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In this paper, the authors calculated the deflections of laterally loaded square
plates under various edge conditions. The authors treated the problem assuming the
plate is clamped or supported at the edges and deriving a fundamental solution
suitable to any boundary condition, determined the coefficients included in the solution

by the various boundary conditions.

1. Fundamental Equation and Its Solution

For the sake of simplicity, it is assumed that the distributed pressure p is
uniform and the boundaries of plate are x=+41, y==+1. It is easy to extend the
solution to that of rectangular plate and it also can to lead into solutions of any other
form of load distribution.

The deflection w of the plate which is loaded>with uniform pressure p must
satisfy the following fundamental differential equation

414110 —_—p/D, (1>
where . 1/D = 12(m? —1)/m2Eh3
. 62 82
4y = W+W ,

m is Poisson’s number, E the modulus of elasticity, and /% the thickness of the plate.
Putting it as
diw =W, (2)
"Eq. (1) becomes
4HW=p/D. (3D

This is Poisson’s partial differential equation. Assigning W; to the particular solution
and W, to the general solution of 4, W=0, then we may put

W= Wy+W,. (4)
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The particular solution W; is easily obtained by
Wy = p(a2+y2—2)/4D. (5)

It is convenient to choose the form in which the particular solution is zero at the
four points r=+1, y=+1.
The boundary values of W, are supposed to be as follows;

W2]z=l = G(.y) ’
W2l:u=—1 = G’(J’) ’

Waly=1 = H(®), 6
Waly=—1 = H'(x) .
As W, satisfies the equation
H W2 =0, 7>
the solution is obtained as
w AnsinhZ (1 +%) + A4’ sinh =1 — %)
Wa =3 2 2 sin T (1 +5)
n=1 sinh nr 2
.. Basinh ’12’—’(1 +9)+Ba! sinh’—’z’—’u -
+,§1 sinh nz Sin-f(l +2), (8)

where
1

=]_ G0 sin'gF U +y)dy’,

|
;

fi

G'(y") sin (1 +3")dy’

1

R} ®
. R

S H(x") sin 7(1 +x")dx’,

-1

An
A"I .
Bx

I

1
B, = S 1H’(Jc’) sin 7121(1 +xdx’ .

Using Egs. (2), (4), (5) and (8),
w = p(x2+y2—2)/4D

A sinh & (1 +x) + Ay sinh ™ (1 1)
+3 2 2 sin 2 (1+y)
=l sinh nr _ 2
_ Businh 5‘2’1 (1+9) + By’ sinh ”7" a-»
3 . .
+ Anz-’l Sinh nn sin 2 Q +x). (10)

Denoting the particular solution of Eq. (10) by w; and the general solution of
4w=0 by w,, then we may put

w=w+w,.. an
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We can choose the particular solution w; as

= pL(x*+y*) —6(x2+»2)+10]/48D

= 2 An »n
+ %_.1 oL m [(1 +x) 5 T cosh (1 +x)? —sinh (1 +x) sin (1-+3) ‘22
+ }Z‘ 2 [(1 x) " cosh - x) T _sinh A-x) —] sin (1+y) ne
= (nm)2 smh nr 2 2 2 2
S 2 Ba [ nr n ] nn
+ n>;‘1 (nz)? s—inh o a +y) 5 T cosh a +y) 2 sinh (1 +y) 5 sin (1 +x) >
+ Z‘ \ (nre)? Sinh 7im - y) o T cosh (1— y) 2 sinh (1 —») 5 sin(1 +x) 2 12)

Let the boundary values of wg; be as follows;

w2le=1 =g(»),
W2la=m1=g"(3),
walye1 = h(x),
waly=—1 = K (x).

13)

The solution wz has the same form as Eq. (8). However, the constants Ag, Aa’, Ba
and By’ are replaceable by au, an’, bu and b,” as:

an = g s Ty,
11 4] sm—(1+y’)dy ,
(19

1

! {x" sin 2% (1 +x7)dx' .
-1

<=
Sl h(x") sin nzlt(1+x’)dx’,
=

Substituting w; and ws into Eq. (11), we obtain the solution of w by

w = pL(x*+y*)—6(x2+y2)+10]/48D

+ l_, G@Sl—ﬂﬁf [(1 +x) T cosh a +x)~—smh ¢! +x) > ] sin (1 +y>mr
5 2 ;
+ % Wsmh powe [(1 x) T cosh (1— x) 5 T _sinh (1— x) ]sm a +y)%r

+ 2

(mf)z smh pove [(1 +y) 3 " cosh a +y)§ —sinh (1 +y) 5 ] sin (1 +x) 2

+ n>-"1 (nm)? sinh nre

oo

[(1 -5 ’%’ cosh (1-3) ’12’5 —shin (1) ’-425] sin (1+7) ?‘2’5

”=1m [a,. sinh (1 +x) £+an’ sinh (1—-x)+% ] sin (1+y) 2”

oo

+ 3]

=l smh nr

[bn sinh (1 +y) " 4 by’ sinh (1 — y) 2 ] sin (1 +x>%r . (15)
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The constants Ag, Aw’, Bn, B/, @n, @', by and b,” are determined by the boundary
conditions whether or not the plate is supported or clamped at four edges.

2. Boundary Conditions

In the case of supported edges, the deflection and the moment along the boundary
are both zero.

In the case of built-in, the deflection and the slope along the boundary are both
Zero.

Suppose that the boundary coincides with y=py,, then the boundary conditions
can be written as follows;

i) in case of simply supported edge,

(w)v-wo =0
(02, 1 0% {6
W+ﬁ5ﬁ)y=m =0,

i) in case of built-in edge,
(w>v=vo =0 )
(6w an
W)vsvo =0.

Plate may assume six kinds of edge conditions;
1. all four edges supported,
all four edges built-in,
three edges supported and one edge built-in,
two opposite edges supported and the other two edges built-in,

g wN

two neighbouring edges supported and the other two neighbouring edges
built-in, -

6. one edge supported and the others built-in.

The cases of 1~4 are solved by S. Timoshenko!? and as for the cases of 1~4
and 6 the solutions were obtained by calculation of finite differences equations?’

changed from differential equations.

3. Equations Representing Stresses
Placing z-axis in the direction of thickness of the plate and the origine at the
middle plane of the plate, we may write for the condition of ¢,=0

—mE ( 62w+62w) ’

% = (mE=1) “\"axz oy
- _—mE _(0*w 0%
AT (8x2 +m6y2) ’ a®
—mE 02w

= 1 “ox0y”
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On the surface of the plate z=%#/2, the following maximum stresses are found
rom g BB (0% 0%
T 2mr-1D\"oxz " 0y2 /)’

_ _mEh (,02_w maz_u’)
% = o(mE—1) \ox® " "oyE ) "

(19)

4. So]utidns for Various Edge Conditions

1. The case of all edges supported.
From the condition of symmetry, it will be

An'—_—An,:Bn:Bn,,

an = an’ = by = by’ .

(20)

By Eq. (15), it will consummate in

w = p[(x*+y?) —6(x%+y2) +10]/48D

+ 1?;‘1 ﬁ sirflT”mr[{(l _'_x)nz_n cosh (1 +x)%n—sinh a +x)%”
niodd
+( _x>’127f cosh (1 —x)%r—sinh a _x)%r} sin (1 +y)%”
+ {(1 +9)’; cosh (1+) 5 —sinh (1 +3) 5
+(1-» }127-1 cosh (1 ‘—y)%{ —sinh (1—3) ”ZE} sin (1+%) %7}]
St ot [{sinh Q42+ sinh (12"} sin (142"
n: odd

+ {sinh @ +2) " +sinh (1) 3’2’—’} sin (1+2) ’gf] . 21

When the edge is supported, condition (16) is replaced by

(w>v-vo =0,

(22)
(W)U=1lg =0.
Hence the values of G(y), H(x) that W, must satisfy along the boundary are

G(y) =G'(y) =p(A-y2)/4D,

Hx) = H'(x) = p(1—22)/4D . (23

Using Eq. (9), we get
Av={" B ayysin™ @ ydy
» —~14D 2

% (ni”)a(l —cosnm).

Because # is odd number, it becomes
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_ b 8
an=b o (24)

From these results, the boundary values of w;, namely, g(») and A(x) are determined
to be

gy = g’(y)
( 4—6y2+5)— X, Ay [nn cosh n#r —sinh nn'] sin (1 + y)
48D yt—6y2 (mr)z sinh nr 2 ’
, 71 odd (25>
h(x) =R (x) .

D (x4 6x2+5) — Z (ni)z Sllﬁl ped L cosh #r —sinh m-c] sin (1 +x) 2

n: odd

Operating the integrals of Eq. (14), we obtain

an = — % (nl—G)s (1 —cos nr) — 6127)5 Sl—:&% [mr cosh #r —sinh mr]
= f) (nl 35 (1 +nz cothur) . (26)

Table 1 gives the calculated values of A, and a,.

Table 1.

n ! 1 3 5 ' 7 9
A, (xp/D) 0258012 | 0009556 | 0.002064 | 0000752 | 0.000354
an(xp/D) | 0217154 | —0002243 | —0.000280 | —0.000072 | —0.000026

Next, by denoting wo for the deflection at x=0, y=0, we get

_492 4 _Aa [ _ ]
Wo=3: 7 + n=lm(n77)2 Sioh 7 LT cosh - —2 sinh - 5 sin %
n:o
o1 _4an nr
+ El Sinh in smh T sin )
n:odd
A SED o e]
“%p7" 2]1 A nr € oth 2 (un)? tan |- @D
n:odd COSh '2—

The following is obtained if the numerical values of A, and a, are substituted :

wo = 0.065946 p/D . (28)
Assuming that the side length of the square is ¢, we may express ¢ as

wo = 0.004060 pat/D . (29)

2. The case of all edges being built-in.
In this case the preceding Eqgs. (20) and (21) can be applied in their exact form,
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The deflection and slope along the boundary y=+1 become
w]ymiy = L (21 —622+5)
y=11 481)

+ [2;4“ (coth nn—l) +av.] sin (1 +2)7" 2 )

n=1
% :0dd
ow had 1 .
3 | yors = 6% - 21 " +’L2na,.(coth = nn)] sin (1 +x)n§n
ntodd
i A ( nwr 2 . mr) N dy . mr]
Al % R __ = e e
* n%'l [sinh nr cosh 2 nn sinh 2 +sinh nr sinh 2
n: d
had A, ] ., NT
y 1 —_—
+ L [smh po sinh ®® | x sinh 5 ¥
n: odd
Egs. (30) and (31) must be zero regardless of x.
If we put
24n (coth nw— —1-) +an = Ky,
nrw n

Eq. (30) becomes

wly-s1 = 48D(x4— 622 +5)+ Z‘, K, sin (1+x)

n odd

203

(30)

@D

(32

33

The values of A, and a, in Table 1 should satisfy Eq. (30), and consequently
they are supposed to satisfy Eq. (33) exactly. The relation between A, and a, can
be known by Eq. (32), where K, are determined by A, and 4, shown in Table 1.

Expanding hyperbolic functions into trigonometric series, we get

cosh ™ 5 = ~—/Io+5‘_,/1 cosl

z 2%
where
Ao = 2 sinh nr,
ni
2n(—1)
A= o 12% smh ne
and
xsinh 2y = lz r+312 ’cosl—ﬂx
2 270 T ah 27"
where

Ao’ ==h—3— ncoshnn——% smhmr]

4
ll, = m[ﬂ cosh nr — W‘ sinh mr]( 1)1 .

To simplify the formulae, we put

(34

(35
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sinh %EA,. = A4,,

(36)
nr sinh 2% ay = Oy .
2
Egs. (32) and (31) can be rewritten using A, and @, as follows;
2A7.
o coth mr—h- /smh ot /nm smh 5 = Ka, 3D
ow b, & [ A, T ( 1 )] =1 gy
s =24 Z‘ —+ coth nr —— (-1 2 cos 52
0y ly=+1 6D =il h— ZSinhnz—” sinh nr 2
> 2) 2n { (-1 In }]
+ 2 [{A,.(coth +an} 2 24 RV cos T x
n: odd
> 5 As[galcothm—2)
+ 2 71:A 2,2 \1t coth nm ——
n: odd
G ey <8 57
+ L n+ fry\neothmm— gy ) cos o 2 38

Taking terms up to #=5, we set the constant term and each coefficient of

T - . .
Cos 5 % and cosmx terms at zero. The coefficients are. determined after some

numerical calculation and the results are shown in Table 2.

Table 2.

n 1 3 . 5
K,(xp/D) —0.104568 —0.000430 - 0.000034
Ay (X p/D) 0.45112 ~0.02908 0.00195
a, (x p/D) ~0.30142 0.00509 —0.00027

The deflection of plate at the midpoint is
=0.01992 p/D ‘ 39

and
wp = 0.00124 pa*/D . (40>

3. The case of three edges supported and one edge built-in.
Supposing the plate is built-in along the edge y=—1, we get

= (==
An= Ay’ = B, (41)
an = anl = b” .

If we use the values of A, and a, shown in Table 1, the conditions of w=0 and
of W=0 along =1, x=—1 and y=1 are satisfied. Further, it is necessary to satisfy
the zero condition of the deflection and the slope along y=—1, We have
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wly-_1 = ﬁ(x4—6x2+5)

+ 1§1 [25: (coth ”n—l) +ba’ ] sin (1 +2)7 2 , (42)
n odd
gTw —1 + 2" [ ’Er(b”, coth nz " sinh mr)] sin (1 +x) 2

+Z[ An ( thﬂr—g)+——mm" ]cosh@x

n: odd 2 cos h * nr osh n_rt 2
+ 2" [—" mr] x sinh ';—nx , (43)
nrod1 2 cosh 5
and putting
I ”_"_E) Nan ] nx
6D+,.“g[ mt( h2 mr+ ne COSth
n:odd 2 Cosh & 2 cosh =
2 2
+ [ ]x sinh %Ex , 44
ar ok 2 cosh ~E
R
Brn = By + 5 ba’ coth nr e (45)
we obtain
dw| e " cos ™% 46
3y v=_1—a+”§__,13..(—1) cos 7 . (46)
n: odd
To make the integral
1 Qﬂ) ]z _
So[(ay Y=-1 dz=1 (47)

minimum, I is differentiated by 8, and put equal to zero, the following is obtained
n-1 nw
Bu=2(—1)" Sacosfxdx. (48)

Thus one relation between B, and by’ is obtained by Eq. (45).
On the other hand, another relation between B’ and b,/ is obtained from Eq.
(42) as

ZBn
nr

(coth nm— £—> +by' = Ka, | (49)

here the values of K, are shown in Table 2. As far as By’ and b,” are bounded by
Eq. (49), the condition of w=0 along y=—1 is satisfied.
The values obtained from Egs. (48) and (49) are shown in Table 3,
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Table 3.
n 1 3
Br(X p/D) 0.055248 0.000636
An(x /D) 0,258012 0.009556
a,(xp/D) - -~ 0217154 - 0.002243
B, (xp/D) 0.611555 0.039472
b, (x P[/D) -0.371110 -0.008116

The deflection at the centre becomes

wo = 0.044521 p/D , (50)
and

wo = 0.002783 pa*/D . (B

The deflection wo does not agree strictly with the maximum deflection ®,,,,. The
maximum deflection is found to occur near the point.x=0, y=0.184, and it is
calculated as

W = 0.04478 p/D ,

Winas = 0.00280 pat/D .

But w,,,, does not differ much from we. ®Wn., may be approximated with wo. This
fact is applicable in another unsymmetric case as far as they are square plate.

4. The case of two opposite edges supported and the other two edges clamped.
Supposing the plate is supported along the edges x==+1 and clamped along the
edges y=-+1, we have
An':'An,, Bn=Bn,,

an'—"'an/, bn=bn,o

(62)

The values A, and a, in Table 1 are again utilized for this problem to make the
supporting condition along x= +1 satisfied.

Performing the calculation, we get the deflection and the slope along y=+1 as

Wy=ga1 = 48D == (x4 —6x2+5)
+ E [ (coth nw— -1—) +bn] sin (1 +x) (53)
n Odd
ow L [B +1y (cothmr-——1 )] sin (1+x)
09 |y=11 GD a2 sinh #n
n: odd .
> [ Aa ( 2" 2 b @) T dn_ Ginh 7T ]c03hn—7zx
=1 Lsinh cosh o —n 2 sinh nr 2 2
n: odd
f} [ A sinh @] xsinh 2= x LY
=) Lsinh nr 2 27

n: odd
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It is necessary that Eqs. (53) and (54) are always zero for any value of x. In
Eqs. (63) and (54), it suffices to eonsider the coefficients By and b,. for odd number
of n. Because the constant terms, x%, a2, cosh—x and xsinh —x are even func-
tions, sin (1 —\—x) 2 must be an even function or the coeﬁicxents must be zero if it
is an odd function. When # is an odd number, sin (1 +x) T is an even function and
if » is an even number, sin (1 +x) is an odd functlon Hence, from Egs. (563)
and (54),

2B"(coth mr—»l—) +ba =0,
ni nr
(55)
nr _ .
B, +?b,. (coth nm—h mr) =0, (n:even)
are obtéined. To satisfy the Eq. (55), the conditions
(Bn>n:even =0 ’ (56)
(bn>n:even =0
are necessary.
They are put, as before, as
gg"(coth nw— L) +bn = Ka, 6D
nr nre

where K, are the values shown in Table 2. Thus condition w=0 along y=+1 is
satisfied.

By putting « the same as in Eq. (44) and also as

TR = nr _
| B’ = Ba+ 5 b,.(coth nw— m) . (58)
Eq. (54) is reduced to
ow NIy net o onm
= ES v 1 n (— 2 —_, 59
By | yoss a+'f=_,lﬁ (-1 cos % (59)
n: odd
If we denote
1T 8w\ - ]2 o :
So[(ay)v=:tl dx=1, (60>
differentiate I’ by .’ and make these derivatives zero as
or

Bn’ can be determined which are the most suitable values for satisfying the zero
condition of the slope along the boundary.
Calculating Eq. (61), we have

n—1
W = 2 —1)2—S o cos T xd. (62)
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This is the same as the preceding Eq. (48).

Using these results, the constants 8s’, B, and b, are found as shown in Table 4.

Table 4.
n 1 \ 3
By (x /D) 0.055248 0.001272
An(Xp/D) 0.258012 0.009556
a,(x p/D) -0.217154 -0.002243
Bu.(xp/D) 0.554438 0.023384
b (% p/D) —0.846502 —0.004866
J

The deflection at x=0, y=0 becomes :

we = 0.030537 p/D, ) (63)
and also

wo = 0.001909 pa*/D. LY

5. The case of two neighbouring edges supported and the other two neighbouring
edges built-in. ‘
The plate supported along the edges x=1 and y=1 and clamped along the edges
x=—1 and y=—1 is considered.
The relations
Ap = Bn, Ax' =B, (65)
ap = by , an’ = b,
are brought about as in cases (3) and (4).
By applying the values A, and a, shown in Table 1, the boundary conditions in
which both the deflection and the moment are zero along the edges ¥=1, y=1, are
satisfied.

Calculating the value of the deflection and the slope along the edge x=—1, we have

w|z=—l y2+5)

48D (ot~

+ Z, [ZA” (coth mr—L) +an ] sin (1 +y)2F 2 , (66)

ol =+ a5l )
%y 6D+ %,1 An +§ coth nr-ay _smhmr sin (1 +y) 2

n /
+ E Ar( 1) [{(an+an’) 2(An+Au7) >$ snh@+A——”+A"— coshn—n] cosh%’—ry

a=1 2 sinh n (nm)? 2 nrw 2
-2 ;”;fnhl,,)n [{(a,. ~an/)— 2————(‘4(’;;)2” )} cosh 5"+ An— Ay’ ~ ;1"' sinh ?’zf] sinh %
R o
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The deflection and the slope along x= —1 must be zero regardless of y.
If we put

24,7 1
7;' (coth mt—’E) +an’ = K, (68)

and adopt the values K,, shown in Table 2, the deflection along x=—1 becomes zero.
When # is even number, A,, and 4, in Table 2 are zero hence K, are zero.

Expressing @,” by A, according to Eq. (68) and substituting a,’ into Eq. (67),
we obtain Eq. (67) containing unknown A,’ series.

0
we determine the constants A,/ and a,’. Table 5 shows these results.

1 2 :
Making minimum the integral Ow dx and taking some approximation,
ax z=—1

Table 5.
n 1 I 2 3
A, (X p/D) 0.258012 0.0000 0.009556
a,(x p/D) -0.217154 0.0000 —-0.002243
B,(x p/D) 0.52309 0.0438 0.005
b, (x p/D) —-0.33282 0.0117 -0.001

The deflection wo becomes as follows;

wo = 0.03408 p/D (69)
and '

wo = 0.00213 pat/D . (70)

6. The case of one edge supported and the other three edges built-in.

Suppose the plate is supported along one edge x=1. The values A, and a, shown
in Table 1 are adopted. Then the condition that the plate is supported along x=1 is
naturally satisfied. Then a consideration must be given about A, and @’ where »
is an odd number, and B,(=B,") and b,(=b,’) where n takes both odd and even
number.

The necessary conditions are as follows ;

w|w=-—1 =0, (71>
Wly-x1 =0, (72
ow _
a—x A =0 ’ (73>
ow _
By lyoss 0. )

As for the conditions (71) and (72), it is sufficient if A," and a,’, B, and b, are
combined with the next relations;
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24, 1 B
o (coth mt—n—n_) +a," = K, (75
280 coth n— L) b by = K. (76)

Next, the conditions (73) and (74) must be considered. Here the forms are written

g-i’ p_—t ~&p* ,.% [ *2 ("”' coth nr— mr)] sin (1+)5
n: odd )
- 5 [aamam{oosh 7 s sinn ) it sion ] cosn 'y
- j‘ [Suﬁ—msmh z]y sinhnz-”y, an
37“) vmt1 %+ ni:} [B"+nTb"(COth " Sinh mr)] sin (1+) "2_71'
- '..:‘} fﬁrg;l—m[{(an +a,’) —2—(14(';;;21 ",)} sinh ”2”4_i4_nni;:_4£ cosh ’;——”] cosh%rx
* ,.% 2 sinh nr smh nr [{(a,,——a,.’) _2<A('1‘1;)1;1”,)} co hnzn = nn:A” sinh 2 ] sinh 712_71’x
gi [(A,, —A,") cosh %r] z cosh %’—Tx
: odd
_ :1 5 Smh 5 i | (An-+ Ad”) sinh ”2—"] xsinh 5 x . (78)

n: odd
Ay, ay’, By and b, are ﬁumerically determined so as to sufficiently satisfy the

conditions (77) and (78). The results of the calculation are

Ay =050097 xp/D,
@y’ = —0.32337xp/D,

79
By =0.45492 xp/D, (79)
b =0.30308 xp/D.
From Table 1, we have
A1=0.258012 xp/D,
1 b/ (80)
= —0.217154x p/D .
Using the values (79) and (80), the deﬁection at midpoint is calculated as
wo = 0.02515 p/D 38D

and
wo = 0.00157 pat/D (82)
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5. Conclusions

The authors calculated the deflections of plates under various edge - conditions
subported and clamped. In Table 6, the results obtained are presented, together
with the results calculated by S. Timoshenko!”> and by one of the authors, who

calculated after rewriting to the form of finite differences equations??,

Table 6.
Boundary wo(X pat/D)
comtvion | golved 2| lvedby | wiyed olacing b ok
IDI 0.004060 0.00406 0.00391
ﬁ 0.00124 0.00126 0.00126
|D| 0.002783 0.00278 0.00258
Igl 0.001909 0.00191 0.00182
@l 0.00213 — L
égl 0.00157 : — 0.00149

1 represents edge supported,

4 represents edge clamped.

Thus the authors make clear deflections under various edge conditions. Regarding
the last case, quite a rough approximation is used but it is not likely that there is a
large difference from the strict solution.

In this paper, the calculations are made for the simple case, where the plate has
a square form and is loaded by uniform pressure. It is easy to extend the solution
to the case of rectangular plate and it may be also applicable to the plate loaded not
uniformly. The solution for the plate under sinusoidal load or the plate loaded in the
form of a triangular prism can be reduced without difficulty.

The solution for the plate with freé edges is excluded in this paper, the above
solutions obtained however may be extended to other cases. In this case some
suitable terms must be added to the right hand side of Eq. (5) so that the particular
solution W; becomes zero at the four corners of plate (x==1, y==+1). Generally,
W, does not vanish at the four corners, except in the cases where the neighbouring
two sides of free edge are both supported. For this reason W, takes a different form
that in Eq. (5) and the solution obtained differs somewhat from that of Eq. (15).
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It is easy to get the solution for the plate of which three edges are supported
and one edge free., The authors obtained the result which shows the deflection at the
midpoint of 0.01290 pat/D, while S. Timoshenko has shown the result of 0.01298 pa*/D.
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