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Abstract 

The behavior of an electron in a thick Al layer is studied by the Monte Carlo 

method, assuming that the track of the electron is simplified by an approximate model, 

and the penetration and backscattering probability are obtained from a set of hundred 

histories. The consistency of the value of the practical range of the electron obtained 

by this calculation with that of the empirical formula proved that the method is quite 

adequate for solving the pentration and backscattering problem of the electron through 

a thick layer. 

1. Introduction 

On the behavior of the high energy electron which is incident on a layer of a 

material, various calculations were performed in the past to obtain the angular distri-

bution of the penterating electron through a thin layer. These calculations were based 

on the assumption that the electron does not lose its kinetic energy along the path in 

this layer1). On the other. hand, some calculations were carried out pertaining to the 

loss of the kinetic energy suffered by the electron or its range without regard for the 

deflection of the penetrating electrons2). Empirical formulae were also found on the 

practical range of the electron3). When the layer is thick, it is quite difficult to 

obtain the pentration probability, the energy and the angular distribution of the electron 

because both the energy loss and the angular deflection must be considered, and no 

calculating method has yet been found. The authers, therefore, applied the Monte 

Carlo method to the problem of thick layer of Al ・ by dividing the path of the electron 

properly to many segments and calculating the angular distribution and the energy 

loss of the electron for each segments and obtaining the whole track by connecting 

them. 
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The procedure of the calculation is principally the same as in the case of the 

multiple scattring of gamma-ray. But it is impossible to follow completely each collision 

because the electron has much larger scattering probability than the gamma-ray. 

Therefore; a single scattering is assumed in place of the multiple scattering suffered 

by the electron in the segment. To use the same history for various geometries, the 

electron is traced in an infinite homogeneous medium (aluminium) and thereafter 

various boundary conditions are applied to test if the history satisfies them. Some 

results'were obtained by calculating and testing 100 histories. 

2. Calculation Procedure 

2. 1 Simplified model of the problem 

Let an electron of the energy E, be incident at the 

point P, in an infinite homogeneous medium (Fig. 1). 

The electron will collide so many times with the atoms of 

the medium and it will travel degrading its energy and 

varying its direction of motion. Now, however, the electron 

is assumed to deflect at the point P, through the angle 

e,, IJ), and to travel a certain distance t, in a straight line 

without losing its energy ; and, after arriving at the point 

P2, it suddenly loses its energy by an amout of.JE,. The 

electron which has reduced its energy to E2=E, -LIE, is 

scattered by the agle 02, 1/)2 at P2 and travels straight the 

distanceちandthe energy loss LIE2 occurs at P3, and so on. 

The electron, whose energy is sufficiently degraded after 

(n-1) times of scatterings, suffers the last scattering at 

the point Pn by the angle 0,., IJ)n and after traveling the 

¥ ヽ
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Fig. 1 Simplified model of 

the track of the 
elctron in the me-
dium. 

distance tn it ceases at the point Pn+i • Thus the whole history is terminated. 

If the track of the electron is simplified as above mentioned, it is natural that 

the distribution of each scattering angle B;, tJJ; (i =1, 2, 3,…， n) may be taken to be 

equal to the angular distribution of the multiple scattering suffered by the electron of 

the energy E; in the course of passage through a thin foil of thickness t; and that the 

distribution may be represented by the following Moliere's formula which accurately 

describes the angular distribution of the multiple scattering of the electron4). 

贋）疇＝［2e-a2+ 
2, JC1)(0), JC2)(0) 

B ＋国~]ado

8 ゜=— 
m/B 

(1) 

x＝空｛Tpcf3'VA 
(degree) 
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where the left hand side is the probability of ・scattering which may occur in the angle 

e ~ 8+d8, t is thickness expressed by g/cm2, p is the momentum of the incident 

electron and (3, c, A and N have their usual meanings. B is a constant which depends 

on the energy of the electron, the atomic weight and the atomic number of the medium,・ 

and the thickness of the layer, and its value, as well as fの andj<2), are given in 

the paper of Moliere. 

In order to calculate the energy loss JE;, JE; is taken to be the sum of the 

average ionization loss and the average radiation loss suffered by the electron while 

passing tぃi.e.: 

.JE= 0.153 
Z t f,_ E(E+mcデ
五面[1n

1 
2!2mc2 釦(1予）ー (2汀手—1+{3) In 2+百（1-汀下野］

+3.44x10-4和(E+mcり [41n~;ロ-}］ (2) 

and, the value of the ionization energy of Al I =150 eV is used5) and its straggling 

is neglected. 

For the application of the Moliere's formula, l; must be taken thin enough so as 

to satisfy x ✓B =40° which is the half angle of Moliere's distribution. Moliere's 

formula is recognized to be accurate within the half angle x J咽＝20°. However, the 

formula was extended tentatively beyond this limit because the calculation becomes 

far laborious if f; is decided from x 1位＝20°. When the electron penetrates a layer 

of thickness t, the actual path of the electron scattered in large angle becomes con-

siderably larger than t and this fact attributes to the main couse which prevents the 

Moliere's formula from being accurate for larger scattering angles. In this case, if 

the path length is put equal to t/cos 8 in the first approximation where 8 is the 

scattering angle and if !/cos 8 is inserted into the Moliere's formula instead of t, the 

equation may be used beyond x-,,⑱ =20°. In our model, the thickness of the thin 

layer is taken to be equal rather to t/ cos 8 and it is presumed that the extention to 

幻／Ii=40° will not commit any material・ error. 

Before the history of the electron is followed by this simplified model, it is neces-

sary to calculate previously the value of each f; and E;. The energy of the incident 

electron is taken to be 2MeV and t1 is calculated from the condition x✓B =40° by 

the formula (1)..JE1 is calculated by inserting t1 into the formula (2). Then, for 

the electron with the energy E2 = E1 -.dE1,ちiscalculated by applying the condition 

x ✓Ii =40°. In such a manner, a set of t; and E; is obtained. Their values are 

shown in the table. 

f; decreases steeply as the electron loses its energy as can be seen in the table. 

When the energy of the electron becomes smaller enough, the electron does not move 

actively and its motion thereafter does not give a large contribution to the result of 
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the problem. Therefore, the above mentioned calcu-

lation is ceased at the 15th segment. For the 16th 

segment, !16 is put equal to the practical range of 

the electron of the energy E16 and is calculated by 

using the following formula双

t =412En 

n = 1.265-0.0954InE} (3) 

where E is expressed in MeV and t in mg/cm2. 

Also the angular distribution of the 16th scattering 

is considered to be cos2 e distribution. The value 

of t16 thus determined is much smaller than the 

path length that the electron has traveled before as 
15 

can be easily seen from the table (i.e. !16 {::凶 t;
i=1 

=1117mg/cmり．

2. 2 Random sampling 

i 

1 

2 

3 

4 

5 

6 

7 

8 ， 
10 

11 

12 

13 

14 

15 

16 

Table 

I E; (MeV) If; (mg/cmり

2.000 281 

1.557 191 

1.262 138 

1.051 105 

0.891 82 

0.766 65 

0.666 53 

0.583 44 

0.514 36 

0.456 30 

0.406 25 

0.363 21 

0.326 18 

0.293 15 

0.265 13 

0.240 56 

By employing a table of random numbers of uniform distribution, the angle e, 
of the i-th scattering is picked at random from the distribution represented by the 

Moliere's formula (1) as follows. At first, a random nqmber R0 is picked from the 

uniform distribution from O to 1 and the equation R。=『加疇 issolved and then 

100 ゜
a set of — random numbers釘， whichis distributed as 2oe-82, are produced, where 

M 

M=！。～頌）鱗＝打2e心 f(1]叫勺砂］odo. Next, aふ”ispicked at random 

I゚ fCl)⑭） 1 
from the distribution ~ o and is added to the set of random numbers釘 if

B 
f(1)（い＞0, or a number in this set, which has the nearest [value ~to o/', is 

removed from釘 if/C1)(0/') < 0 and this procedure is repeated間。礼lf(1;a)l0d8 

times. Also, by picking堕「い望）lodo random numbers from th M 。 B2 e distribution 

JC2)(o) 
B2 o and testing to determine as before whether they are to be added or removed, 

2, jCl) (0), /C2) (;J) 
; that obey Moliere's distribution [ 2e-82 +~+~] odo 100 random numbers o, that obey Moliere's distribution［幻＋

can be obtained completely and the scattering angle R; is expressed as ®臼X✓万 8i

=40°xふ． Afterthis procedure is repeated for 15 scatterings and each 100 random 

numbers are determined, 100 r916's for the last segment are determined by solving 

the equation R16=『＂cos2{j sin鱗 because釦 wasassumed to be cos屯 distribution.

゜It is obvious that the azimutal angle of the scattering(,/)is uniformly distributed 
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from 0° to 360°. 1600 f/)'s are determined from f/) =360° X R。whereR~ is a random 

number. 

When all scattering angle釘 f/);are thus determined for 100 histories, it is 

hecessary to calculate the coordinate of each scattering point P;. A cartesian coordi-

nate is taken with its origin at the point of incidence P1 and its z-axis on the incident 

ray, and the coordinate of P; is expressed as（功， yぃz;).・ The direction of the electron 

after i-th scattering is determined by the angle{}; from the z-axis and the azimuth 

釦 relativeto x-axis.{}ぃ¢; are determined from the well-known trigonometric 

equations: 

cos{}i = cos{}iー1cosR叶 sin{}i-lsin ei cos f/)i 

sin{}i sin4¢i = sineisin f/)i 

¢戸¢i-1+4釦

But it is very laborious to solve these equations analytically. We found it very facile 

for this purpose to use a special slide rule6) which can be produced by employing a 

stereogram. The coordinate of P; can be calculated from 

,-1 i-1 i-1 
-1 功＝込 t;sin 81 cos <P;, Y; = 2J t1 sin 8; sin ¢1, Z;＝凶t1cos81.
i=l i=l i=l 

Thus the histories of 100 electrons that is incident with the energy of 2 Me V upon a 

infinitely extended homogeneous medium of Al are completely described. 

2. 3 Tests for various boundary conditions 

Solutions of various problems can be obtained when these histories are tested and 

determind whether or not they satisfy each bou_ndary conditions of the problems. We 

have chosen the following three problems. 

(a) Relation between the penetration probability and the thickness of th_e Al 

layer when the electron of 2 MeV is perpendicularly incident. 

Let ZM be the maximum of the z;'s of a certain history, then this electron can 

penetrate an Al layer of thickness t<zM, But there must be no scattering point as 

zi<O for i<M because an electron can not penetrate if it is backscattered before・ 

the M-th scattering point is reached. There.fore, picking such ZM's from each 100 

histories and plotting the number of histories・ N(t) whi,ch satisfy ZM >t, the estimate 

of the penetration probability is given by N(t)/100. The results obtained by these 

tests are shown in Fig. 2. 

(b) Relation between the backscattering probability and the angle of incidence 

when the electron of 2 MeV is fo.cident obliquely upon a Al slabs having 

sufficient thickness. 

When the angle of incidence a is equal to zero (perpendicular incidence), an 

electron can be considered as backscattered if there is such i as to fulfill z, < 0 in 

the history. Let Nback be the number of such histories, the estimate of the backscat-

tering probability is given by Nback/100. 
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When a is riot equal to zero 100 

and the z-axis is taken along the N 

incident ray as before, then the 8 O 

angle between the surface of the 

Al slab and the z-axis is also a. 60 

Infinite numbers of such surfaces 

can be made by rotating the slab q.o 

around the z—axis and, since the 

expected value of the backscatter- 2 o 

ing probability is the same for all 

the surfaces, a history can be tested 

for all of these infinite number of 

slabs. However, only four tests 

were applied for the following 

゜0 20 0 1/.00 600 800 /OOl> /ZOO 
t •mg/cm2 

Fig. 2 The number N of penetrating electrons 
of 2.00 MeV. as a function of the thick-
ness of Al layer (mg/cmり・

special cases where the calculation 

is easily carried out. Namely, when the surface of the Al slab is parallel to x-axis, 

the backscattering occurs if such P; that satisfies the following inequality exists: 

y心＞街cota or -yじ＞Z;cot a. 

Wheh the surface is parallel to y-axis, the condition is 

功＞Z;cot a or -X; >z; cot a. 

If the Nhack scccesses are obtained as a result of 400 such tests, the estimate of the 

backscattering probability is given 

by Nback(a)/100. The variance of / 00 

the estimate is not ✓P~ N1,,,,f.. 

as in usual case where P is the 80 

estimate obtained and N is the 

independent history tested. In our 60 

case, although 400 histories are 

tested, each four histories are not,(LQ 

independent of each other, there-

20 

95 30 5ヽ 60'l5 90 
0( ゜

fore, the variance of this case is 

larger than the value given for 

N=400 but smaller than for N=lOO. 

The results obtained are shown in 

Fig. 3. The error represented on 

the curve corresponds to the case 

in which N =100. 

Fig. 3 The number Nback of the back-
scattering electrons of 2.000 MeV 
as a function of the angle of 
incidence a:. 
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(c) Relation between the penetration probability of the electron and the thick-

ness of the Al layer when the electron with smaller energy than 2 MeV is 

incident perpendiculary upon it. 

In the above approximate model, all electrons scattered i times have the same 

energy E;. Therefore, the motion of the electron, which is incident with the energy 

靡 canbe discussed by using the history of 2 MeV after the i-th scattering. There-

fore, we tested their histories in the cases where the electron of 1.56 MeV, 1.05 

Me V and 0.51 Me V is incident 

perpendicularly upon the Al layer JOO 

by rewriting as follows. N 

In the histories of the electron 80 

of 2 MeV described above, the 

second segments (i =2) corres- 60 

pond to the energy of 1.56 Me V. 

Therefore, a coordinate trans- IJ.O 

formation is carried out in such 

a manner that the electron corres-

ponding to the first segment be 

perpendicularly incident at the 

origin. Let the direction cosine 

of the segment瓦瓦 be(l, m, n), 

then P; has its coordinate for the 

new system 

召＝ l（功一花）＋m(y;-Yり

+n(Z;-Z2) 

=l功＋myげ nzi-Z2I

where zz'is the coordinate of P2. 

Thus, calculating召 ofthe each 

scattering points of all histories 

and testing as (a), the penetration 

probability shown in Fig. 4 is 

obtained. 

For the electron of 1.05 MeV 

and 0.51 MeV, similar calcula-

tions are carried out and each 

curve is obtained as shown in 

Fig. 5 and Fig. 6. 

20 

200 1/.00 600 800 /000 
2 t m9妬

Fig. 4 The number N of the penetrating ele-
ctrons of 1.56 MeV as a function of 
the thickness of Al layer (mg/cm鯰

/00 

N 

80 

60 

“° 
20 

゜0 /00 200 300 soo -600 
t m9/4"'2 

Fig. 5 The number N of the penetrating electrons 
of 1.05 MeV as a function of the thickness 
of Al layer (mg/cmり．
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/00 

μ 

80 

60 

40 

20 

Q.O 80 12 0 200 ―2ゆ
2 t ，，，対＇cm

Fig. 6 The number N the penetrating electrons 
of 0.514 MeV as a function of the thick-
ness of Al layer (mg/cmり．
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Fig. 7 The curve shows the pratica! range of the 
electron in rng/crn2 calculated by katz's expe・

rirnental formula (3). Circles in the figure 
are the values obtained by this calculation. 

3. Discussion 

Many assumptions made in 

the above calculations naturally 

brings about some error in the 

results. But it is very difficult 

to estimate it analytically. We 

estimated the practial range of 

the electron by extrapolating 

the penetration curve and ob-

tained the values 920, 663, 425 

and 160 mg/cm2 for the electron 

of the energy 2.00, 1.56, 1.05 

and 0.51 MeV respectively. 

Katz's empirical formula about 

the practical range (3) gives 

the values 946, 708, 439 and 

170 mg/cm2. The consistency 

is rather good as can be seen 

from Fig 7. This means that 

our simplified model is suffici-

ently adequate to discuss the 

behavior of high energy elect-

ron in thick medium. 

Although the size of our 

sample is too small to obtain 

the rigourous results, it has 

been confirmed that it is pos-

sible to obtain some useful 

results if sufficiently large sam-

ple is calculated by this method 

on an automatic computer. The penetration and the backscattering coefficient of 

various beta-ray, the efficiency of the G-M counter and of the ionization chamber for 

various gamma-ray can easily be obtained by using same histories. However, the 

history in high Z materials becomes more troublesome to calculate because the electron 

is much more scattered in high Z materials than in low Z materials and the number 

of collisions needed to form a whole history becomes larger. In order to obtain the 

results of the same accuracy in the case of Pb, as in the case of Al, the history must 

be composed of about one hundred segments. 
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