo = 0.00213 pa4/D. (70) 

6. The case of one edge supported and the other three edges built-in. 

Suppose the plate is supported along one edge x=l. The values A,. and an shown 

in Table 1 are adopted. Then the condition that the plate is supported along x=l is 

naturally satisfied. Then a consideration must be given about An' and a,.' where n 

is an odd number, and B,.(=B,.') and b,.(=b,.') where n takes both odd and even 

number. 

The necessary conditions are as follows ; 

wl .. =-1=0, 

wl11=±1 = 0, 

awl =0 ax z=-1 ' 

awl ay 1!=±1 = o. 

(71) 

(72) 

(73) 

(74) 

As for the conditions (71) and (72), it is sufficient if A,.' and a,.', B,. and b,. are 

combined with the next relations ; 
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2A '( 1 ) _n_ cothmr-- +an1 =Kn, 
nrc nrc 

2B ( 1) _n cothnrc-- +bn =Kn. 
nrc nrc 

(75) 

(76) 

Next, the conditions (73) and (74) must be considered. Here the forms are written 

8w I _ P .,_°'; [A I nrc( 1 h a.. )] . (l ) nrc 
8- - - 6D+ L.J n +-2 a,. cot nrc--.-h-- sm +y -2 X o,=-1 n=l sm nrc 

n: odd 

vi [ B,. ( h nrc 2 . h nrc) nrcbn . h nrc] h nrc - L.J .--- cos - - - sm - + -. ~- sm - cos ·--y 
n=l smh nrc 2 nrc 2 smh nrc 2 2 

,~ [ B,. . h nrc] . h nrc - L.J -.-h-- sm -2 y sm -
2 

y , 
n=l sm nrc 

(77) 

8wl . P v, [B nrcb ( h 1 )] . (l ) nrc 8y 11•±1 = -6D + .t='1 ,.+ 2 " cot nrc- sinh nrc sm +x 2 

,;', nrc [{c ') 2(A,.+An')} . hnrc+A .. +A,.' hnrc] hnrc 
- .t::"1 2 sinh nrc a .. + a.. (nrc )2 sm 2 -- mr-- cos 2 cos 2 X 

n: odd 

~ nrc [{c ') 2(An -A,/)} h nrc A,. -A,.' . h nrc] . h nrc + .t::"1 2 sinh nrc a,.-a,. (nrc)2 cos 2 + nrc sm 2 sm 2x 
n: odd 

+ ~ 2 . lh [cA .. -A,.') cosh n2rc] x cosh n2rc x 
n•l sm nrc 

n: odd 

;; 1 [CA A ') . h nrc] . h nrc - L.J 2 • h ,.+ n sm -2 xsm -2 x. 
n-1 sm nrc 

,i: odd 

(78) 

Ai', ai', Bi and b1 are numerically determined so as to sufficiently satisfy the 

conditions (77) and (78). The results of the calculation are 

and 

From Table 1, we have 

Ai' = 0.50097 xp /D, 

ai' = -0.32337xp/D, 

B1 = 0.45492 xp/D, 

bi = 0.30308 xp/D. 

Ai= 0.258012 xp/D, 

a1 = -0.217154 xp/D. 

Using the values (79) and (80), the deflection at midpoint is calculated as 

Wo = 0.02515P/D 

Wo = 0.00157 pa4/D 

(79) 

(80) 

(81) 

(82) 
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5. Conclusions 

The authors calculated the deflections of plates under various edge , conditions 

supported and clamped. In Table 6, the results obtained are presented, together 

with the results calculated by S. Timoshenkol> and by one· of the authors, who 

calculated after rewriting to the form of finite differences equations2>. 

Table 6 .. 

Boundary w0(xpa4/D) 

condition solved in I solved by I solved replacing by finite 
this paper S. Timoshenko differences equations 

IOI 0.004060 0.00406 0.00391 

0 0.00124 0.00126 0.00126 

1□1 0.002783 0.00278 0.00258 

1□1 0.001909 0.00191 0.00182 

(JI 0.00213 - -a, 0.00157 - 0.00149 

r7 represents edge supported, 

~ represents edge clamped. 

Thus the authors make clear deflections under various edge conditions. Regarding 

the last case, quite a rough approximation is used but it is not likely that there is a 

large difference from the strict solution. 

In this paper, the calculations are made for the simple case, where the plate has 

a square form and is loaded by uniform pressure. It is easy to extend the solution 

to the case of rectangular plate and it may be also applicable to the plate loaded not 

uniformly. The solution for the plate under sinusoidal load or the plate loaded in the 

form of a triangular prism can be reduced without difficulty. 

The solution for the plate wit~ free edges is excluded in this paper, the above 

solutions obtained however may be extended to other cases. In this case some 

suitable terms must be added to the right hand side of Eq. (5) so that the particular 

solution W1 becomes zero at the four corners of plate (x=±l, y=±l). Generally, 

W1 does not vanish at the four corners, except in the cases where the neighbouring 

two sides of free edge are both supported. For this reason W1 takes a different form 

that in Eq. (5) and the solution obtained differs somewhat from that of Eq. (15). 
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It is easy to get the solution for the plate of which three edges· are supported 

and one edge free. The authors obtained the result which shows the deflection at the 

midpoint of 0.01290 pa4 /D, while S. Timoshenko has shown the result of 0.01298 pa4 /D. 
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