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Introduction 

It is generally recognized that fatigue test results are widely scattered. Con

sequently, in treating fatigue test data, it is desirable to represent them statistically 

and, of late, the studies in this line are frequently reported1)-5 )_ In all of these 

studies, fatigue tests are carried on many test pieces on each stress level, and the 

distribution of the number of cycles to fracture N is statistically studied ; and the 

probabilities of fracture P are obtained by application of the most probable distribution 

function and the S-N-P curves are drawn. However, to draw S-N-P curves by these 

methods, many a fatigue tests must be performed on many specimens on numerous 

stress levels and it is felt that conducting such experiments in most cases is practically 

difficult because of the exceedingly long duration of time and huge expenditure 

required. On the contrary, the method the authors propose here is a method which 

does not necessitate performance of many tests on the same stress level, and yet 

gives the probabilities of.fracture P. In other words, the S-N-P curves are obtained 

from the whole fatigue test results obtained :on different stress levels, even with a 

single test performed for each stress level. 

1. Determination of S-N Curve 

For the purpose of obtaining the most probable S-N curve, it is quite useful to 

represent fatigue test results with an equation. Although there are many equations 

which represent the S-N relations1
)

2
)

5
)

5 l, the following equation is applied in this study: 

(1) 

where N is a number of cycles to fracture under a repeated stress <1 (kg/mm2
), <1w is 

a constant whjch represents the endurance limit (kg/mm2), and A and mare arbitrary 

constants. 
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Taking the common logarithm of both sides of Eq. (1), then we have 

By transforming variables by the following substitution, 

log10(<1-<1w) = Y 

log10A=a 

log10N=x 

the following relation is obtained : 

y=a+mx 

Here the correlation between x and y becomes linear. 
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(2) 

(3) 

(4) 

Before determining the constants a and m, the value of a constant l1w must be deter

mined. For the different sets of values of a and N to be obtained from fatigue test 

results, it is best to determine the value of l1w so as to best satisfy the linear relation 

of Eq. ( 4). In other words, the correlation coefficient r is computed between x and y, 

and the value of l1w is determined to make the absolute value of r to be maximum. 

For an arbitrary value of l1w, x and y computed from n experimental results are 

denoted l1w as Xi and Yi (i = 1, 2, 3, · · · , n) and the correlation coefficient r is given as 

follows: 

(5) 

The e<mstants a and m are c;omputed by the least square method for the value of l1w 

thus determined and are given by the following equations: 

n n n n 

2_j x/}.] y;- 2_j X; 2J Xi Yi 
a= i~l i~l i~l i~l 

n ,. 

n 2j x;2- ( 2J Xi) 2 

i~l i=l 

n ,. ,. (6) 
n 2_j Xi Yi- 2-,j Xi 2,.j Yi 

m= __ i_~_l~_~i-_l_~i_~_l __ ,. ,. 
n 2_j x/- ( 2_j x;) 2 

i=l i=l 

Thus, the S-N curve can be drawn. 

2. Scatter of Fatigue Test Results 

The conventional method of computing the probability of failure Pis: the results 

obtained by numerous tests with many specimens on each stress level are arranged 

in an increasing order of the magnitudes of fatigue lives and then the probability P 
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is calculated'l 3 J 5 J_ In this study, however, the values of P obtained from the whole 

fatigue test results for the various stress levels are computed. The most probable 

S-N curve for the test results can be determined by the method described in the 

preceding paragraph. The S-N equation thus determined is assumed as Eq. (1). 

The S-N curve of Eq. (1) does not generally pass through the plotted points of 

experimental values in the S-N diagram. But by changing the value of any one of 

the three parameters dw. A, and m in Eq. (1), we can make the S-N curve pass 

through a test point. Therefore, we can reduce the scatter of test results to the 

scatter of any one of the three parameters. 

In the case in which the value of A and m are constant and only the value of 

dw varies with an increase of P, a vertical distance between the original S-N curve 

and the new S-N curve (which has been made to pass through each test point by 

changing the value of dw only,) is constant and independent of the value of N as 

shown in Fig. 1, if the measurement of the ordinate a in the S-N diagram is made 

with a linear scale. Ransom•J states that the values of the endurance limits are widely 

scattered about a mean of their values. Therefore, for such test results showing such 

a scatter of test points, the method in which the value of dw alone is changed can 

be applied. 

<T distance 

i,5 conswnt. 

Log,ON 

Fig. 1. S-N curves in which the endurance 
limit cr w is only varied. 

Vertvcal distance 

,.s rot constant. 

log,0 N 

Fig. 2. S-N curves in which the 
parameter A is only varied. 

Now, when the values of dw and m are constant and the value of A only varies 

with an increase of P, a vertical distance between the original S-N curve and the 

new S-N curve (which has been made to pass through each test point by changing 

the value of A,) decreases with an increase of the value N as shown in Fig. 2, if 

the measurement of the ordinate a is made with a linear scale as above. Also in the 

case where the values of dw and A are constant and the value of m only varies with 

an increase of P, the similar tendencies as shown in Fig. 2 are obtained. In many 

cases, the endurance limit scarcely shows any scatter of its value, but their fatigue 

lives on each stress level are widely scattered. For the cases of this type, the method 
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in which the value of A only (or the value of m only) is changed can be applied. 

However, in general, it seems better to vary adequately the values of all the three 

parameters dw, A, and m in the 5-N equation with an increase of P. As mentioned 

above, it is known that both the methods of changing the value of A only and m 

only indicate the similar tendencies. In this study, the method of calculating the 

value P in the case where the value of m is kept constant and other two values dw 

and A vary with P while maintaining a definite relation between them. (The method 

in which the values dw and m are changed keeping the value A as a constant is 

similar to this.) 

3. Relation between the Parameter A and dw 

The 5-N equation determined by the least square method is denoted as follows: 

( 7) 

Taking into consideration the condition of scatter of test points, a scatter band is 

drawn in the 5-N diagram. Now, making the value of the parameter m constant 

and assuming the equation of the lower boundary of the scatter band as 

(8) 

and taking the two points (d1 , N1) and (112 , N2) on its boundary adequately, then 

the following relations are obtained from Eq. (8). 

d 1 -d
1w=A'N,m l 

d2-<J
1w=A'N2m 5 

( 9) 

From these relations, the values of the constants dw' and A' are calculated as follows: 

<1w'= 

(10) 

A'= 

Accordingly, when the two points (d1 , N1) and (d2 , N 2) are determined, the constants 

dw' and A' of the lower boundary of the 5-N scatter band can be determined. 

Next, when the equation of the upper boundary of the scatter band is taken as 

(11) 

the two constants dw
11 and A 11 are calculated in a similar manner described above by 

taking the two points (113 , N3) and (d4 , N,) adequately on the upper boundary. 

Hence, we have 
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:12) 

Then, the three sets of values (awo, A 0), (aw', A'), and (aw'', A") are plotted into the 

diagram, Fig. 3, which represents the value of A in ordinate and aw in abcissa. It 

is assumed that the relation between A and dw can 

be represented by the two straight lines shown in 

Fig. 3. Then, the relations between A and aw become 

as follows: 

(for aw~awo) l 
(13) 

(for aw>aw0) 

In the next stage, the values of aw and A corres

ponding to each experimental value are determined 

from Eq. (1) applying the relation of Eq. (13). Then, 

I 
A Ai -7---- ---

' I I 

A' -+-----+-----
' I 

61.U'o 6w 6,;; 

Fig. 3. Relation between 
A and <Tw, 

the scatter of experimental 

values can be reduced to the scatter of value of the parameter aw. 

In the method discussed above, an appropriate estimation of the shape of a scatter 

band must be allowed. Also, in the method in which the values of both parameters 

aw and A are changed, some relation between them must be assumed in order to 

represent the scatter of test results as the scatter of values of aw. This relation can 

be obtained by estimating the shape of the scatter band. The estimation of the 

scatter band depends upon the judgment with the eye and has no theoretical basis. 

However, it may be permissible similarly as Eq. (1) is applied at the S-N equation 

without any theoretical basis. 

4. Determination of Probability of Failure 

The method to compute the probability of failure P from the scatter of the value 

z which represents one of the three parameters aw, A, and m shall be explained. 

The n values of z, corresponding to each experimental value, are obtained by sub

stituting experimental values into Eq. (1) and these n values are arranged in an 

increasing order of their magnitudes and numbered from 1 ton. The expected value 

of the probability of failure P, corresponding to the value of z numbered as JJ i.e. z,, 

(that is, the probability that the value of z is less than or equal to z.) can be 

computed by the following equation1). 
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P =-~-- (ll=l, 2, 3, ... , n) 
v n+l 
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(14) 

The relation between z and P is indicated by plotting the n points (z., P.) 

computed above into a diagram which represents the value of P in ordinate and z in 

abcissa as shown in Fig. 4, and the most fitted equation of the curve for the computed 

values is sought. The type of the function P 

which is suitable for the cumulative distribution 

function of the random variable z is considered P 
to be something like the following : 

P=l-e-'l'(Z) (15) 

where <p(z) expresses an increasing function of 

z. Many equations have been introduced as the 

function of <p(z) in Eq. (15) 1l 3 l 5J, but in this 

study the following equation is adopted as the 

cumulative distribution functions of z: 

which satisfies the following conditions : 

o V 
z 

Fig. 4. Relation between P and z: 
plotted points are tbe calculated 
values and the solid line repre
sents the cumulative distribution 
curve of z. 

(16) 

P=O* 
P=l 

at z= U l 
at z= T ) 

(17) 

where T and U are the constants showing the upper and lower limit of z, and k and 

b are arbitrary constants. Taking twice the common logarithm of both sides of Eq. 

(16), we have 

(18) 

Putting 

(19) 

the following linear correlation between X and Y is obtained. 

Y=K+bX (20) 

These constants T and U are determined so as to satisfy the relation of Eq. (20) 

* The S-N curve for P=O is important depending upon applications for design, etc.
especially in estimation of a safety factor. 
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most fittedly : that is, the correlation coefficient r between X and Y computed from 

the n sets of values (z,, P,) are calculated for the various values of T and U, and 

the most probable values of T and U, which make the value of r maximum, are 

determined. The constants k and b are determined by the least square method from 

the values of X and Y which are calculated from the n values (z,, P,), using the 

value of T and U determined above. 

Thus, the cumulative distribution function P of a random variable z being deter

mined and the value of z corresponding to a given arbitrary value of P being 

computed, we can now draw the S-N curves with parameter P (S-N-P curves). 

5. Numerical Examples 

(1) Method in which the Parameter <fw is varied 

The numerical example is indicated in which the values of parameters A and m 

are kept constant, another parameter <fw varies with P, and the scatter of test results 

is reduced to the scatter of the parameter <fw. This computation process is applied 

to the rotating bending fatigue test results of the rail steel (0.7% carbon steel). 

These test results are shown in Table 1 and the ',-N diagram in Fig. 5. The eight 

Table 1. Fatigue Test Results 
of Rail Steel. 

I I Number of 
No. Cycles stress to Failure 

er (kg/mm2) N 

21 44.7 44.5xl03 

77 42.9 71.0 

4 41.4 155.0 

27 38.7 252.0 

37 36.7 367.0 

3 36.2 909.0 

30 35.7 399.0 

78 34.8 1580.0 

I 

... so 
i 
tn 45 
V) 
V) 
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Fig. 5. S-N curve of Rail Steel computed by 
the Least Square Method. 

plotted points in the diagram indicate the respective test results. As the results of 

computations by the least square method, the most probable S-N equation is obtained 

as follows: 

S-N equation: 

Endurance limit : 

and the correlation coefficient becomes : 

<1 - 29.5 = 415.5 N-0
-
3087 

<fw=29.5 kg/mm2 

r= -0.95537 

The solid line shown in Fig. 5 is the S-N curve thus computed. Fig. 6 shows 

the relation between the endurance limit <fw and the absolute value of the correlation 
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coefficient r, and Fig. 7 shows the 

linear correlation between x and y, 

that is the S-N relation plotted in 

log-log. scale. 

I 
I 
I 

09552 2·""a-~--z~9--zq.,_5 __ J_._o _ __.__,_---'-31 
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Next, the values of endurance 

limit corresponding to the experi

mental values are calculated ( where 

the values of parameters A and m 

are kept constant), and by means 

of Eq. (14) the probabilities of 

failure P corresponding to the 

Endurance LZmit 6w '%~ 
Fig. 6. Correlation Coefficient vs. Endurance 

Limit for Rail Steel. 

12 
·! 

/./ 

0 
1.0 I 

\o 

~ OC/ 0 ._, 
11 
::,-, 08 

07 

064.0 5.0 55 60 65 
x=log,

0
N 

Table 2. Endurance Limit & its Proba
bility of Failure correspond
ing to Experimental Value. 

Endurance Probability 

No. Limit Order of Failure 

P=-"-
rrw (kg/mm2) " n+l 

30 27.95 1 0.111 

37 28.74 2 0.222 

21 29.44 3 0.333 

77 29.69 4 0.444 

78 29.73 5 0.556 

27 29.76 6 0.667 

3 30.19 7 0.778 
Fig. 7. S-N Curve of Rail Steel plotted 

by Log-Log Scale. 
4 31.02 8 0.889 

-~"-

values of llw are deter

mined as shown in Table 

2 and graphically in Fig. 

8. The calculated results 

by the least square method 

of the most fitted curve as 

the distribution function 

of llw for these computed 

points are as follows : 

Endurance Limit Ow kg/4,,ii 

Fig. 8. Cumulative Distribution Curve of Endurance 
Limit for Rail Steel. 

Cumulative distribution function: 
(

(]' w - 23.0 )4.563 

P=l-e - 27
·
2 44~5-;;.--.:, 

Here, the correlation coefficient between X and Y becomes : 

r=0.97164 
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Fig. 10. S-N Curves of Rail Steel with 
Parameter P. li 
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Fig. 9. Correlation Coefficient vs. Co
efficients U and T for Rail Steel. 

Table 3. Fatigue Test Results of 0·22% 
Carbon Steel. 

I 
Stress I Number of Cycles 

No. to Failure 
,r (kg/mm2) N 

1 33.0 1086400 
2 33.0 643460 
3 32.5 1056700 
4 32.5 1175300 
5 32.0 1644400 
6 32.0 1334160 
7 31.5 1034700 
8 31.5 920810 
9 31.0 1339800 

10 31.0 2051300 

11 '30.5 1516200 

12 30.5 1177040 
13 30.0 4883200 

14 30.0 4633980 
15 29.5 8471000 
16 29.5 5024150 
17 29.2 3442400 
18 29.2 4146600 
19 28.5 6407700 

The cumulative distribution curve of 

tlw thus obtained are shown by a solid line 

in Fig. 8. Fig. 9 shows the relation be

tween the correlation coefficient r and the 

values of T and U. The S-N curves with 

the probability of failure Pas a parameter 

are obtained as shown in Fig. 10. 

(2) Method in which the Parameter A is 

varied 

Secondly, the similar numerical exam

ple is explained in which parameters tlw 

and m are kept constant, another parameter 

A varies with P, and the scatter of test 

values is represented as the scatter of the 

parameter A. This computation process 

is applied to the rotating bending fatigue 

test results of the 0.22% carbon steel. 

Nineteen experimental values are shown in 

Table 3 and S-N plots of these values are 

shown in Fig. 11. The computation results 
by means of the least square method are 

as follows: 

S-N equation: tJ-25.0=316.9 N-o.21s2 

Endurance limit : tlw = 25.0 kg/mm2 

Correlation coefficient: r= -0.87103 
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The solid line in Fig. 11 is the S-N 

curve computed as above. 

The values of the parameter A cor

responding to the experimental values 

are calculated (where the values of the 

parameters 11w and m are kept constant), 

and by means of Eq. (14), the probabili

ties of failure P corresponding to the 

values of A are determined and they are 

shown in Table 4 and graphically in 

Fig. 12. For these calculated values, the 

most fitted distribution function of A is 

"'<' 
~ 36 
~ 
'o 
V) 

Qj 
.f;; 
½ 

~ 
\2 
(l) 
;::, 

"' Q:'. 

34 

32 

30 

28 

26 

-0.2762 
1-----+----"'E<"l<r;,6-250 =3/6qN _ 

/05 /0 6 /0 1 

Number qf Cydes fn Failure N 

Fig. 11. S-N Curve of 0.22% Carbon Steel 
computed by the Least Square Method. 

computed by the least square method as follows : 

Cumulative distribution function: 

Correlation coefficient : 

(
A-250) o 998 

P=l-e-1.11 m-A . 

r=0.98678 

The cumulative distribution curve of A is represented by a solid line in Fig. 12. 

Table 4. Coefficient. A & its Probability 
of Failure corresponding to 
Experimental Value. 

Probability 

No. Coefficient Order of Failure 
" 

A 
P=~ 

" n+l 

12 261.2 1 0.05 

19 265.4 2 0.10 

17 268.3 3 0.15 

11 280.1 4 0.20 

18 282.4 5 0.25 

8 288.4 6 0.30 

9 295.3 7 0.35 

7 297.9 8 0.40 

16 319.1 9 0.45 

2 321.6 10 0.50 

10 332.2 11 0.55 

6 344.2 12 0.60 

3 345.7 13 0.65 

14 346.7 14 0.70 

13 351.8 15 0.75 

4 356.1 16 0.80 

5 364.6 17 0.85 

15 368.6 18 0.90 

1 371.6 19 0.95 

o.. J.O i---+----+---+----l--+--=--t----1'-

~ 
~ 08 1--+--+--l---+cd-=-t--+-----s+ 
~ 
~ 06f--+----+---1"7"''-(lrl----t---t---t-

O 250 300 350 400 
Coe§went A K!J/,,,J 

Fig. 12. Cumulative Distribution Curve of 
Coefficient A for 0.22% Carbon Steel. 
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Fig. 13. S-N Curves of 0.22% Carbon 
Steel with Parameter P. 
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The S-N curves with a parameter P are shown in Fig. 13. 

(3) Method in which the Parameters <1w and A are varied 

Thirdly, the numerical example is indicated in which the parameter m is kept 

constant, the other parameters <1w and A vary with P, while maintaining a definite 

relation between them, and the scatter of test results is reduced to the scatter of the 

parameter <1w. This computation process is applied to the rotating bending fatigue 

test results of the 0.61% carbon steel. Seventeen test results are given in Table 5 

Table 5. Fatigue Test Results of 0'61% 
Carbon Steel. 

"'I: 
~ 36 
~ 

--~~· --
I 
I Stress I Number of Cycles 

No. 
I 

to Failure 
rF (kg/mm2 ) I N 

1 35.0 108200 

2 35.0 118080 

3 33.0 297100 

4 33.0 291770 

5 32.0 402500 

6 32.0 335900 

7 31.0 616900 

8 31.0 602520 

9 31.0 803600 

10 30.0 2971700 

11 30.0 1166840 

12 30.0 739800 

13 29.0 4821600 

14 29.0 2911120 

15 29.0 1659200 

16 28.0 3482000 

17 28.0 7602100 

lo 
V} 

] 
V) 

-i::, 
QJ 

~ 
QJ 
:::, 
<IJ n:: 

34 

32 

JO 

28 
.......... 

26 

24
SXIO' 105 10 6 /0 7 

Number of Cycles to Fcdure N 

Fig. 14. S-N Curve of 0.61% Carbon Steel. 

and S-N plots of these test values are shown 

in Fig. 14. The results computed by means 

of the least square method are as follows: 

S-N equation: a-22.0=103.75 N- 0
-
181 

Endurance limit: <1w=22.0kg/mm2 

Correlation coefficient : r = - 0.95812 

The solid line given in Fig. 14 is the S-N curve caiculated as above. 

Now, the scatter band in the S-N diagram is drawn adequately as mentioned in 

Chapter 3. These two boundary lines of the scatter band are indicated by the dotted 

lines in Fig. 14. Taking the following two points on the lower boundary of the 

scatter band, 

a,= 35 kg/mm2 , N, = 7.00 x 104 
} 

<12=30kg/mm2, N2=7.40x 105 
, 

and calculating the coefficients <1w' and A' of the lower boundary from these values 

by means of Eq. (10), the following values are obtained: 

<1w' =20.61 kg/mm2 

A'= 108.41 kg/mm2 
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In a similar manner, the coefficients <1w" and A" of the upper boundary are 

calculated by taking the following two points, 

<13 = 35 kg/mm2
, N3 = 1.18 X 105 

} 

<14 =30kg/mm2
, N4 =2.97x 106 

, 

on its boundary line, the following values are obtained : 

<1w11 =23.69 kg/mm2 

A" =93.63 kg/mm2 

From the S-N equation, the values of <1w
0 

and A 0 are as follows: 

<1w
0
= 22.00kg/mm2 

A 0 = 103.75 kg/mm2 

These three sets of values (<1u·o• A 0), (<lw', A'), and (<1w", A") are plotted in the 

A-<1w diagram as shown in Fig. 15 and the relation between A and <1w is assumed 

to be expressed by the two 

straight lines passing through 

these three points in Fig. 15: 

that is, the relation between 

A and <lw is assumed to be 

expressed by the followir g 

equations: 

A=l03.75-3.353 (<1w-22) 

for <1w~22.0 kg/mm2 

k= 103. 75- 5.988 (u w - 22) 

for <lw::::22.0 kg/mm2 

"'" 1101---=--+---+--+----+---+--r----;---;--

~ 
~/~I--+---+----,,..-..::--+---+-
~ 

· § 1001-----+---+--+----+-----+---r----;---+-

i, 
<> 
"qsi----+---+--+----+---+--r---""I.:"--+-

21 22 23 24 
Endurance Limit 6w kJ/mJ. 

Fig. 15. Assumed Relation between Coefficient A and 
Eudurance Limit crw for 0.61% Carbon Steel. 

The values cf uw and A correspnding to each experimental value are calculated 

using the relations described above and the probabilities of failure P corresponding 

to the values of <lw is deter

mined respectively by Eq. 

(14). The results obtained 

are shown in Table 6 and are 

plotted in Fig. 16. 

The cumulative distribu

tion curve of <lw, which is the 

most fitted curve for these 

computed points in Fig. 16, is 

computed by the least square 

method. As the results, the 
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-3 08 
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(? i-------
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% I'-- -18.58 (jr. 20) p~1-e -6w 

,,. 
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2/ 22 23 24 
Endurance Limit Our 

25 26 

k9/m/4 
Fig. 16. Cumulative Distribution Curve of Endurance 

Limit for 0.61% Carbon Steel. 
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Table 6. Endurance Limit ""', Coefficient A and 
its Probability of Failure corresponding 
to Experimental Values. 

Endurance I 

I 

Probability 

No. Limit Coefficient Order of Failure 
P=-"~ 

<Tw (kg/mm2) A V n+l 

12 20.61 108.41 1 0.0556 

15 20.98 107.18 2 0.111 

16 20.99 107.13 3 0.167 

6 21.46 105.50 4 0.222 

8 21.54 105.22 5 0.278 

7 21.60 105.04 6 0.333 

11 21.63 104.92 7 0.389 

5 21.96 103.82 8 0.444 

14 21.98 103.80 9 0.500 

17 22.16 102.80 10 0.556 

9 22.30 101.95 11 0.611 

4 22.93 98.20 12 0.667 

13 22.94 98.15 13 0.722 

1 23.00 97.80 14 0.778 

3 23.01 97.76 15 0.833 

2 23.69 93.63 16 0.889 

10 23.69 93.63 17 0.944 

"'I:: 
~ 
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Fig. 17. S-N Curves of 0.61% Carbon Steel 
with Parameter P. 

following distribution function of 

dw is obtained: 

Cumulative distribution function: 

( 
<T - 20)1,84 7 

-18.58 --"'------
P=l-e 35-o-w 

Correlation coefficient : 

r=0.98925 

The solid line in Fig. 16 shows 

the distribution curve computed 

by the above method. From this 

relation, the values of the para

meters dw and A corresponding 

to a given probability of failure 

P are calculated and then the 

S-N-P curves are obtained as 

shown in Fig. 17. 

In these processes, the com

putation of the correlation coeffii

cient is very complicated when 

the number of experimental values 

are more than twenty because 

the computed error of the corre

lation coefficient r must be less 

than 0.001 (about 0.1% of the 

value of r) and, consequently, 

computations must be done with 

the seven-figure logarithmic 

tables. For such a purpose, it 

will be convenient to use a proper 

statistical computor. 

Conclusion 

The computation process pro

posed in this report is a method which, without testing many specimens on a stress 

level, enables to compute the probability of failure P from the whole fatigue test 

data carried out on different stress levels. A summary of this calculating method is 

given below: 

The S-N equation is assumed as 
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and the probability of failure .p corresponding to each experimental value is computed 

by representing the scatter of test results by the scatter of any one ( denoted as z) of 

the three parameters <1w, A and m in the S-N equation. The probability of failure 

P is plotted by the following equation : 

JI 

P=n+l 

By applying the following equation 

-k(~!!_)b P=l-e T-• 

as the most fitted distribution function of z, the S-N-P curves are obtained. 

This process has bei:)n applied to the fatigue test results of three kinds of carbon 

steels as examples. 
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