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Abstract 

It has been pointed out that one of the main causes of faults on submarine cables 

would be the electrolytic corrosion due to the current which is induced in the cable 

by tides moving across the earth's magnetic field. 

In this paper, some formulas for electric field due to a stream of water which 

flows in a tide-way of rectangular cross-section are derived, and results of numerical 

computations are shown. The effects of conductivity of the bottom are also treated as 

boundary value problems. It is found that the sides of tide-way are the most dangerous 

places as the intense electrolytic corrosion of cable occurs there. 

1. Introduction 

It was already predicted by Michael Faraday in 1832 that an e.m.f. would be 

produced in a volume of water moving across the earth's magnetic field1). During 

the year of 1918, Young, Gerrard and Jevons2
) carried out a series of sea experiments 

at Dartmouth Harbour, England, and observed electric disturbances which were def­

initely traced to movements of sea-water cutting the vertical component of the earth's 

magnetic field. 

On the other hand, it has been found by one of the authors of this paper that 

there exists an electric current in submarine cable sheath, which varies according to 

the velocity and direction of the tidal flow. He pointed out in a previous publication3
) 

that this current would cause electrolytic corrosion of the sheath, and he estimated 

that it would be one of the most important causes of cable faults. His experiments 

and observations have shown that the electrolytic corrosion of the cable sheath due to 

the electric current produced by tides in the earth's magnetic field sometimes exceeds 

the mechanical erosion which has been believed to be the main cause of cable faults 
for many years. 

Although the phenomenon has been known since the 19th century, theoretical 
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studies on the subject have not yet been carried out, as little attention has been payed 

to its practical meaning. It is important to know the distributions of the electric 

fields and the currents in the sea-water, since the corrosion of the cable sheath will 

occur at a place where a large amount of current flows out from it. On the other 

hand, the knowledge of the field distribution will make it possible to apply this 

phenomenon on oceanographic problems such as the measurement of the ocean current 

by an electrical aid5). 

In this paper, the authors will analytically treat the problem of the electric field 

due to tides, and give some numerical results of the computations, which would be 

of practical interest. 

2. General Consideration 

In Fig. 1, let the space y>O be a semi-infinite conductor of conductivity a, and 

,, 
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Fig. 1 

the domain (A) be flowing in the direction of the 

z-axis. If we assume that the magnetic field H is 

vertical and uniform, an e.m.f. is induced in the 

flowing medium (A) having the direction of the 

x-axis and its magnitude E0 per unit distance is 

given by the relation 

(1) 

where µ 0 is the permeability of the medium, and 

v is the velocity of the domain (A). If the magnetic 

field H is taken as 32 AT /m, or ~H as 4 x 10-5 weber/m2 =0.4 gauss, then 

E0 ~20VN mV/km, ( 1') 

where VN is the velocity in knot. 

By this e.m.f. an electric current circulating in both domains (A) and (B) will 

be produced. If we assume a closed curve s as shown in Fig. 1, and apply Ohm's 

law to this circuit, then we have 

f ; i•ds = ~:Eodx, (2) 

where ; is the current density at any point. By means of the relation between the 

current density ; and the electric field E: 

i =aE, ( 3) 

Eq. (2) can be written as follows : 

f E•ds = ~;E0dx. (4) 
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It is evident from this relation that E cannot be derived from a scalar potential, 

because the integral of the right hand side of Eq. ( 4) does not vanish. 

If we put 

E =E'+E", 

and assume that the partial field E' satisfies the relation : 

curlE'=0, 

then E' must be derived from a scalar potential V' by the formula : 

E' = -grad V', 

and should satisfy the equation : 

f E'•ds =0. 

Substituting Eqs. (5) and (8) into Eq. (4), we get 

f E"•ds = ~:E0dx. 

(5) 

(6) 

(7) 

(8) 

(9) 

On the other hand, since the stationary medium (B) has not any distributed 

e.m.f. in it, then 

curl E = 0 in (B)' (10) 

and by Eqs. (5) and (6) we get 

E"=O in (B). (11) 

Writing 

E=EA, E'=E'A, E" =E"A in (A), 
and 

E=EB, E' =E'B' E" =E"B in (B), 

and substituting Eq. (11) into Eq. (9), we find the relation: 

~:EA"•ds = ~:E0dx, (12) 

which states that the vector EA" is horizontal and its magnitude EA" is equal to the 

distributed e.m.f. per unit distance : 

(13) 

This is a very simple but important relation in the analysis of the problem. 

In general, the vector j must satisfy the relations : 

div; = 0, or div aE = 0 , (14) 

so that the fields EA and EB would be continuous on the both sides of the domain 

(A) in case the medium is uniform (a=const): 

(15) 
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On the bottom of (A), however, the horizontal components EAx and EBx are not 

necessarily continuous, even if the medium is homogeneous, because EB" =0 at every 

point under the bottom of (A), whereas EA"=E0 and E0 is not necessarily zero on 

the bottom of (A). The necessary conditions to be satisfied on the bottom are the 

continuity of the horizontal components of the partial field E' and that of the vertical 

components of the current density aE : 

(16) 

where IJA and IJB are the conductivities of the medium on the upper and lower sides 

of the plane y=h, -c<x< +c respectively. If the medium is homogeneous, it can 

be written as follows : 

(16') 

3. Case I: Uniform Velocity. 

3. 1. Homogeneous Medium. 

At first let us consider the electric field in an uniform semi-infinite medium of 

conductivity a. Now assuming that the medium in the domain (A) of Fig. 2 is 

c-
',Y 

Fig. 2 

fl.owing in the z-direction with a constant velocity 

v0 , then the distributed e.m.f. E0 per unit distance 

in the region of (A) will be uniform and its 

magnitude is given by Eq. (1). 

The scalar potential V' from which the partial 

electric field E' is derived by Eq. (7) must be a 

solution of Laplace's equation: 

(17) 

and x- and y-components of the total field E must satisfy the conditions : 

(18) 
and 

(19) 

which are given by Eqs. (15) and (16'). These relations can be rewritten as follows: 

and 

using the relations: 

and 

E.4x=EA.~+EAx, EA.x=Eo, } 
EAy=EAy+EA.y, EA.y=O' 

(18') 

(19') 
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EBx = EBx+EBx, EBx = 0, ( 

EBy = EBy+ E/B, Esy = o, s 

259 

which are given by Eqs. (13) and (11). 

If we assume a surface distribution of current source, the density of which is 

equal to aE0 , on the plane x=c (0<y<h), and another current source of density 

-aE0 on the other plane x= -c (0<y<h), then the potential due to these plane 

sources is given by 

where 

V' = -:;[H(x-c, h-y)+H(x-c, h+y) 

-H(x+c, h-y)-H(x+c, h+y)], (20) 

(21) 

It can be easily shown that the potential V' given by Eq. (20) satisfies the necessary 

conditions mentioned above. And the partial fields are derived as follows : 

EAx} = _8V' =Eo[tan-1h-y +tan-1h+y -tan-1h-y _tan-1h+y]' (22) 
E13x 8x 2n x-c x-c x+c x+c 

E'-f-y}=-8V'=Eo[lo (x-c) 2+(h+y) 2 lo (x+c) 2 +(h+y) 2j. (23) 
EBy 8y 4n g (x-c) 2 + (h-y) 2 g (x+c) 2+ (h-y) 2 

The components of the total field are calculated from 

EAx=E0 +EAx, EAy=EA.y in (A), (24) 

0.8 t c-20/r. and 
~o EBx=Esx, EBy=EBy in (B). (25) 04 " l,S 

,!! -0 
Figs. 3 and 4 show the distributions 
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these figures, that the electric field in the domain (A) is almost equal to the distrib­

uted e.m.f. E0 per unit distance, so that 

However, the horizontal component E,. varies discontinuously at the points y=h, x= ±c, 

and the vertical component Ey becomes infinite at the same points. It should be im­

portant to note that the horizontal component EBx (y>h) in (B) changes its sign at 

the points x= ± c. 

It will be very interesting and useful to plot a set of current lines in the medium. 

For this purpose, we use the current flux J which flows across a vertical plane 

x=x1=const., between y=O and y=y1. This can be calculated as follow: 

where 

fY1 aE 
]=a Jo EA:cdy= 4/[4rry1-G(c-x1, h-y1)+G(c-x1, h+y1) 

-G(c+x1, h-y1) + G(c+x1, h+y1)], 

-c<x1< +c, O<Y1<h; 

rh fY1 aE 
J=aJ

0
EA:cdy+a Jh EBxdy= 47!"

0[4rrh-G(c-x1, y1-h) 

+G(c-x1, Y1+h)-G(c+x1, Y1-h) +G(c+x1, y1+h)], 

-c<x<+c, h<Y1; 

fY1 aE 
]=a Jo EBxdy= 47!"

0 [G(x1 -c, h-y1)-G(x1-c, h+y1) 

(26a) 

(26b) 

-G(xi+c, h-y1) +G(x1+c, h+y1)], c<lx1I, (26c) 

(27) 

The total current ]t which circulates in the medium is given by substituting 

X1=0 and y 1=h into Eq. (26a): 

Fig. 5 

J _ caE0 [ 1 4h2 + c2 + 4h ta _1 c] 
' - 2rr og _c_2_ c n 2h · (28) 

cA-5 

Fig. 5 shows an example of current 

distribution in the uniform medium. In 

this figure, the equipotential lines ( V' = 
const.) in the domain (B) are also plotted. 

It is found that the current flows almost 

uniformly at the center of (A), but the 

amount of the current passing through 

the vertical sides of the region (A) is 

about 50% of the total current ]t. The 

current lines are refracted at the boundary 
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plane y=h, -c<x< +c, and show sharp bends on 

that plane. 

3. 2. Two Layer Problem. 

Now let us consider the case where the space 

consists of two media stratified horizontally as 

shown in Fig. 6. Assuming that the velocity of 

medium in (A) (-c<x< +c, O<J,<h) is uniform, 

the electric field E, in the upper layer can be 

expressed by 
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Fig. 6 

(29) 

where Ep represents the primary field (i.e. the field in case the conductivity of the 

lower layer is equal to that of the upper, <12 =<1,), and E,* represents the secondary 

field which is produced by the influence of the lower layer. 

The conditions to be satisfied on the boundary plane y=h are as follows: 

(30) 

where 

(31) 

and 

E~:x = Ep:x-Eo, -c<x< +c, l 
=Epx, c<lxl; 

E;y=EP:,• 

(32) 

It is evident that the secondary field E,* in the upper layer and the resultant 

field E 2 in the lower layer can be derived from potentials V,* and V2 respectively, 

which are solutions of Laplace's equations: 

The appropriate expressions for these potentials are as follows: 

V,*= [L,(.l)(e>-Y+e->-Y)sin).xd)., O<y<h, 

Vz = r L2().)e->..Y sin ).xd). , h<y, 

from which we get : 

and 

Et.,= -r ).L,().)(e>-Y+e->-Y) cos).xd).' 

E{y = -[ ).L,().) (e>-Y-e->-Y) sin ).xd).; 
} 

l 

(33) 

(34) 

(35) 
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(36) 

The integral expression of Ep' is obtained from Eqs. (22) and (23) : 

E f= d). 
E;x= - rco .lo [2-e-"-h(e"-Y+e-1'.Y)]sin).ccos).xy, 

E' = + Eo r= e-1'.h(e"-Y -e-1'.Y) sin ).c sin ).xd).. 
PY TC .lo ). l (37) 

Substituting Eqs. (35), (36) and (37) into Eq. (30) we obtain following results: 

-- k'Eo r= e-Ah 1'.Y -1'.Y . d). 
E1"-n .lo l-ke-21'.h(e +e )sm).ccos).xy, 

E -- k'Eo r= e-1'.h ( 1'.Y -1'.Y) . ). . ). d). 
ly-n .lo 1-ke-21'.h e -e sm csm x~' l (38) 

and 

l (39) 

where 

(40) 

For numerical computations, it is necessary to expand above expressions into 

series. By means of the relation : 
00 

1/(l-ke-21'.h) = LJ kne-Znl,.h' 
n=O 

and formulas : 

[ e-"-Psin ).a cos ).b~). = ~ ( tan- 1 a;b +tan-1apb), P>0, 

f= -1..p . ). . ).bd). - 1 1 (a+b)z+ pz 
Joe sm asm -y- 4 og(a-b)z+pz, P>0, 

the following infinite series are obtained : 

E _ k1E0 ~ kn[ _1 c-x _1 c-x 
1"-2,r ~o tan (2n+l)h-y +tan (2n+l)h+y 

1 c+x 1 c+x ] 
+tan- (2n+l)h-y +tan- (2n+l)h+y ' 

E = k'Eo iJ kn[lo (c-x) 2 +{ (2n+l)h+y}2 
1

Y 4,r n=O g (c-x) 2 +{ (2n+l)h-y} 2 

1 (c+ x) 2 + { (2n+ l)h+ y }2
] 

- og(c+x) 2 +{(2n+l)h-y}2 ' 

(41) 

(42) 

(43) 

(44) 
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Ezx = - k~o[tan-1;=: +tan-1;~~ 

-k' n~ kn( tan-1 (2n:~;h+y +tan-1 (2n-ti)7z+y)J' (45) 

k''E [ (c+x)2+ (y-h) 2 

E = --0 log~-~-~~~ 
zy 4n (c-x) 2+ (y-h) 2 

k' ~ knl (c+x) 2 +{(2n+l)h+y}2] 
- /.:'o og (c-x) 2 +{(2n+l)h+y}2 · 

(46) 

At the boundary plane y=h these components become as follows: 

J 
k'E / / 

k'k"E = ( c-x c +x) -2- o, -c<__x<__ +c, 
E1x =--0 2-j kn-t tan-1--+tan-1-- + 

2n ,.= 1 2nh 2nh 10 , c<Jxl, 

y = h_ ; (47. 1) 

k" 
Ezx = k'k"Eo iJ kn-I (tan-I c-x +tan-1 c+x)-{zEo' -c<x< +c' 

2n n=l 2nh 2nh O, c<Jxl, 

y=h-4-; 

E = k'Eo[lo (c+x)
2 
-k' ~ kn-110 (c+x)

2
+ (2nh)

2
] y=h-; 

1
Y 4n g (c-x)2 .,":"1 g (c-x) 2+ (2nh)2 ' } 

y=h-4-. 

(47. 2) 

(48) 

Fig. 7 shows the horizontal components E1x and E2x on the boundary of two layers, 

for K=l/10. There is a discontinuity of amount E0 between E1x and E2x on both sides 

of the plane y=h, -c<x< +c. Fig. 8 shows the vertical components E 1y and E2y 

on the plane y=h, and these components become infinite at the points x= ±c, y=h. 

This is due to the assumption that the velocity of flow of the domain (A) vanishes 

suddenly at the corners of the domain. 

-LS 
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----- -----------, I 
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Q6 
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4-J"> 

0.2 
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-0.2 

··0.4 

-0.6 
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Fig. 8 
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4. Case II: The velocity diminishes 

towards the bottom. 

4.1. Homogeneous Medium. 

If the velocity of the moving medium (A) in 

Fig. 9 is given by 

v = v0 = const., 

- h-y 
V-Voh--' -g 

(49) 

the expression for the potential V' becomes as follows: 

V' = 4rr(!'.'._g) [F(c-x, h-y)-F(c-x, g-y) +F(c-x, h+y) 

-F(c-x, g+y)-F(c+x, h-y)+F(c+x, g-y) 

-F(c+x, h+y)+F(c+x, g+y)], (50) 

where the function F is defined as 

By means of Eq. (50) , we get following expressions for the electric fields : 

Ex'= 4rr(!'.'._g)[G(c-x, h-y)-G(c-x, g-y)+G(c-x, h+y) 

-G(c-x, g+y) +G(c+x, h-y)-G(c+x, g-y) 

+G(c+x, h+y)-G(c+x, g+y)], 

E/ = - 4rr(!'.'._g) [H(c-x, h-y)-H(c-x, g-y)-H(c-x, h+y) 

+H(c-x, g+y)-H(c+x, h-y)+H(c+x, g-y) 

(51) 

(52) 

+H(c+x, h+y)-H(c+x, g+y)], (53) 

{ 

Eo, 
h-y 

E,,=E,,'+ Eoh-g' 

0' 

E,,=Ey', 

-c<x< +c, 0<y<g, 

-c<x< +c, g<y<h, 

-c<x< +c, h<y, 

or c<lxl, 0<y, 

(A) } 

(B) 

in (A) and (B). 

The current flux across the plane x=x1, 0<y<y1, is given by 

]=]'+ 

aE0 y1, -c<x1< +c, 0<Yi<g, 

<1E0 

2
hyJ'~)~~~Y./)_, -c<x1< +c, g<Y1<h, 

h+g 
aEo-2-, 

0, 

-c<x1< +c, h<Y1, 

c<lx1I, 0<Y1, 

(54) 

(55) 

(56) 
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where 

]' = -
4
1t({:._g) [I(c-x1, h-y1)-l(c-x1, g-y1)-l(c-x1, h+y1) 

+I(c-x,, g+y1) +I(c+x,, h-y1)-l(c+x,, g-yi) 

-I(c+x,, h+Y1) +I(c+x1, g+y,)], (57) 

and 

(58) 

The distribution of the field at various depths are shown in Figs. 10 and 11. In 

this case, E,, and E, are finite everywhere, and on the bottom of the domain (A) 

EA,,=EB,,, since the velocity of the medium is zero on the bottom. 

The current lines and equipotential lines are plotted in Fig. 12. The center of 

circulation of the current is not on the bottom of the domain (A), but in the region 

g<Y1 < h, x, = 0. This point and the 

...,_..---.,.l,_; ·0.5 
-1.5 -1---="" 

C•20J.,h•2J 
I -I I 

·L5 "\!r -05 

·I 
--15 -05 

I -I 
-15 °o/ 

·I ' -t5 "JT-o.s 

r J-2 ~ 1.'s -o.2L " xic-

Fig. 10 
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y-1, 

OS I r/c_,!:5 

_.li\,,.Y•,'.5/t 
0.5 I l5 

0 
-0.2'- o.s lr/c __25 

Fig. 11 

2 

2 

2 

2 

2 

2 

2 

amount of total current ]t is calculated 

numerically from Eq. (56), substituting 

x1 =0 into it. The point x,=0, y,=ymat 

which the current J becomes maximum is 

the center of circulation, and the maxi­

mum value of J is the total current ]t. 

In Fig. 12, Ym=0.954h, and ],=0.659aE0h. 

It can be found from this figure, that 

the greater part of the current flows in 

the upper region of (A), and more than 

half of the total current passes the sides 

of (A). Every current line is a smooth 

curve, and some of the turning points, 

at which the hosizontal component of 

c/4•5, 
h/.f •2 

Fig. 12 

/ 
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current density vanishes, are in the domain (A). 

This means that a small part of the current flows 

against the distributed e.m.f. in the lower region 

of (A). 

4. 2. Two Layer Problem. 

We can solve the boundary value problem as 

shown in Fig. 13, by a similar way described in 

§ 3. 2. The results are as follows: 

(59) 

Eo r= [(e-A(h-Y) +e-A(h+Y))- (e-A(g-Y)+e-A(g+Y))] sin AC cos AX dA 
n(h-g) Jo A2 , 

0<y<g; (60 a) 

Ep,, = - Eo r= [ (e-ACh-Y) + e-A(h+Y)) - (e-1'CY-g) +e-A(y+gJ)J sin AC cos AX dA 
n(h-g) Jo ).2 ' 

g<y<h, (60 b) 

(61 a) 

Epy = + Eo r= [2- (e-1'.Ch-Y)_e-1'.Ch+Y)+e-ACY-g) +e-1'.CY+gl)] sin AC sin AX dA 
7!~-~Jo ~• 

g<y<h, (61 b) 

E-'1: = - --~!}_o ___ r= (e1'.h+e-M)-(e>-g+e-;,._g) e-21'.h(e1'.Y+e-A") sin AC cos ).x.!!-l..... 
1 n(h- g) Jo 1-ke-21'.h A2 ' 

o<y<h, 

E* - kEo r= (eM+e->-h) -(e1'.g+e-Ag) -21'.h( 1'.Y -1'.Y . . d). 1y- - n(h-g) Jo l-ke-21'.h e e -e ) smAcsmAxy, 

0<y<h, 

E = - k"Eo r= (eAh+e-1'.h)-(e;,._g+e-1'.g) ->.Y . dA 
2x n(h-g) Jo l-ke-2M e sm).ccos).xy, h<y, 

These can be expanded into the following infinite series: 

E*- Eo ~ kn 
u- 4n(h-g) .. ~ 

x [{M(c-x, 2nh+h-y) +M(c-x, 2nh+h+y) 

+M(c-x, 2nh-h +y) +M(c-x, 2nh-h-y) 

+M(c+x, 2nh+h-y) +M(c+x, 2nh+h+y) 

+M(c+x, 2nh-h+y)+M(c+x, 2nh-h-y) 

-{M(c-x, 2nh+g-y)+M(c-x, 2nh+g+y) 

+M(c-x, 2nh-g+y) +M(c-x, 2nh-g-y) 

(62) 

(63) 

(64) 

(65) 



On the Electric Field due to Tides 

+M(c+x, 2nh+g-y)+M(c+x, 2nh+g+y) 

+M(c+x, 2nh-g+y) +M(c+x, 2nh-g-y) }] , O<y<h, 

Epx 4n(f~g) [M(c-x, h-y) +M(c-x, h + y) +M(c+x, h-y) 

+M(c+x, h +y)-M(c-x, g-y)-M(c-x, g+y) 

-M(c+x, g-y)-M(c+x, g+y)], O<y<h, 

E*- Eo f kn 
IY - 4n(h-g) n-1 

x[{H(c-x, 2nh+h-y)-H(c-x, 2nh+h+y) 

-H(c-x, 2nh-h +y) +H(c-x, 2nh-h-y) 

-H(c+x, 2nh+h-y)+H(c+x, 2nh+h+y) 

+H(c+x, 2nh-h +y)-H(c+x, 2nh-h-y) 

-{H(c-x, 2nh+g-y)-H(c-x, 2nh+g+y) 

-H(c-x, 2nh-g+y)+H(c-x, 2nh-g-y) 

-H(c+x, 2nh+g-h) +H(c+x, 2nh+g+y) 

+H(c+x, 2nh-g+y)-H(c+x, 2nh-g-y) }] , O<y<h, 

Ep_,.= - 4n(f~g) [H(c-x, h-y)-H(c-x, h+y)-H(c+x, h-y) 

+H(c+x, h +y)-H(c-x, g-y) +H(c-x, g+y) 

+H(c+x, g-y)-H(c+x, g+y)], O<y<h, 

k11E = 
E2x= 4 (h-o ) ~ kn 

7t g n•O 

x[M(c-x 2nh-h+y)+M(c-x, 2nh+h+y) 

+M(c+x, 2nh+h+y)+M(c+x, 2nh+h+y) 

-M(c-x, 2nh-g+y)-M(c-x, 2nh+g+y) 

-M(c+x, 2nh+g+y)-M(c+x, 2nh+g+y)], h<y, 

k"E = 
E2,,.= 4 (h-o) ~ kn 

7t g n-0 

where 

x[H(c-x, 2nh-h +y) +H(c-x, 2nh+h+y) 

-H(c+x, 2nh-h +y)-H(c+x, 2nh+h+y) 

-H(c-x, 2nh-g+y)-H(c-x, 2nh+g+y) 

+H(c+x, 2nh-g+y) +H(c+x, 2nh+g+y)], h<y, 

M(e, '1/) = e log (e2 +'1/2
) +2'1/ tan-1 (e/'1/) 

=H('1/, e), 

and H(t '1/) has been defined by Eq. (21). 

On the bottom y=h, the expressions for the field become as follows: 

267 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 
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k"E = 
Ev•= Ev,= 4,n(h-!g)- .. ~o k"[M(c-x, 2nh) +M(c-x, 2nh+2h) 

+M(c+x, 2nh) +M(c+x, 2nh+2h) 

-M(c-x, 2nh+h-g)-M(c-x, 2nh+h+g) 

-M(c+x, 2nh+h-g) -M(c+x, 2nh+h+g)], y = h, 

k'E = 
E,y = icE2y = 

4 
(h O 

) Lj k"[H(c-x, 2nh) + H(c-x, 2nh+2h) 
1t -g ... o 

-H(c+x, 2nh)-H(c+x, 2nh+2h) 

-H(c-x, 2nh+h-g)-H(c-x, 2nh+h+g) 

+H(c+x, 2nh+h-g) +H(c+x, 2nh+h+g)], y = h. 

(73) 

(74) 

In Fig. 14, the horizontal component of electric field on the bottom is shown. As 

mentioned above, the field in this case 

is continuous everywhere, so that no 

discontinuity occurs even at the points 

x= ±c, y=h. Fig. 15 shows the vertical 

component on the same plane y = h. 

0.3f I. 
02 ~ 

i,.; 
0 0.5 

-0.1 

-03 · 

Fig. 14 

I.O 

08 t 
-\I:' 

06 ~ 

Fig. 15 

5. Case III: The velocity diminishes towards the sides. 

5. 1. Homogeneous Medium. 

In case the velocity of the medium in 

domain (A) of Fig. 16 is given by 

the 

/ X v = v0 = const. , 

c-x 
v = Vo c-d' 

-d<x<+d,} 

d<lxl<c, 

O<y<h, 

1 :\::--,<< ;;,:.,:.)/i: ,/~B) 

c-
(75) 

",Y 
the potential V' is expressed as follows: Fig. 16 

E 
V' = - 4n(c~d) [K(c-x, h-y) +K(c-x, h+y)-K(c+x, h-y) 

where 

-K(c+x, h+y)-K(d-x, h-y)-K(d-x, h+y) 

+K(d+x, h-y) +K(d+x, h+y)], (76) 
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The components of electric field are given by 

E 
E,,' = - 4TC(c~d) [H(c-x, h-y) +H(c-x, h+y) +H(c+x, h-y) 

+H(c+x, h+y)-H(d-x, h-y)-H(d-x, h+y) 

-H(d+x, h-y)-H(d+x, h+y)], 

E E I C-X 
x= x+ E0 c-d' d<lxl<c, 0<y<h, 

{

E0 , -d<x<+d, 0<y<h, 

0, -c<x<+c, h<y, or c<Jxl, 0<y. 

Ey = - 4TC(~~d) [M(c-x, h-y)-M(c-x h+y)-M(c+x, h-y) 

+M(c+x, h+y)-M(d-x, h-y)+M(d-x, h+y) 
+M(d+x, h-y)-M(d+x, h+y)]. 

The current flux J can be calculated by the following relations: 

aEoY1, -d<x1< +d, 

aE0h, -d<x1< +d, 
C-X1 

d< lx1I <c, ]=]'+ <1Eo-a-Y1, c-

C-X1 d<lx1l<c, aE0 -d-h, c-

0, c<lx1I, 
where, 

]' = 4TC(c~d) [F(c-x, h-y) 

-F(c-x, h+y) +F(c+x, h-y) 
•L5 

0<Y1<h, 

h<Y1, 

0<Y1<h, 

h1<Y1, 

0<Y1, 

0.8 f 
Q4 0 

-05 0 0.5 

(78) 

I (79) 

(80) 

(81) 

c-201,,, 
d• 0.9c 

y-o 

I 1.5 z -F(c+x, h+y)-F(d-x, h-y) 

+F(d-x, h+y)-F(d+x, h-y) 

+F(d+x, h+y)], (82) 

and the function F has been defined by 

Eq. (51). 

J, t <~ ,\,~.~ 
The center of the circulation of cur­

rent is at the point x=0, y=h, and the 

total current is given by 

]t =aE0h 2TC(:~d) [F(c, 0)-F(c, 2h) 

-F(d, 0) +F;(d, 2h)]. (83) 

Figs. 17 and 18 show the distributions 

of horizontal and vertical components of 
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the electric field at various depths. These curves are similar to that of Figs. 3 and 

4, but the horizontal component on the plane y=h varies continuously, and the 

vertical component does not become infinite even at the points y=h, x= ±c. The 

minima and maxima of Ev, for y=const. :?:_h occur at the points x=±d and x=±c 

respectively. 

Fig. 19 shows the current lines and equipotential curves. 

to that of Fig. 5, but the effects of the transition 

These curves are similar 

region of velocity (d<\x\<c, O<y<h) are.shown 

very clearly. 

5. 2. Two Layer Problem. 

Also the problem of Fig. 20 can be solved by 

means of the method described in ~ 3. 2. The re­

sults are as follows: 
',Y 
Fig. 20 

k'E ~00 e-M d). E = ~~-0 ~ ~-- ~ (e>..Y +e->..Y) (cos Ad-cos ).c) cos ).x- O<y<h (84 a) 
ix rr:(c-d) o l-ke-2>..h · ).2 ' ' 

k'E f 00 e->..h d). 
Eiy= rr:(c~d) Jo l-ke--ixii (e>..Y_e->..>')(cosU-cos).c)sinhy, O<y<h, (84b) 

k"Eo f00 l-e-2M d). 
rr:(c-d) J

0 
l-ke-2>..h e->..CY-hJ(cosU-cos).c)cosh-I2-, h<y, 

-d<x<+d, } 

d<\x\<c, 

c<\x\, 

(85a) 

(85 b) 

(86) 
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k'E = 
Efx= -

4 
( 0d) 2j k"[H(c-x, 2nh+h-y)+H(c-x, 2nh+h+y) 

7r C- n-0 

+H(c+x, 2nh+h-y) +H(c+x, 2nh+h+y) 

-H(d-x, 2nh+h-y)-H(d-x, 2nh+h+y) 
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-H(d+x, 2nh+h-y)-H(d+x, 2nh+h+y)], (86') 

k'E = 
E1y = -

4
-( _0d) 2j k"[M(c-x, 2nh+h-y)-M(c-x, 2nh+h+y) 

7r C n=O 

-M(c+x, 2nh+h-y) +M(c+x, 2nh+h+y) 

-M(d-x, 2nh+h-y) +M(d-x, 2nh+h+y) 

+M(d+x, 2nh+h-y)-M(d+x, 2nh+h+y)], (87) 

k"E = 
E2x= +

4 
( 0d) }J k"[H(c-x, 2nh-h+y)-H(c-x, 2nh+h+y) 

7r C- n=O 

+H(c+x, 2nh-h+y)-H(c+x, 2nh+h+y) 

-H(d-x, 2nh-h+y) +H(d-x, 2nh+h+y) 

-H(d+x, 2nh-h+y) +H(d+x, 2nh+h+y)], 

k"E = 
E2y= -

4 
( 0d) ~ k"[M(c-x, 2nh-h+y)-M(c-x, 2nh+h+y) 

7r C- n=O 

-M(c+x, 2nh-h+y) +M(c+x, 2nh+h+y) 

-M(d-x, 2nh-h+y) +M(d-x, 2nh+h+h) 

(88) 

+M(d+x, 2nh-h+y)-M(d+x, 2nh+h+y)]. (89) 

On the bottom y = h, 

(Ea, 

E E J c-x 
1x = 2x +] E0 c-d , 

0, 

-d<x<+d, } 

d< lxl<c, 

c<lxl, 
k1k11E = 

E2x= - 4~( --d0-) 2j k"- 1[H(c-x, 2nh)+H(c+x, 2nh) 
7r C n-1 

-H(d-x, 2nh)-H(d+x, 2nh)], 

k'Eo 
41r(c-d) [M(c-x, 0) 

-M(c+x, 0)-M(d-x, 0) 

+M(d+x, 0) 

+k' 2j k"- 1{M(c-x, 2nh) 
n-1 

-M(c+x, 2nh)-M(d-x, 2nh) 

+M(d+x, 2nh)}]. (92) 

Fig. 21 shows an example of the 

distribution of the horizontal component of 

electric field on the bottom (y=h). This 

is very similar to 1"ig. 7, but in Fig. 21, 

-Q4 X•O.I 

Fig. 21 

(90) 

(91) 

C • 20/,, 
d·0.9c 
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there is no discontinuity on the curves, and the negative peaks of E2,, are somewhat 

smaller than that of Fig. 7. 

6. Potentital Dift'e:rence Observed Between Two Electrodes. 

When we lower two point electrodes into the medium, a potential difference will 

be observed between them. If both electrodes are in the stationary domain (B), the 

potential difference will be simply 

(93) 

where Vil) and Vc2) are the values of potential V' at the points (1) and (2) where 

the two electrodes are placed. The potential V' has been defind in § 2. 

If one of the electrodes is placed in the domain (A), and the other in the region 

(A) or (B), the potential difference between them must be calculated from the relation: 

dV = Es'' _.h__ ds, 
~

(2) ( • ) 

(1) <1 
(94) 

where s is an arbitrary curve connecting the points (1) and (2), and E/' is the tan­

gential component of the distributed e.m.f. per unit length along the curve. The 

tangential component is of the current density is equal to aEs, where Es is the tan­

gential component of the resultant field, so that Eq. (94) becomes as follows: 

since Es is equal to Es'+ E/1
• 

Since the potentia• V' at any point P is given by 

V' = - [ E/ds, 

Eq. (95) can be written as follows: 

(95) 

(96) 

which is the same as Eq. (93). 

As mentioned above, V' is continuous everywhere in whole domain, so that dV 

is determined uniquely for the given points (1) and (2), wherever they are placed. 

7. Current Induced in a Linear Conductor. 

In general, a conductor placed in a stationary current field would produce a 

secondary electric field, so that the resultant field near the conductor would be different 

from the primary field, i.e. the field before the conductor had been placed. However, 

a very thin conductor such as a submarine cable does not affect the field materially, 

and the secondary field due to the concuctor can be neglected. In this case, the 

resultant field on the conductor's surface is given by the field when the conductor does 

not exist. 
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When the primary field is produced by tides, a cable laid in the stationary region 

(B), which acts always as a part of the return circuit of the current, would obviously 

have a current density in its sheath given by 

in (B), (97) 

where ac is the conductivity of the cable sheath and E is the field intensity in the 

domain (B). 

If the cable is laid in the tide-way (A), the cable acts as a return path of the 

current, and a discontinuity of tangential component of the field will occur on the 

surface of the cable. The field outside the cable is E, but the interior field is E'. 

The difference E-E' corresponds to the distributed e.m.f. per unit length in the domain 

(A), which is equal to E". Hence we can write 

in (A). (98) 

Since in the domain (B) E=E', we can always express the magnitude of axial current 

density in the cable sheath as follows: 

(99) 

where Es' is the tangential component of the field E'. 

Since the cable is normally laid on the sea bed, the axial current in the cable 

sheath can be calculated by the relation: 

(100) 

where Sc is the effective cross-sectional area of the cable sheath. 

We have found in §§ 3, 4 and 5, that the horizontal component E,,'(y=h) of the 

partial field E' changes its sign at the points near the both ends of the tide-way. This 

means that the amount of the sheath current varies rapidly in these regions, and the 

possibility of the electrolytic corrosion will be also very large. The facts that the 

cable faults occur very often at the ends of tide-way can be explained by the theoret­

ical results obtained above. 

The effect of the conductivity of the bed on the sheath current and other factors 

such as the existence of highly resistive rocks are also understood by this theory. 
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