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Synopsis 

The dynamic viscosity 'l'/ and the imaginary part of the complex dynamic 
compliance ]' of many high polymers measured' in frequency ranges, which are 
remote from the region of the anomalous dispersion of the complex dynamic 
modulus, conform to the following equations, respecitively: 

and 

_!_. _!__ ('l'/-'l'/2-'l'/a)+('l'/-'l'/3)=0, 'i'i w2 

1 . 1 . 'l'/2 ( 1 .,., )+( 1 _ .,.,2.,.,a )-o 
"] w 2 'l'/2+'1'/a f'w - 3 J'w 'l'/2+'1'/a ' 

where, '112 , .,.,3 and 'T2 are constants, and "'is angular frequency. The first equation 
is the one used by Lyons, which is a modified form of the one used by Tobolsky 
and Eyring. Both the internal timescales, 'T2 in these equations, depend solely 
upon the experimental timescaie and are independent of the nature of materials 
to be tested and of the environmental conditions. The values of 'T2 obtained from 
the data in the frequency range of the order of 10-102 cps are not of the order 
of second, as was. erroneously reported by the previous authors, but of 10-3 

second. The internal timescale of the order of seconds can only be obtained in 
much lower frequency range of 10-2-10- 1 cps. Thus, it seems very difficult to 
correlate the parameters of mechanical models simply with molecular mechanisms. 
Some characteristics of dynamic properties of high-polymeric materials are also 
discussed. Furthermore, in the appendix, the analysis of viscoelastic hysteresis 
loop obtainable from the Wakeham-type of apparatus is described. 

Introduction 

It has long been recognized that the representation of complex types of viscoelastic 

behavior manifested by high-polymeric materials requires the introduction of a 

multiplicity of internal timescales (relaxation time or retardation time). In order 

* Presented in part at the fourth annual meeting of the Chemical Society of Japan, Tokyo 
City, April 6-9 and at the First Rheology Symposium of the Society, Tokyo City, November 10-
11, 195~, and in conclusive form at the High-Polymer Symposium of the Kansai-Branch of the 
High-Polymer Society of Japan, Kyoto City, November 20-22, 1952. 
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to represent such materials, either the Maxwell or the Voigt model composed of a 

number of corresponding elements in parallel or in series is usually employed. When 

each model is subjected to a sinusoidal strain or stress, the dynamic properties 

would be given as follows: 

w2r2 
(la) E' == 2J E, 1 ! z , 

Maxwell model 
+w r, 

1 
7J == 2J 7/i 1 + w2ri ' (lb) 

\ 
]'-2]1 1 (2a) 

Voigt model 
- E; • 1 + w2r~ ' 

]" := 2J __!_. WT i ' (lb) E; l+w2 rl 

where E', 7J, ]' and J" are dynamic modulus, dynamic viscosity, the real and imagin­

ary part of the complex dynamic compliance, respectively. And E 1 , 7]; and r; 

denote partial modulus, viscosity and internal timescale of i'th element, respectively. 

Each element has a different value of internal timescale and hence manifests a 

different behavior for a particular experiment. 

In the case of the Maxwell model, for instance, the elements with much longer 

or shorter relaxation times than the timescale of experimental investigation show 

ideal elastic or pure viscous responses, whereas, the elements having relaxation times 

comparable with the experimental timescale exhibit viscoelastic characteristics. 

Consequently, the dynamic modulus is composed of contributions from ideally elastic 

and viscoelastic elements, while the dynamic viscosity is composed of those from 

O!Wi l!!!M E, 

"-" ·-----' _____ ,-----1 ~ 

( ' ) 
E, 

Mode I B 

Model A 

Fig. 1. Condensed mechanical models of the 
Maxwell and the Voigt types. 

viscoelastic and purely viscous 

ones. Thus, it is probable that 

the dynamic properties can well 

be represented by simpler types 

of mechanical models even when 

one considers infinite distribution 

of internal timescales. These 

simple models are of the 

Maxwell and the Voigt types. 

Both of these are · composed of 

three units, the first and third of 

which degenerate, respectively, 

into a spring and a dashpot 

representing a number of elastic 
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and viscous responses, while the second comprises a spring coupled with a dashpot 

representing a number of visc:)elastic responses (Fig. 1 A and B). For such· a 

Maxwell model, the dynamic modulus E' and viscosity 'fJ are given by the following 

equations: 

(3a) 

and 

(3b) 

The latter can be transformed into the following form in 1/ w 2 and 'fJ : 

( 4) 

Eq. (3b) was discussed by Tobolsky and Eyring1
) while Eq. (4) was used by Lyons2 ) 

to analyze dynamic-property data obtained in the frequency range of the order of 

10-102 cps. According to these authors, -r2 is the relaxation time corresponding to 

the secondary-bond processes. Tobolsky and Eyring postulated that -r2 is of the order 

of seconds. It has been found, however, as will be shown below, that -r2 has a 

certain average relaxation time of a number of. mechanisms which manifest viscoela­

stic responses. Thus, the value of -r 2 depends merely on the timescale of a particular 

experiment and is independent of the nature of materials to be tested and of the 

environmental conditions such as temperature and humidity. The values of -r2 

obtainable from data in the frequency range of the order of 10-102 cps are not of 

the order of seconds2
) but of 10-3 second, and it seems very difficult to correlate the 

parameters of mechanical models simply with molecular mechanisms. 

The present paper is to verify this new concept of relaxation time by analyz­

ing dynamic-property data of many different solid high polymers obtained from 

experiments of long and short timescales. Some common characteristics of dynamic 

properties of high-polymeric materials are also described. 

Short Timescale Experiments 

In the previous paper 3
\ dynamic moduli of elasticity and dynamic viscosities of 

several high polymers such as viscose monofils, polycaprolactam film and polyvinyl 

chloride films were measured in a frequency range of 20-200 cps at around 20-25°C 

1) A. Tobolsky, and H. Eyring, J. Chem. Phys., 11, 125-34 (1943). 
2) W. J. Lyons, J. Appl. Phys., 21, 520-2 (1950). In private communication with Dr. W. J. Lyons 

it was agreed on that the value for .,.2 in his article should have been 2.94· 10-3 second 
instead of 9.3 seconds. 

3) M. Horio, S. Onogi, C. Nakayama, and K. Yamamoto, J. Appl. Phys., 22, 966-70 (1951). 
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except as noted in Table I and II by employing the vibrating reed method'\ and 

viscoelastic properties of these materials were discussed from various points of view. 

Using these data, the dynamic viscosities have been analyzed by means of the graphic 

method of Lyons to obtain the. values of the constants 'f/ 2 , 'f/a and '!'2 in Eq. (4). It 

has been found that, in all the cases studied, the "f) vs. 1/ w2 plot and the "f) vs. 1/ w 

plot could well be represented by a hyperbola and a cubic, respectively, as required 

by Eq. ( 4) ; and, in particular, the latter was practically represented by a straight 

line as pointed out by Lyoil65l, Several examples are reproduced in Figs. 2-5. The 

results of calculations are listed in Table I, together with those of Lyons (See the 

column "Model A"). 

A fact worth noting is that the values of '!'2 for all these specimens are not of 

the order of seconds but of 10-a second, and are almost equal for all specimens 

noticeably differing in their nature, though they are apt to become smaller with the 

elevation of the frequency range of the experiments. Furthermore, it is seen from 

the table that the values of r 2 are also independent of the temperatures at which 

the dynamic measurements were performed, as is shown in the case of vulcanized 

rubber, though the other characteristics such as 'f/ 2 and 'f/ 3 vary remarkably with 

temperature. 

The values under the heading "Wm'1'2 " are the products of r 2 and the arithme­

tical mean of angular frequencies at both the limits of the experimental range, Wm. 

They might be regarded as almost constant in all cases if one makes allowances for 

the precision of the experiments and for great differences in the values of Wm. 

Now, in the case of Model B in Fig. 1, we have the following equation similar 

to Eq. (4): 

( 5) 

where, "f) 2 , 'f/ 3 and r 2 are constants. This equation will represent experimental results 

as satisfactorily as Eq. (4) did for Model A. The above three constants evaluated 

by means of the same graphical method are summarized in Table I (See the column 

"Model B "). The values of '1'2 thus obtained are also of the order of 10-a second 

and have almost the same special features as in the previous case. Although the claim 

of constancy for the values of products Wm'!' 2 is not so valid as before, the differences 

in these values are exceedingly small as compared with those of the values of Wm. 

In the treatments of the foregoing authors (Model A), wr 3 was neglected after 

considering that it was much smaller than unity, while in the case of Model B just 
• 

4) M. Horio, and S. Onogi, J. Appl. Phys., 22, 977-81 (1951). 
5) W. J. Lyons, loc. cit. 
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Table I. Parameters for Model A and B. 

Average MODEL A MODEL B 

Specimen Frequency angular 
range, frequency, 7/2, 

I 
7/3, 

I 
'T2, 

I 
½, 

I 
7/3, 

I 
'T2, 

I cps "'m poises poises second "'m'T'2 poises poises second Wm'T2 

i 
SHORT TIMESCALE EXPERIMENTS 

Viscose monofil (O.F. 0.69) 24.2-102 397 18.3-107 0.736-107 5.71·10-3 2.26 4.33-109 9.67-109 1.12-10- 3 0.684 

Cellulose acetate film 23.2-161 579 15.0-106 0.881.106 4.76- H 2.76 0.345-109 3.89· 
,, 

0.892- N 0.516 

Po!ycaprolactam film 25.2-178 638 11.1-106 0.993.106 3.97· n 2.53 0.434·109 3.46-
,, 

0.776• n 0.495 

Polyvinyl chloride film (no 2.49 0.601·109 4.78· n 0.971. N 0.577 25.4-172 620 11.9-106 0.803-106 4.02· N 

plasticizer) 

Polyvinyl chloride film 34.0-155 594 21.2·106 l.43·106 4.00· n 2.38 1.23-108 6.34·108 1.24· n 0.735 (plasticizer 30%) 

: Vulcanized Hevea I 

30°c 22.5-132 486 30.7·103 3.64·103 4.80· 
,, 

2.33 0.616-105 20.2-105 1.52· N 0.737 

45°C 23.0-151 547 25.2· n 1.25· H 4.06- n 2.22 1.27-105 18.4· n 1.58· n 0.862 

i 60°C 24.0-188 666 6.83· N 0.610·' 3.52· 
,, 

2.34 1.20·105 14.8• N 1.26, H 0.842 

Nylon monofil about 1100 12.4-106 l.13·106 2.94-10-3* 3.23 
(By Lyons) 50-300 

Butyl rubber 30-500 1665 20.5-103 3.11-103 1,94.10-3 3.22 2.58-105 50.0·10 5 0.842·10-3 1.37 

(By Ivey, Mrowca, Guth) 3-105-5·106 1.665-107 359 63.2 1.65·10- 7 2.75 4.24-102 10.2-102 5.11·10-8 0.850 

: 
LONG TIMESCALE EXPERIMENTS . 

t 
Vulcanized Hevea 3.52-
string 15.9-10-2 0.612 16.6-106 1.41-106 3.72 2.28 1.26,107 9.86-107 1.16 0.707 

: 
I Plasticized polyvinyl 3.91- 1.32 12.9-107 0.622-107 2.21 2.93 3.38-107 25.4-107 0.758 1.00 
! chloride film 38.3-10-2 

I 

* The value reported by Lyons was 9.3 seconds. 
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mentioned it was assumed to be very much greater than unity and was also 

eliminated. In all these cases, equations which can be derived from Eqs. (lb) and 

(2b) without eliminating both -r 2 and -r 3 , and which include consequently four con­

stants r;2 , r; 3 , -r2 and -r3 , are not satisfied by the experimental results. In other 

words, no reasonable set of the above four constants as will satisfy the experimental 

results can be obtained by the graphical method. 

Considering all these results, it follows that the dynamic viscosity or imaginary 

part of complex dynamic compliance multiplied with w, measured in a rather narrow 

frequency range, can well be represented by a general equation 

( 6) 

or 

~ = C+ A(B-C) 
A+w2 

' 

(7) 

where ~ denotes the dynamic v:iscosity r; or the reciprocal of imaginary part of 

complex dynamic compliance multiplied by w, 1/ J"w. This will mean that ~ is 

composed of two terms, one of which is dependent and the other is not dependent 

upon frequency. Three constants A, B and C in these equations represent the 

following quantities, respectively : 

I Model A 

~ 7/ 

A lM 
B ¾+7/3 

C 7/3 

I Model B 

1/J"w 
7l2/Ti(¾+7/a) 

7/3 

¾7/3/(¾+7/a) 

As mentioned above, the fact that the 

products Wm-r 2 are almost constant for all 

specimens having quite different properties, 

and are also independent of the environ­

mental conditions, such as temperature, 

enables us to expect much shorter internal 

timescales from experimental data in higher frequency ranges. 

For example, the dynamic-property data on butyl rubber studied by Ivey, Mrowca 

and Guth6
) in a higher frequency range was analyzed in quite the same manner as 

before, and the results compared. Although the dynamic viscosities in a frequency 

range in which an anomalous dispersion of complex dynamic modulus (elastic 

dispersion) occurs, decrease gradually with frequency and do not obey Eq. (7), those 

determined in the frequency ranges of 30-500 cps and 3-50• 105 cps can well be 

treated as before. The results of calculation were also tabulated in Table I. As 

was expected, the higher the frequency range, the smaller the values of -r2 • But the 

products Wm'rz had almost the same values as in the former cases. 

6) D. G. Ivey, B. A. Mrowca, and E. Guth, J. Appl. Phys. 20, 486-92 (1949). 
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Long Timescale Experiments 

In the case of short timescale experiments described above, the internal timescale 

of the order of seconds was never encountered. If the constancy of the products 

Wm'rz is always established regardless of the magnitude of timescales of the experi­

mental investigations, internal timescales of the order of seconds might be expected 

Fig. 6. Schematic diagram of the 
apparatus. 

when the dynamic measurements were 

carried out over a frequency range of about 

10-1-10-2 cps. It is rather difficult, however, 

to obtain frequency dependence of dynamic 

· viscosities in such a lower frequency range 

because of the lack of a suitable apparatus. 

To effect these purposes, a new apparatus 

was constructed, and long timescale experi­

ments were performed. 

A schematic diagram of the apparatus 

is shown in Fig. 6. ·The sample (1) is 

suspended from one end of the rotatable 

lever (2) and counterbalanced with a cali­

brated spring (3) of suitable stiffness, 

which is extended from the other end of the lever to the adjustable arm (4). Tre 

lower end of the sample is subjected to a cyclic displacement of a given amplitude 

by means of a transmission assembly consisting of a variable speed motor, a set of 

speed reduction gears (not shown in the figure), an eccentric cam (5), and so on. 

The movements of both the ends of the sample are magnified to desirable extent and 

are recorded by the recording system. Thus, light beams from the sources (6) are 

reflected by two mirrors (7, 8), which can move up and down in response to the 

movements ·of both the ends of the sample, and after being condensed by a cylindrical 

lens (9) to spots, they are projected on a photographic paper mounted on the rotat­

ing drum (10). The frequency and amplitude of the mirrors could be varied over 

rather wide ranges. 

By means of this apparatus, the two traces of the displacements of the two ends . 
of the sample can be obtained as a function of time on the photographic paper. 

They have some phase difference from each other, which arises from a damping 

(or viscous) effect of the sample. The extension of the sample may be obtained 

from the difference between these two traces divided by the magnifications, and the 

upper trace on the photograghic paper gives the elongation of the spring, which can 

be converted to the stress in the sample as a function of time from the load-elongation 

relationship of the spring. By analyzing these two waves of the extension and the 
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stress, it is possible to determine the dynamic modulus of elasticity (Young's 

modulus) as well as mechanical loss factor, and hence, dynamic viscositr of the 

sample. (See Appendix.) 

Typical dynamic-viscosity data were treated in quite the same manner as in 

the short timescale experiments. The results of calculation are also included in 

Table I. As was expected, the internal timescales of the order of seconds were 

obtained in these studies, but there is not much change in the values of the products 

WmT'2 as compared with those obtained previously. 

Discussion 

The dynamic viscosity measured within the frequency range widely differing 

from that of the anomalous dispersion decreases rapidly with increasing frequency 

in such a manner that the product of the viscosity and the frequency is approximately 

constant, while in the region of the anomalous dispersion of the complex dynamic 

modulus (elastic dispersion) it decreases more slowly with increasing frequency. 

The viscosity of the first type may be adequately expressed by Eq. (7) finding 

suitable values for the parameters 112 , 1Ja and -r2 • The equation cannot be applied 

to the viscosity of the second type. 

The fact that the plots of the dynamic viscosity against 1/ w is practically linear 

reminds us of the box type distribution of relaxation (or retardation) times covering 

a considerably wide range, as described by Kuhn et al.7
) and Tobolsky et al.8

) In 

case the frequency range of experiments is much narrower compared with this distri­

bution range and is entirely involved in it, the viscosity becomes directly proportional 

to 1/w: 

( 4') 

where G0 is constant. In the region of the anomalous dispersion, however, the box 

type distribution is no. more available. Therefore, the relation expressed by Ex. (7) 

is clearly related to the simple (box) type distribution of internal timescales. 

The constancy of the product w,nr:2 can be verified from the fact that ~ vs. 1/w 

curve can be approximately replaced by a straight line passing through the origin*. 

For the cubic curve which conforms to Eq. (7) the angular frequency w and ~ at 

the point of inflection can be obtained by setting the second derivative of ~ with 

respect to 1/ w equal to zero : 

7) W. Kuhn, 0. Kiinzle, and A. Preissmann, Helv. Chim. Acta, 30, 307, 464, 839 (1947). 
8) A. V. Tobolsky, B. A. Dunnel, and R. D. Andrews, Textile Research J., 21, 404 (1951). 
* The author is much indebted to Dr. H. Fujita for his helpful discussion and suggestion. 

(8a) 
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1 ~; = - (B+3C). 
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(8b) 

When the tangent at this point passes through the origin, the following relation can 

be obtained between the values of the asymI_>tote, B, and the intercept, C : 

B=9C. ( 9) 

If the experimental values range from C to B on this tangent, ~, B and C would be 

given by the equations -

3 
~ = 8 (B-C)w;/w, (7') 

3 B = 8 (B-C)w;/w 1 , (10a) 

and 

3 C = 8 (B-C)w;/w2 • (10a) 

Then, we obtain 

W1 = w;/3, (lla) 

and 

w2 = 3w;. (llb) 

Hence, the arithmetical and geometrical means, Wma and Wmg, of w1 and w2 ·are, 

respectively, given as follows: 

5 5 ½ 
Wma = 3 W; = 3 ( 3A) , 

and 

Wmg = Wi = (3A)½. 

For Model A, therefore, we obtain 

WmaT'2 = 2.89, 

WmgT' 2 := 1.73, 

since A denotes 1/T"§ (See p. 50). And for Model B, we obtain 

WmaT'2 == 0.962, 

WmgT'2 == 0.577, 

(12a) 

(12b) 

since A denotes 71 2/T"i(n2 +r; 3 ), which is equal to C/BT"! or 1/9T"§ (See p. 50 and Eq. 

(7)). 

Because the arithmetical and geometrical means of the angular frequencies in 

our experiments are not necessarily in accordance with Wma and Wmg and the tangent 

at the point of inflection of the cubic does not always pass through the origin, the 
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values of Wm -r 2 in Table I and those of wm' -r 2 ( Wm' denotes geometrical mean of 
angular frequencies at both the limits of the experimental range) in Table II differ 

more or less from the values of Wma't'z and Wmg't'z which were deduced above. But 
the differences are not so great. 

Table II. The constancy of the product wm'-r2 for Model A and B. 

Specimen 

Viscose monofil (O.F. 0.69) 

Cellulose acetate film 

Polycaprolactam film 

Polyvinyl chloride film (no plasticizer) 

Polyvinyl chloride film (plasticizer 30%) 

Vulcanized Hevea 

30°c 

45°C 

60°C 

Nylon monofil (By Lyons) 

Butyl rubber (By Ivey, 

Mrowca, Guth) 

Vulcanized Hevea string 

Plasticized polyvinyl chloride film 

Geometrical mean 
of angular fre. 

• I quenc1es, wm , Model A / Model B 

SHORT TIMESCALE EXPERIMENTS 

312 1.78 0.537 
384 1.83 0.343 
421 1.67 0.327 
415 1.67 0.403 
456 1.82 0.565 

342 1.64 0.520 
370 1.50 0.585 
422 1.49 0.532 
770 2.06 

770 1.49 0.634 
7.70-106 1.27 0.393 

LONG TIMESCALE EXPERIMENTS 

0.470 1.75 0.545 

0.769 1.70 0.583 

As was often emphasized, one cannot obtain -r2 of the order of seconds from the 

data obtained in the frequency range of the order of 10-102 cps, as was erroneously 

pointed out by the previous authors, but from those measured in much lower range 

of 10-2-10-1 cps. Therefore, if the true values of the relaxation time for secondary­
bond processes were the order of seconds, the relaxation times obtained in our long 
timescale experiments might, indeed, correspond to this type of relaxation mechanism, 

while the relaxation times of much smaller values obtained by us in the short time­
scale experiments could not be assumed to be of such a type of relaxation, but to 
correspond to another type of relaxation mechanisms. But it is rather difficult to 
differentiate the responding mole~ular mechanisms only by such a difference in their 

internal timescales. Thus, it is very questionable to correlate the parameters of 
mechanical models simply with various molecular mechanisms. 

At any rate,_ it seems reasonable to consider that there exist in high polymers 
a number of mechanisms with different internal timescales. When such a material 

is subjected to a sinusoidal stress or strain of a particular angular frequency, both 
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the dynamic modulus and the viscosity are composed of the contributions from 

mechanisms having internal timescales comparable with the reciprocal of angular 

frequency, and from those having internal timescales far different from the reciprocal 

of the angular frequency. The first component is, therefore, dependent and the 

second is not dependent upon the frequency. As the frequency is increased, the 

dynamic viscosity will become lower and lower, si,nce the mechanisms which have 

greater internal timescales must lose their contributions to the dynamic viscosity. 

With this change in frequency, of course, the dynamic modulus is also changed. 

Thus, the viscoelasticity of high polymers are always dependent upon the timescale 

of experimental investigation. 

Eq. (7) is also applicable to the dynamic viscosity of solutions of polyvinyl 

alcohol measured by the electromagnetic transducer method over a frequency range 

from 45 to 300 cps. Here again, the calculated values of -r 2 are also of the order of 

10-a second, and the products Wm't:2 are almost constant and equal to those of solid 

high polymers. They are also independent either of the degree of polymerization of 

the solute polymers or of temperatures at which the measurements were carried out. 

Details will be published later9
\ 
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APPENDIX 

Analysis of Viscoelastic Hysteresis Loop 

In the dynamic measurements of high-polymeric materials such as rubberlike 

and textile materials, the determination of viscoelastic hysteresis loop as a measure 

of consumption of mechanical energy, as heat, is often employed. This method is 

very useful, particularly in the lower frequency ranges. Energy loss, for instance, 

of various types of tire cords and constituent fibers have been extensively studied 

by Wakeham and his co-workers10
-

12
) by measuring hysteresis loops. Breazeale and 

9) S. Onogi, and H. Hirai, unpublished work. 
10) H. Wakeham, E. Honold, and E. L. Skau, J. Appl. Phys., 16, 388-401 (1'945). 
11) H. Wakeham, and E. Honold, J. Appl. Phys., 17, 698--711 (1946). 
12) H. Wakeham, and E. Honold, Textile Res. J., 21, l-,5 (1951). 
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Whisnant13 J have also measured energy losses in tire cords in quite the same manner. 

In such measurements, it is often desired to relate the loop to other viscoelastic 

characteristics, such as dynamic modulus of elasticity, dynamic viscosity, mechanical 

loss tangent and so on, in order to compare the results with those obtained by 

means of other experimental methods, which give directly these characteristics. 

The present article is concerned with the analysis of the viscoelastic hysteresis 

loop obtained by the Wakeham-type of apparatus. 

In the apparatus used by Wakeham12
J in his studies on fibers, a test sample is 

fixed at its one end and is subjected to an external sinusoidal deformatioi:i of a given 

frequency and amplitude through a calibrated spring, which is connected in series 

with the sample. The extension of the spring can be converted to stress. Although 

the junction moves also sinusoidally with the same frequency, it manifests phase 

lag because of damping (or viscous) effect of the sample. Therefore, plotting both 

the movements of two ends of the spring on coordinate paper, a hysteresis loop can 

be obtained, whose area gives directly the energy loss of the sample. 

Now, considering conventionally that the sample is analogous to the so-called 

Voigt element composed of a spring coupled in parallel with a dashpot, the system 

can well be represented by a mechanical model shown in Fig. 8. The fundamental 

f) 

Fig. 7. Mechanical model for the apparatus 
with sample. 

Fig. 8. Simpler model for the 
apparatus with sample. 

equation of this model is given by Eq. (18) which is given later. 

An apparatus constructed by us is similar in its principle to that of Wakeham. 

Its schematic diagram is shown in Fig. 6. Considering conventionally again that the 

sample can be substituted with a Voigt element, our apparatus is represented by a 

mechanical model shown in Fig. 7. The notation of various quantities involved are 

sum.marized as follows : 

13) F. Breazeale, and J. Whisnant, J. Appl. Phys., 20, 621-6 (1949). 
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S : tension in the sample and the spring, dynes 

r 1 : extension of the sample, cm 

G1 : spring (force) constant of the sample, dynes/cm 

i'Ji: viscous force constant of the sample, dynes•sec/cm 

L : length of the sample, cm 

A: cross-sectional area of the sample, cm2 

q = L/ A: shape factor of the sample, cm-1 

E = qG,: Young's modulus of the sample, dynes/cm2 

i'J = q1J 1 : viscosity coefficient of the sample, dynes•sec/cm2 

l : length of arm of the lever, cm 

6: angle of rotation of the lever, radian 

/: moment of inertia of the lever, g•cm2 

r : external displacement, cm 

G2 : spring constant of the calibrated spring, dynes/cm 

i'2 : extension of the spring, cm 
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Then, the fundamental equation of motion of the system is given by the equation : 

a2n (d" an) I dt2 +G/Jl2-G1l(r-8t)-1J1l d{-l dt =0. (17) 

When the product of the moment of inertia of the lever and the square of angular 

frequency, Joi, is negligible as compared with Gi2
, as it was in our case, the inertia 

term in the left-hand side of the above equation can be safely neglected. Moreover, 

such being the case, the angle of rotation of the lever is very small, 8! is equal to 

the extension of the spring, r2 • Thus, the above model reduces to the simple one 

already shown in Fig. 8, and the fundamental equation of this model would be-

(18) 

Since the external deformation is given as r =r0ei"'t, Eq. (18) can be rewritten 

as 

Hence, in the stationary state, S and r2 are, respectively, given as follows: 

where, 

A= G2[G1CG1 +G2) +ul1Ji]/[(G1 +G2)
2 +ul1Ji], 

B = W1J1G~/[(G1 +G2)2+oi1JrJ, 

tan al= B/A :::= Wi'J1Gi/[G1CG1 +Gz)+w2)'Jn, 

(18') 

(19) 

(20) 

(21) 

(22) 
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and 

Therefore, the extension of the sample, r1 , is given by the equation 

r 1 == r-r2 == J'o( C -iD)eiwt == roC C2 + D2)½e;cwt-82), 

where, 

C == GiG, +G2)/[(G1 +G2)2+w211D, 

D == W1J,c21[c cl+ c2>2 + w211n, 

tan iJ2 == D/C == W1J1/CG1 +G2). 

Now, shifting the origin of time by iJ2 , we obtain 

S == roCA2+B2)½eiwt, 

and 

where, 

and hence, 

tan iJ =(BC+ AD)/(AC-BD) = W1J1/G1. 

(23) 

(24) 

(25) 

(26) 

(27) 

(10') 

(24') 

(28) 

(29) 

It is easily shown that the hysteresis loop which can be obtained by plotting 

the imaginary part of S against that of 71 is an ellipse having its center at the 

origin. The equation of this ellipse is given as follows: 

(30) 

where, 

and 

(31)' 

The area of the loop, therefore, is given by the equation 

(32) 

Since the amplitude of strain of the sample and the area of the loop can be deter­

mined experimentally, the viscous force constant, 1) 1 , or the mechanical loss factor, 

W1Ji, of the sample can be evaluated by this equation. 
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The spring constant of the sample, G1 , on the other hand, is given by the 

following equation, using the notations A, B, C and D: 

(33) 

and hence, 

G, = _(~_!!1l)Htt1_de~~f_t_l!_~_stress) [l _ _1_ w2r;i (amplitude of the strain) 2
] ( 34) 

(amplitude of the strain) 2 (amplitude of the stress) 2 
• 

Now, plotting S against r instead of r1 , we obtain another loop different in its 

shape from that mentioned above. The equation of this loop can easily be obtained 

as follows: 

where, 

b" = ! {1+ m12 +✓(1- m'2 )2 + 4m12 cos2 a1}, 

and 

m' = (A2 +B2 )-½. 

(35) 

This shows that the loop is also ellipse having its center at the origin, and the area 

W' of this ellipse is given by the following equation: 

W' = 1q5 B = n· (amplitude of the external deformation) 

x (amplitude of the imaginary part of the stress) 

(36) 

Comparing Eq. (36) with Eq. (32), it is seen at once that the areas of the two 

ellipses are quite equal. 

Then the dynamic viscosity "r; ", the dynamic modulus "E" and the mechanical 

loss tangent" tan a" of the sample are respectively given by the following equations: 

r; = = WC= W') , 
qr;1 q nw• (amplitude of the ~train) 2 (37) 

E = G = (amplitude of the stress) 
q 1 q (amplitude of the strain) 

x [i _ ]:_ w2r;2 (amplitude of the strain) 2] 
2 1 (amplitude of the stress) 2 ' 

(38) 

and 

tan a= wr;/E. (39) 


