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I. Introduction 

Engineering materials generally possess different dynamical properties from that 

of perfect elastic bodies or ideal viscous fluids. In the case of perfect elastic body, 

the stress becomes invariable when the strain is applied on it, and in the case of 

ideal viscous fluid, it also becomes invariable when the rate of shear is given. The 

perfect elastic body follows the Hooke's law in the small deformation ; and the ideal 

viscous fluid behaves as a simple Newtonian liquid. While many solids and liquids 

function respectively as purely elastic bodies and as the idealized Newtonian liquids, 

there are many materials that 

have dynamic properties which 

are inexplicable unless these 

two attributes are simul

taneously considered. These 

materials are called the visco

elastic bodies, and the theory 

of visco-elasticity has been 

developed on the assumption 

that the dynamical behaviours 

can be expressed by the be

haviours of the dynamic models 

shown in figs. 1 and 2. In this 

theory the time element is 

explicitly introduced in the 
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Fig. 1. 
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Fig. 2 (a) 

• • 

Fig. 2 (b) 

stress-strain relation by an excellent means. However, there exist many a phenomena 

in various materials which can not be explained by this linear visco-elastic theory. 
To develope the theory explicable of these phenomena, therefore, is an important 
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problem of the day. 

Many materials Possess hysteresis effect and the treatment of this quality is 

conducted quite indistinctly. For example, this effect is contended to be explicable 

by the theory of linear visco·elasticity, or it has merely been stated that the effect 

i::: simply a phenomenon when the stress·strain curves are drawn. The authors wish 

to point out the fact that it is necessary to consider pure hysteresis effect caused by 

the internal solid friction mechanism together with the hysteresis effect produced by 

visco-elasticity, and proposed a new fundamental equation and a model thereof1>. 
For example, the dynamic modulus or dynamic internal friction of a vulcanized rubber 

containing carbon black depends not only upon the frequency but also on the ampli

tude and, moreover, this amplitude dependency is remarkable when the amplitude is 

small. The frequency dependency is explained by the visco•elastic theory, but the 

amplitude dependency can only be explained by our theory. In this paper, the authors 

intend to further generalize the theory and present a general view of it. 

II. Deduction of the fundumental equation of the strain relaxation type. 

We consider the dynamical 

behaviours of the non-linear visco

elastic body of a unit cube under 

a condition in which the dynamic 

behaviours are represented by the 

model shown in fig. 3. The 

mechanisms designated by E and 

'1J are the springs and the dashpots 

respectively, and the mechanisms 

designated by Su s2 , •• ; , Sm are 

the solid friction mechanisms each 

of which begins to slip when the 

stress reaches the points of s1 , s2 , 

... , Sm, respectively. n, elements, 

of which the slipping stresses are 

equal to s,, comprise the ith group. 

We assume that the groups are 

arranged as follows : 

and we scrutinize the jth element 

of ith group. e,1 , which is the 

strain of this element, is given as 

ltlt I :EB group : 

~rn 
. 

mth j s,CTJ 
9roup : ~cp 

Fig 3 (a) 

J),. f., 

V,.; P..n 

Lil, 
group I 

s,GJ. [, £., ~rn fo . . 

• • 
• 

m th l i[]9 E.,, 
group : 

ll.e9E,.n,., 
Fig. 3 (b) 
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for a< St 

for a> s, (2) 

However, these relations hold true only when the stress is applied by a non-decreasing 

function of t, i.e. da/dt > 0. In the case a(t) is a non-increasing function and we put 

a'= -a and e' = -e, the (2) relation is obtained between a' and e',3 • Further, when 

the stress is given by an arbitrary function of t, the relation (2) is applicable until 

the sign of da/dt makes initial change. Integrating (2), we have 

where 

for 

for 

a(t) < St 

a(t) > s, (3) 

(4) 

and t, is the time that satisfies a(t,) = s, (i.e. t, = a-1(s,)). v,3 is the reciprocal of 

the retardation time which characterizes the deformation process of this element. 

"' Since the number of elements is equal to ~ n,, the number of v,/s is also equal 
t-1 

to ~ n, . It is possible to have the same retardation mechanism existing among these 

different groups and, by reducing these, we assume that there are n kinds of retar

dation times of different values. (Such a value of n, of course, satisfies the relation 

of max n, < n S ~ n, .) Now we denote these v,/s of n kindes as v1 , J/2 , ••• , v,. 
t 

from the smallest value, consecutively, and assume that each group consists of n 

elements as shown in fig. 3(a). Though J/ti, v,2 , ••• , v,,., equal to any one of these 

v/s; v/s of the number (n-n,) do not have corresponding element among v,1 , v, 2 , 

... , v,,.,, therefore, {1,/s corresponding to these v/s of the number (n-n,) must be 

put as zero. Thus, we redefine {1,3 of the model with its arrangement adjusted deli

beratatively and formally as shown in fig. 3(a), then the total strain is given as 

follows; 

(5) 

where 

(6) 

Now putting 

( 7) 

and assuming 

n ~> oo , m -> oo , 

max Jv1 - 0, max Js,~>O, 
J t 
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the discontinuous system goes over to the continuous one, whose total strain is given 

by the following integral 

(8) 

where t(s) is the value satisfying s = a(t) (i.e. t(s) = a-1 (s) ). Equation (8) is 

the fundamental equation at the time stress is applied for the first time. In other 

words, it is a fundamental equation in the virgin stage. 

We now consider the case in which, after the stress increases up to a0 as an 

arbitrary non-decreasing function of t, it is kept at constant a0 for a sufficiently long 

time to allow the after effect to disappear (an infinite duration is idealistic) and then 

the stress decreases as an arbitrary non-increasing function. Putting 

ao-a=a', 

where e0 is the strain at the time the decrease commences, we have the following 

corresponding to the equation (2) : 

for 

for 
(9) 

Since the above is possible, consequently we have the following corresponding to 

the equation (8) : 

~
,/;2 ~00 ~t e'(f)= ds F(v,s)d11 e-vct-T>{a'(t)-2s}d-r, 
0 O t(g) 

(10),. 

where 

Eq. (10),. consummates only in the interval 0~a'<2a0 (i.e. lal<laol). Out side 

of this interval, eq. (8) prevails. 

Even when the sign of loading velocity da / dt 

changes after several repetitions of loading and 

unloading, eq. (10),. is established for the new co

ordinate, shown in fig. 4, if the stress is kept at 

constance for sufficiently long period. However, 

it holds true only under the condition that the 

absolute value of the stress, measured from the 

initial origin, is less than the maximum absolute 

value of the stress ever imposed, and when the 

former exceeds the latter, eq. (8) applies. Eq. (10),. 

is the fundamental equation showing the dynamical 

properties of this model in the non-virgin state. 

O' 

Fig. 4. 
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Permuting the order of integration, we have 

where the symbol ' is omitted ; and T is the value satisfying 

Putting 

for 

for 

a(t) = 0, 

a(t) > 0. 

F(l/.l., s)/.l. = F1 ()., s), 

and changing the order of integration, we have 

~

co ~0-/2 ~c 1 _c-T e(t) = d.l. F 1 ()., s)ds -,e T{a('!')-2s}d'!' 
0 0 C(s) A 

Eqs. (lO)b and (10). may also be used as the fundamental equations. 

III. Reduction of the fundamental equation 

(A) In the case in which the distribution function takes the special form of 

eq. (lO)b is written 

which is the fundamental 

formula representing the 

mechanical behaviour of 

the linear visco-elastic 

body, of which an analo

gous model is indicated in 

fig. 1. If F(v, s) does not 

have such an ideal form 

but distributes only in the 

neighbourhood of the very 

small value of s as shown 

in fig. 5, its dynamical 

behaviour, as a matter of 

course, resembles approxi -

mately that of the linear 

visco-elastic body. 

s 
Fig. 5. 

(11) 

(12) 

(10). 

(a) 

(13) 
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(B) In the case 

1imr
8
F(11, s)dv =f(s), [ a~oJo 

for 11 > ;J F(v, s) = 0, J 
the eq. (lO)a becomes 

irT/2 ~t e(t) = f(s)ds {a(-r)-2s}d-r. 
o t(s) 

Changing the order of integration, we get 

rt rrT(T)/2 
e(t) = J2'd-rJ

0 
f(s){a(-r)-2s}ds. 

Differentiating the above, we have 

d f"h d;= Jo f(s){a(t)-2s}ds. 

Eqs. (14) are the fundamental formula representing the mechanical 

behaviour given by the model shown in fig. 6, and when a is the 

shearing stress and e is the shearing strain, it is suitable to apply it 

as the fundamental equations expressing the dynamical behaviour of 

the non-Newtonian liquids. From eq. (14) we obtain l/71 as follows: 

(15) 

That is, the slope of the flow curve is the function of the stress, and 

we know it gives non-Newtonian viscosity. Since 

d irr12 s 
d-(l/71) = f(s)22 ds >- 0, 

(1 0 (1 

the flow curve is always concave upwards. 

(C) In the case 

limr
8
F1(A, s)dA = <p(s), l HoJo 

for ;>rJ F 1 (A,s)=O,] 

If a(t) is continuous, eq. (10) 0 is written as follows: 

r""'2 
e(t) = Jo <p(s){a(t)-2s}ds. 

(16) 

(c) 

(17) 

This is the fundamental equation expressing the dynamical behaviour 

of the model shown in fig. 7, which the authors proposed at the 

outset. 1> In the body whose behaviour is represented by this equation, 

the after effect does not exist at all and only the pure hysteresis 

characteristic appears; i.e. if the stress is given, the strain is deter-

(b) 

(14)a 

• • • 

(14). 

0 
Fig. 6. 

• 
• 
• 

0 
Fig. 7. 
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mined independently of the time. But the strain varies according to the sign of da/dt. 

(D) In the case F(11, s) has the distribution only on a certain curve, which, for 

convenience's sake, we denote as 11 = 11(s), is lying on the 11-s plane and, further, this 

distribution is given by a-function as in the case mentioned above, it becomes the 

equation which is given as the general fundamental equation 1> previously proposed 

by the authors. 

(E) in the case the distribution function is given by: 

F1 ().,s)=O, 

we obtain 

which is the fundamental equation for ideal elastic bodies. 

(F) Placing the distribution function as : 

lim f ~ dvf 8 F(11, s)ds = 1/1/, ,HoJo Jo 
B ... o 

for 11 > A or s > a ; F(11, s) = O, 

we obtain 

1 ~t i;=- a(r)dr, 
1/ 0 

and by differentiating, 

which is the fundamental equation for ideal viscous fluids. 

As explained above, 

(d) 

(18) 

(e) 

(19) 

(19) 

Linear Viscc-elo.stici6, 
the various cases, which Newlon,"a.n Vi.Scosily \ ., "'-

have been hitherto -..,"""'"""""""""""'"""""""'"""'""""-" .,_,.._... ""-..,.......,....,......, ..... _.?\ 

treate_ d, are reduced as "--- -y · __ ,, -· · t · ·• t 
~ the special cases of the 

generalized equations 

(10). Summarizing the 

the above discussions in 

a diagram, we have 

fig. 8. The illustration 

shows that if F(11, s) or 

F 1 ()., s) distributes only 

at the point or on the 

s 
No11-Hewt011i<U1. 

~rco1itf 

No11-Linea.r 

Wsco-eliut.ci~ 

Fig. 8. 
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line indicated by a circle or a hutching, respectively, the behaviour of the material takes 

the respective characteristics which are indicated by the arrows. 

In real materials, strictly speaking, their behaviours may follow the general 

equations (10) or more complicated equation ; however, there are many materials which 

suffice to consider to follow the reduced equation approximately or any of the combi

nations of them. For example, we know that the vulcanized rubber stocks containing 

carbon black may be handled as a combination of the characteristics of (E), (A) 

and (C). 

IV. Examples 

( i ) We shall consider the case in which the velocity of loading is constant. Since 

and 

for 

for 

a(-r) = 0, 
a(-r) = v-r, } 

t(s) = 2s/v, 

integrating eq. (10) under these condition, we obtain 

(20) 

(21) 

( ii ) We shall consider the case in which the load is kept at constant after the 

loading is applied at a constant rate. In this case, since the stress is given by : 

eq. (10) becomes 

for 

for 

for 

a(-r) = 0, 1 
a(-r) = vt, =a,, J 
a(-r) = v-r, 

e = ~:112
ds[F1 (},s){Ca,-2s)-v}(1-e_c,:¥-)}a; 

+ ~:112 
(a, --2s)ds [ F 1 ()., s)( 1-e- c:t')a;. (22) 

(iii) We shall consider the case of the creep test. For this case, we may.ce as 

follows in eq. (22), 

v ~ oo, t,-"" 0, vt,-"" a, (finite value) 

then, we obtain 

(23) 

Differentiating twice with respect to a, , we get 

(24) 
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When d2e/da/ is experimentally obtained, we can determine the distribution function 

by solving this integral equation. 

V. Deduction of the fundamental equation of the stress relaxation type 

We have considered heretofore 

the fundamental eqation of the strain 

relaxation type and now we shall 

treat the model of the stress relax -

ation type shown in fig. 9. We 

assume 

S1 < S2 < · ·· <Sm, 

E' 

1st grou-p 

Fig. 9. 

and deal with the jth element of ith group at first. Putting the stress ~hared by this 

element as a,1 , we have 

for a,1 = E'e, 

de Eu _ 1 da,1 E'+E,1 1 
dt+-e - E'-dt + E' a,1--s,. 

7/jJ 7/IJ 7/IJ 
for (25) 

This equation, however, hold true only when the strain is given by non-decreasing 

function of t. Integrating (25), we obtain 

where 

for 

for (26) 

(27) 

and t, is the time satisfying a,1 = s,. µ,1 is the reciprocal of the relaxation time of 

this element. Since E' of each element is equal to the other E', we get the following 

by changing equation (26) 

for 
(28) 

for e>x, 
where 

(29) 

Rearranging the model formally as in the case of the strain relaxation type and re

defining µ1 and a,1 , the stress received by the model and the whole body is : 

(30) 

However, k is given by the following : 
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Putting 

(32) 

and letting this discontinuous system go over the continuous one, eq. (30) becomes 

(33) 

where E=mnE'. 

Eq. (33) is the fundamental equation representing dynamical behaviours of this 

model in the virgin state. In the case of non-virgin state the following equation holds: 

where 

Changing the order of integration, we get 

Or putting 

1/µ= IC, 

we have 

(34),. 

These equations are established when the same condition received by the strain in 

the case of the strain relaxation type satisfies the stress. 

Integrating eq. (34) by parts, using the condition e(t) t=tc,,, = 0, we obtain the 

following: 

(35) 

In the eq. (35), 1st and 2nd terms depend upon the present strain and the sign of 

de/dt only, but it has no relation to histor of the strain. In other words, they 

give the hysteretic characteristic. On the other hand, the 3rd term depends upon the 

history of the rate of strain (i.e. the history of the strain), and gives the non-linear 

visco-elasticity. If de/dt is equal to zero, the 3rd term becomes zero. Therefore, 1st 

and 2nd terms are the terms of pure hysteresis. The distribution function G(µ, x) 

is introduced into the 2nd and the 3rd term in the same form. Therefore, the fact that 

eq. (35) can be separated into the pure hysteresis and the visco-elasticity, essentially 
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differs from the fact that the fundamental equation of certain material (for example, 

rubber containing carbon black) is the combination of (13) and (17). 

VI. Reduction of the fundamental equation of the stress relaxation type 

(A) In the case the distribution function is 

eq. (34) becomes 

lim1aG(tl, x)dx = 1JI(µ)' I; 
a+oJ o \ 

for x>a G(µ,x)=O, 

(f) 

(36) 

which is the fundamental equation of linear visco-elastic bodies and gives the be

haviour of the model shown in fig. 2(b). 

(B) If following relations are satisfied, 

(g) 

integrating by parts, we obtain 

a= 1Jlo(µ)dµ e-"(t-T) __ d-r' 
~

co ~t de(-r) 
0 T d-r 

(37) 

which is the fundamental equation of linear visco-elastic bodies corresponding to the 

model shown in fig. l(a). E(-r) or G(-r) which is used usually as the distribution 

function of relaxation time is equal to 1J10 (l/-r)/-r2
• 

(C) In the case the distribution function is given by 

limfa 
a+oj

0
G1(K, x)di;; = ¢(x), 

for ,.>a G1(K,X) =O, 

and if e(-r) is continuous, we have 

r•12 
a= Ee-Jo ¢(x){e(t)-2x}dx, (38) 

which is the fundamental equation of the 

dynamic behaviour of the model shown in 

fig. 10 and if the strain is given, the stress 

is determined at once. However, it depends 

upon the sign of de/dt, that is, the eq. (38) 

gives the pure hysteretic characteristics. 

VII. Conclusion 

l 
J 

• • • 

Fig. 10. 

(h) 

The generalized fundamental equations above-mentioned are so complicated that 
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they may not be applicable except in simple problems. 

It is, however, very interesting that the characteristics, such as the pure elasticity, 

Newtonian viscosity, linear visco-elasticity, pure hysteresis and non-Newtonian viscosity 

which have actually been found hitherto in various materials, are led from these 

generalized fundamental equations as special cases. Also the various distribution 

functions brought forth in this paper will make it possible to treat quantitatively the 

non-linearity which has heretofore been treated only qualitatively. 

The authors treated the equations in correspondence with the respective models 

for the purpose of facility of understanding, but it is not always necessary, so long 

as the dynamic behaviour of a material follows the fundamental equation. There is 

no doubt that, unless the effect of the internal solid friction exists in the material 

even indirectly, the material may not follow the fundamental equation, and for the 

materials, for which fundamental equation can be recognized to be appropriate, the 

mechanisms causing the solid frictional process will somehow be found by microscopic 

investigations. 
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