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Abstract 

In this paper, experimental results and their considerations on the vibrational 

damping characteristics of model beams and of actual steel highway bridges are 

presented. 

The fundamental characteristics of damping due to internal frictions of the 

steel beam and the friction of bearing are clarified by using three kinds of beams. 

Also, the damping characteristics of several actual bridges have been im-estigated 

and they are compared in this paper with the results obtained by the experiments 

on model beams. 

These results are useful for analysis of the dynamic problems of bridges. 

1. Introduction 

In regard to the dynamic problems of a bridge, such as the problems of 

aerodynamic resistance of suspension bridge, the impact factor and the earthquake 

resistance, the damping characteristics of vibration must be fully investigated. 

The author has been carrying out for some time an experimental research on the 

damping characteristics of actual bridges and the results of these experiments are 

explained in Chapter 9 of this report. In some other chapters of this paper, 

experimental researches on model beams and some considerations of these experi

ments are described for the purpose of clarifying the fundamental characteristics 

of damping. The main purpose of the experiments on model beams are to 

investigate exactly the characteristics and the values of the vibrational damping 

resulting due from the different causes of damping. To achieve these purposes, 

three kinds of beam, welded, reveted and bolted beam, have been utilized. 

2. Model Beams and Method of Experiments 

The model beams used in this experiment are composed of two beams, set in 
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Fig. 1 Main Dimensions of Model Beam. 
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parallel, and they are of three kinds

welded, riveted and bolted beams. Figs. 

1 and 2 show schematically the main 

dimensions and the cross sections of 

these beams. Table 1 shows the data 

of these beams. The natural frequency 

of each beam is determined as shown 

in Table 1. The reason for this is to 

approximately equalize the condition 

(a) Welded Beam (b) Riveted Beam 

(Bolted Beam) 

Fig. 2 Cross Sections of Model Beam. 

Table 1. 

I Welded Beam I Riveted Beam I Bolted Beam 
···--

Span Length (m) 6 6 6 

Total Weight (kg) 196 207 210 

Sectional Moment of Inertia (cml) 227 212 212 

Free Vibrational Frequency 
(Theoretical) (sec-1) 7.52 7.05 6.91 

Free Vibrational Frequency 
7.67 I 7.18 6.95 

(Experimental) (sec- 1) 
I 

which each beam has for vibration and to avoid a large difference between the 

vibration frequency of the model beams and that of the actual bridges. 

For the support, ball-bearings are used as the hinge and rollers are used as 

the moving support. With these arrangements, the energy dissipated through the 

support can be disregarded almost completely. To investigate the effect of 

the supporting condition, sliding supports were used afterwards as the moving 

support. 
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Various different methods of experiment could be considered, but in this 

experiment, the damping free vibration was applied in order to obtain most 

exactly the damping characteristics. As the means of vibrating, a method of 

vibrating by hand was adopted and the damping free vibration was recorded in 

ASKANIA Vibrograph which was fixed on a supporting apparatus. 

3. Damping Characteristics of the Welded Beam and the Riveted Beam 

The object of the experiments described in Chapters 3, 4 and 5 in this paper 

is to investigate the energy which is dissipated by the internal friction of the 

beams. Therefore, a roller support has been used as the moving support. 

Fig. 3 shows the amplitude decay ?111111~-----~-~-------, 

curves for the riveted beam and the 

welded beam. It is clear from this 

figure that the condition of the 

decrement differs considerably de

pending upon the kinds of beams. 

The welded beam shows a smaller 

decrement than the riveted beam. 

The relation between the loga

rithmic decrement and the vibrational 

amplitude is illustrated in Fig. 4. 
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Fig. 4 17-<1 Relations of Welded and 
Riveted Beams. 
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Fig 3 Amplitude Decay Curves for Welded 
and Riveted Beams. 

From Fig. 4 as far as this experiment 

is concerned, the following conclusion is 

obtained. 

(1) The logarithmic decrement in the 

case of the welded beam is nearly constant 

and its value is o. ·0.005, and has no relation 

with the amplitude. This value is nearly 

equal to the logarithmic decrement of the 

internal friction of the steel. 

(2) In the case of the riveted beam, 

the logarithmic decrement increases as the 

beam has a larger amplitude. The effect 

of this goes to show the fact that the 

damping characteristics cannot be shown in 

a linear form (this fact will be explained in Chapter 5) even within the stress 

range of this experiment in which the Hooke's Law can be applied. Expressing 
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the function the logarithmic decrement of the riveted beam as 

IJ= /Jor;ro (1) 

and determining IJ0 and a from the experimental data by the method of least 

squares, 

a= o. on9sr;o.344 (2) 

is obtained. The curve shown by Eq. (2) is shown with a dotted line in Fig. 4. 

The meaning of a will be explained in Chapter 5. 

4. The Effect of Vibrational Velocity 

For the damping term of the equation of vibration of beam, either the damping 

force proportional to the vibration velocity of deflection, i.e., k~, or that which is 

proportional to the vibration velocity of strain, i.e., ka~ix4 , is applied. 

To investigate the relations between the damping constant and the vibrational 

velocity, the following experiment was made. 

The beam used in this experiment was a welded beam which had a linear 

characteristics. By placing a weight on the welded beam, the free vibrational 

period was changed and thereby the relation between the vibrational velocity 

and the damping characteristics was investigated. The results of this experiment 

is shown in Table 2. From this experiment it is made clear that the logarithmic 

decrement has little relation to the vibrational periods and it shows the same 

value. 

Table 2. 

Case 
I 

A 
I 

B 

Loaded Weight (kg) no load 50.15 

Free Vibrational Frequency (sec- 1) 7.25 6.14 

Logarithmic Decrement 0.0047 0.0048 

Damping Coefficient (sec-1) 0.0355 0.0298 

From these results, a damping, which is independent of the vibrational 

velocity, has to be chosen as the damping term of the equation of vibration of 

the beam. The effect of this characteristics of damping term is remarkable on 

the vibration of continuous beam and cantilever beam in which the vibration of 

higher order should be considered.I) However in the case of a simple beam, the 

usual equation of vibration, which has a damping term proportional to the velocity, 
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can be applied approximately by choosing the damping coefficient properly. 

5. The Relation between the Vibrational Amplitude 

and the Logarithmic Decrement 

As shown clearly by the experiment in Chapter 3, the logarithmic decrement 

of structure cannot be shown in a linear damping even in the range of an elastic 

limit of the riveted beam. In the case of steel structure, such as bridges, the 

logarithmic decrement is far small compared with the unity, even though the 

vibrational amplitude is considerably large. Therefore, the distribution of vibra

tional amplitude along the beam length is assumed to be same as that in the 

case of the linear vibration theory. The dissipated energy lost from the interior 

of the structure can be considered chiefly due to the friction of connection of the 

structural cross section. In order to simplify the problem, all effects of the 

dissipation of energy from the interior of the structure are considered to be 

exhibited by the stress-strain loop as shown in Fig. 5 and the area within the 

Fig. 5 

loop is assumed as 

.dw =fade= 0neo"• (3) 

.dw shows the dissipated energy lost from the unit volume 

during one cycle under the assumption mentioned above. 

(:l,. is the constant determined by the structural material, 

the type of structure, the method of the connection of 

structure, the basic stress (usually the dead load stress) 

and the value n. 

Integrating Eq. (3) along the whole beam length and a sectional area, the 

total energy dissipated within one cycle is 

( (azy)" .dW=S.SAfadedAdx=(,,.I,,. J
I 

axz dx (4) 

where, In= SAl;"dA (Sectional moment of n th order) and, 

l: beam length, A : sectional area, y : deflection of the beam, x : coordinate 

along the beam length. I; : length from the center of gravity of the section to 

dA. The maximum value of the potential energy of the beam during the 

vibration is 

EI ( (a2y)2 
W=2 Ji axz dxoc712. (5) 

In the case of the free vibration, when the logarithmic decrement is very 

small compared with the unity, the terms of higher order of the series expansion 

of a are neglected and relation 
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.JW 
-'J,V =28 (6) 

is obtained. From Eqs. (4) (5) and (6) 

(7) 

Now considering a simple beam, since its distribution of the vibrational 

amplitude is approximately assumed as 

then 8 is obtained by 

(8) 

Consequently, 8 is proportional to (n-2) th power of TJ, and has no relation with 

the velocity of vibration. The physical meaning of 80 and a in Eq. (1) can be 

clarified by comparing Eq. (8) with Eq. (1). 

When n = 2, f3n is shown by {3 2= E8 using the logarithmic decrement 8, and in 

this case 8 is a constant. When n¾2, the value 8 is not only the function of the 

deflection TJ but also it is the value decided by the form and the dimensions of the 

structure.2) 

6. The Relations between Damping Characteristics and 

Fastening of Bolt on the Bolted Beam 

The fact that the riveted beam shows, as in Chapter 3, a larger damping and 

a non-linear damping characteristic compared with thewelded beam is chiefly due 

to the difference of their cross connections. 

Therefore, the effect of fastening the connection of cross sections of a beam 

upon the damping characteristics is investigated by using the bolted beam. 

The relation between the torque T for fastening the bolts and the tension P 

of the bolts is shown as follows 

(9) 

where, D is the diameter of the bolt, C is a constant and C=0.2 (which is given 

by the experiment of H. Lenzen). 

If the constant of C is chosen as C=0.2, the relations between the torque and 

( 3") the stress of bolt a are shown as follows for the bolt used in this beam. D = -
8
~ 

T= 50 kg-mm 

T=lOO kg-mm 

a=370 kg/cm~ 

a=740 kg/cm2 
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T=400 kg-mm 

As the yield point of the bolt is 

<1y~=2600~3000 kg/cm2, the torque T 

adopted in this experiment is 0~400 

kg-mm. A torque-wrench obtained in 

the market was used to fasten the 

bolts. 

The amplitude decay curves of 

the free vibration are shown in Fig. 6 

for several values of torque. And the 

relations between the amplitude and 

the logarithmic decrement become as 

<1=2960 kg/cm2 

0 

.,._ 0 tr,-

T- .50 1<.1-111111 

T- l00-//oOl!J 

Fig. 6 Amplitude Decay Curves of 
Bolted Beam. 
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shown in Fig. 7. From Figs. 6 and 7 the 

following conclusions are obtained. 

6 E, 

( 1) When T=0 (in this case all the 

bolts were loosened as the torque wrench 

showed no indications), the logarithmic decre

ment is very large compared with that in the 

other cases, and it has a tendency to show a 

non-linear damping of higher order different 

from the Coulomb damping. 

( 2) The logarithmic decrement ;; decre

ses if the torque increases. But the fastening 

of the bolts as tight as to exceed T=lO0kg-mm 

has no effect on the damping. 

7. The effect of the Type of the 

Moving Support 

In the experiments mentioned above, a 

®@ Y• (i) • .016 / 
.,, 
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Fig. 7 7/-,l Relations of Bolted 
Beam. 

roller support made of steel was used ?111'!!.m!!!....._--,...----r----.-----:-:---:-::---7 

as the moving support. To investigate 

the effect of the material of the rollers, 

a wooden roller (made of pine) was 

used in place of the steel roller. Even 

in the case of the wooden roller, the 

amplitude decay curve was similar to 

that in the case of the steel roller as 

shown in Fig. 8. This result shows the 
Fig. 8 Amplitude Decay Curve of Riveted 

Beam for Roller and Sliding Supports. 
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fact that the materials of the rollers 

has little effect on the damping com

pared with the effect of the internal 

frictions of the beams. 

In order to investigate the effect 

of the types of the moving support, a 

sliding support was used. In this 

experiment the riveted beam was used. 

The amplitude decay curve in this 

experiment is as shown in Fig. 8. 

It is clear from Fig. 8 that the 

effect of the Coulomb damping becames 

very remarkable when the moving 

support is changed from the roller 

support to the sliding support. The 

relation of the amplitude and the 

0 I 2 3 

--- Theo~t1al Curve 
{)'=O. I) 

---Theoref;c,,/ C.rve 
(_µ-o.2) 

4 
Fig. 9 1/-o Relation of Riveted Beam with 

Sliding Support. 

logarithmic decrement is shown in Fig. 9. The logarithmic decrement increases as 

the amplitude decreases, and this is nothing but a characteristic of the Coulomb 

damping. 

8. The Energy Dissipated from the Support 

It is found that the logarithmic decrement iJ can be calculated by the following 

equation even when iJ is comparatively large. 

(10) 

where, JW1, JW2 ••.•• are the energy dissipated from different mechanisms of 

dissipation, and W is the energy of the beam during one cycle at a vibrating 

cycle. As it is clear from Eq. (10), the free vibration does not arise when 

If JW1 is assumed to be the energy dissipated from the internal friction of 

the beam and JW2 is that dissipated from the support, Eq. (10) can be simplified 

as follows when only these two mechanisms of dissipation are considered. 

(11) 

JW1 
The value · W in Eq. (11) is given in Eq. (6) in which only the effect of internal 

friction is considered. 
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.dW2 is shown by .dW2=F.ds 

where the displacement of the 

support in one cycle is .ds and 

the frictional force of the sup

port is F. 

9 

Taking the displacement of 

G as c (Fig. 10) and the angle 

of rotation of the beam at the 

moving support as q> and taking 

Hinged Support Sliding support 

Fig. 10 

into consideration the fact that an equal amount of rotation of the beam arises at 

the hinged support, the displacement of the supporting point in one cycle is shown 

as follows: 

In case the beam displaces to the downward 

In case the beam displaces to the upward 

q>h' +q>h-c 

q>h' +q>h+c 

Therefore, the displacement of the supporting point in one cycle is 

Then, the energy dissipated through the support is 

As q> and F are given by 

where, 

({>-(~) -r;_!!__ - dx x-o- l 

G 
F=µ-2-

r; : maximum deflection of the beam, l: span length of the beam, 

(12) 

µ: coefficient of friction of the sliding support, G : total weight of the beam, 

the .dW2 is 

h+h' 
.dW2=2--

1
-r;rrµG. 

And as the W is shown in Eq. (5) 

is obtained. 

B(h+h') µG/2 
rr3Eh; 

Substituting Eq. (14) and (6) for Eq. (11) 

o = __ 21 log(l- B(h+h')µG/2 201) 
rr3E/r; 

(13) 

(14) 

(15) 
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Where, lJ1 is the logarithmic decrement when only the effect of internal friction is 

considered. 

The -r;-lJ relations calculated by using Eq. (15) are shown in Fig. 9 the dotted 

line for µ = 0 .1 and the chain line for µ = 0. 2. 

In Fig. 9 the theoretical line for µ=0.1 coincides well with the experimetal 

results. The effect of the internal friction shown by 2 lJ1 in Eq. (15) can be 

disregarded in the riveted beam compared with the eff~ct of the friction of the 

support. 

9. Vibrational Damping of Actual Steel Highway Bridges 

The vibration damping resulting from the internal friction of the steel beams 

and the friction at the support were experimented on the model beams and the 

results thereof were described in the preceeding chapters of this report. 

The damping characteristics of actual bridges depend upon more complicated 

mechanisms than those of the model beams. In this chapter the experimental 

researches of the damping characteristics of actual bridges are described with some 

comparisons of the result obtained by the model beams. 

(a) Methods of measurement of a damping constant 

Various methods can be applied to measure the vibration damping of a bridge. 

The following methods were used in this experiment: 

Method (1). Measure the amplitude of the damping free vibration after the 

moving load has passed. 

Method (2). Measure the amplitude of the damping free vibration arisen in 

the following manner. First let some men jump on the bridge so as to be resonant 

with the natural vibration period of the bridge until the bridge attains a consider

able amplitude, then let these men stop jumping suddenly. The vibrational 

amplitude thus obtained was larger than that obtained in the method (1). 

Method (3). Vibrate by using an oscillator and calculate the logarithmic 

decrement using the following equation. 

where, v1 and v2 are the circular frequency corresponding to the amplitude of 

0. 707 x (resonance amplitude) in resonance curve and v, is that of resonance 

amplitude. 

A mechanical vibrograph has been used as the measuring instrument and its 

natural period is 1.8 sec and the geometric magnification is x 15. Recently the 

ASKANIA Handvibrograph is used with mechanical vibrograph. 
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( b ) Measured values of the damping characteristics 

The amplitude used in this experiments was about 1mm. Analysing the record 

of the experiments, the effect of the Coulomb damping is hardly found on the 

bridges. The mean value of the logarithmic decrement obtained from the records 

of the damping free vibration is as shown in Table 3. 
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Fig. 11 Relations between Amplitude and Logarithmic Decrement. 

Fig. 11 illustrates examples of the relation between the logarithmic decrement 

and the amplitude for three actual highway briges. It is noticed that there is a 

tendency that, if the amplitude increases, the logarthmic decrement also increases. 

However, as the amplitude of vibration is comparatively small in this case, the 

non-linear characteristics obtained by the model beams are not remarkable. 

The logarithmic decrement calculated from the resonance curve obtained by 

using the oscillator are shown in parenthesis in Table 3. 

It seems that, the value of a obtained from the resonance curve in general 

is larger than the value of a obtained from the damping free vibration. 

Although a sufficient investigation has not yet been carried out, it may be considered 

that an effect of vibration of higher order is included in the resonance curve. 

The actual bridges show a fairly larger logarithmic decrement than that of the 

model beams. The causes of this result are that in the case of actual bridges, the 

roadway slabs are made of concrete and they have a more complicated mechanism 
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Table 3. Vibrational Periods and Logarithmic Decrement of Actual Bridges 

Name of 

I 
Type of bridges 

I 
Dimension of I Natural period I Logarithmic 

bridge bridges* (sec) decrement 

TAKAKURA Cantilever beam L=45.15m 0.290 0.0318 
with 2 spans b =ll.125m 

SHOMEN Continuous beam L=75.80m 0.304 0.0710 
with 3 spans b =6.00m (0.183) 

KYOKAWA Cantilever beam L=86.00m 0.284 0.0596 
with 3 spans b =6.00m (0.102) 

TAISHO Two hinged arch l =300ft 0.405 0.173 
b =21.92m 

MASUTANI Spandrel braced l =77.2m 0.334 0.0294 
arch b =6.00m (0.0406) 

OKAWA Warren truss l =59.lm 0.323 0.0672 
b =6.50m 

SAIJO Box girder l =36.00m 0.285 0.096 
b=5.5m 

MOROTOMI Warren truss l =41.75m 0.251 (0.2-0.3) 
b=7.5m 

YAMASU Box girder l =36.30m 0.368 0.066 
b =4.5m 

HAKUUN Box girder l =28.0m 
b =6.0m 0.194 (0.079) 

* L=Length of Bridge /=Length of Span b=Width of Bridge 

of damping than the model beams. However, the damping constant of the bridge 

is considerably small compared with other structures, such as building structures. 

This means that, when as the resonance amplitude is large, the damping ratio has 

a considerable effect on the impact factor. 

10. Conclusion 

The experimental results and some considerations on the vibrational damping 

of model beams and actual bridges have been described in this report and the 

important conclusions obtained are as follows: 

( 1 ) In the case of the model beams, especially of the bolted beam and riveted 

beam, the non-linear characteristics of damping are remarkable even within the 

elastic limit of the steel. 

( 2) The logarithmic decrement of the welded beam is independent of the 

amplitude of vibration and is approximately equal to the logarithmic decrement 

caused by the internal friction of the steel itself. 

( 3) The logarithmic decrement of the bolted beam depends remarkably upon 

the degree of fastening of bolts, but the logarithmic decrement does not vary when 

the degree of fastening of bolts exceeds a certain critical values. 

( 4) When the bolts are fastened beyond the critical value, the logarithmic 
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decrement of the bolted beam is smaller than that of the riveted beam. 

( 5) The dissipated energy lost through the sliding support is so large that 

the effect of the internal friction can be disregarded. In this case, when the 

coefficient of friction of the sliding support is assumed as µ=0.1, the theoretical 

result coincides well with the experimental result. 

( 6) The damping of actual bridges is large compared with that of the model 

beams because the mechanisms of damping of actual bridges are complicated, but 

it is smaller than the damping of other structures such as building structures. 
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