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Abstracts

This paper deals with the theoretical calculation of the wind tunnel interference
in the cascade tests under the assumption of two-dimensional potential flow and then
with the interference of the wall boundary layer upon the turning angle of flow in
the cascade. Part I contains the theory of the wind tunnel wall interference upon the
turning angle and Part II, the theory of the tunnel wall interference upon the airfoil
characteristics in the cascade composed of airfoils having arbitrary shapes. A
numerical example is shown in the case of cascade composed of N.A.C.A. 6409 and
compared with some experimental results. Finally, Part III contains the methods of

calculating the wall boundary layer effects upon the turning angle.

1. Introduction

In an ordinary cascade test, as shown in Fig. 1, the finite numbers of airfoils are
arranged at the exit of the channel bounded by the two parallel walls and the aero-

dynamic characteristics, such as

lift, drag and pressure distribu- 4
Ry - r“.-.
tion and so on, are usally mea- .7 . e
R o oo s 2 Vi
sured at the airfoil centering Boundary Layer ie
among the others. And, also, H
. t Airfoil
the turning angle § between the v Test Alrfol
inlet and exit flow in the cascade ]
e
is often measured?. The author RTINS K LI Ecia bty TV EWADR P g
had previously discussed the Tunnel Wall Suction oy
tunnel wall interference® in the to comtrol. Boundary Layer

various types of cascade tests Fig. 1
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with the finite numbers of airfoils and calculated theoretically the cascade interference
factor of lift by means of the conformal representation.

In this paper, at first the tunnel wall interference upon the turning angle is
calculated by means of the other conformal mapping under the various cascade condi-
tions. Next, the thin arirfoil theory of Glauert is applied to the cascade composed of
airfoils with arbitrary shape and the aerodynamic characteristics, such as pressure
distribution and lift, are theoretically calculated on each airfoil under the induced
velocities and their gradients due to the above wall interference. Lastly, the influence
of the wall boundary layer upon the turning angle is calculated by the above mapping,
assuming an imaginary source distribution, which is equivalent to the displacement
thickness distribution of the wall boundary layer. The results obtained made clearer
the physical meanings of the suction slots, which are bored on the inlet walls of the
cascade used in the recent tests®.

Part 1
Wind Tunnel Wall Interference upon Turning Angle

2. Conformal Mapping

Suppose a figure composed of infinite numbers of parallel half-straight lines with
the distance H and the stagger angle 3, in the z-plane, as shown in Fig. 2. Taking
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Fig. 2

the origin of the z-plane at such a position as shown in Fig. 2., the exterior domain
of the contours in the z-plane can be conformally transformed into the right side
domain in the &-plane by the following function;

z= ‘THn- {(1+itan B,) log (—1)+(1—itan By) log (¢+1)}
(1
_—7TH— (log cos 8+ tan 8,)
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The straight lines, i.e. tunnel walls ABC, correspond to the %-axis in the {-plane and
the points 2= +oo respectively to £==*1 and £=co. From the eq. (1)

dz _  H ¢+itanB,
dc = =& -1
¢ (2)
dz | _ dx _ H p+tanP,
@ e dy T w1

and the edge points B of the tunnel walls correspond to the following position on the
7-axis;

y = —tan . (3)
The wall distance H is given as follows in the case of an arrangement of cascade

airfoils as shown in Fig. 1 by denoting the chord length of airfoil as ¢ and the pitch d;
H = Zd cos B, = 2(N+1) d-cos 3,

where Z is the number of airfoils, and Z = 2(N+1).

Letting the corresponding points on the ¢-plane to the 1/4-chord points from the
leading edge on each airfoil be xe?¥ (—ke~iY), then & and y can be determined by the
following relations;

logy 1 —2k cos 7+ £24-logy 1+ 2k cos 7+ &2

ksiny tan-1 IESin_)’_}

_ i _ksimyp
tan Bl{tan kcosy—1 £cosy+1

= —ﬁ(secz By +ntan 31) —2(log cos B, +8; tan 8,) , (4

tan B,{logy 1—2k cos 7+ &% —logy 1+ 2k cos 7+ £2}

K Sin j +tan-! Ksiny  Hm@

1 _
ttan kcosy—1 kcosy+1 N+1

where 4 is the pitch-chord ratio, and # the airfoil number, as shown in Fig. 3, then
n=0, +1, =2, +3,---, +N and N+1.

Y
\ 1A
}\\‘ 6] z-pl % -pl.
U n=+3
-P®nd-2 ) e,
A\ (-Xxé"} (xeh
H i ar ar
\ AN o
oy AN §
N B 1 -1 1
c
Z] B
A




354 Goro KamMimMoTo

3. Complex Potential Fanction
The complex potential function on the ¢-plane, which corresponds to the uniform
flow among the parallel walls, can be expressed as follows according to the above
mapping function;
V.H

- 1y, €L
Fo(¢) = — 5, log (C—1)+5 2 log . (5)

where V, is the uniform velocity in the wind tunnel and /7, an unknown magnitude
of circulation, the one of which can be determined by the condition that the flow

should flow out smoothly from the edge points B (£=—itan §,) as follows;

Iy= V.Htan B, (6)

Further, the flow due to one airfoil with the circulation I” among the cascade airfoils,

arranged at the wind tunnel, can be expressed by the following function F(¢£);

il c—we il
B0 = —grlog gm0y 0807 (7

where 41" is an unknown quantity of circulation put into the points £=*1 on the
¢-plane. The magnitude of 477 can be also determined by the above-mentioned

condition;
dF,

e 0 (8)

§==~{tan By h
Then, 41" becomes-as

ar’ K cos yesec? 3, (9)
I’ tan® B, + 2k sin y+tan B, + %’

Thus, the induced velocities at the points 2= +co on the 2z-plane is obatined as

follows;
dF, _ |9k dc | _
Idz zz—w_ dC dz oo (10>
dF, dF, d¢ ar . A,
Gz lpew | dz dz |¢m” T HSM B-cos By —i —prcos? B .

Then, the velocity at the upstream tunnel is the uniform velocity V,, and the velocity
and direction of the downstream are changed by the circulation /. Denote the
induced velocity components at the downstream as dw.. and 4v.. respectively to the

x— and y-axis, then

du.. A7 .
”: =~ VH sin 3,-cos f8;
I 11)
dv., AT
and vV, ~ V.H c0s* B,

Therefore, assuming that each airfoil has the same magnitude I’ of circulation, the
induced velocity components #.. and v. at the cascade composed of the numbers

Z=2(N+1) of airfoils, are expressed as follows;
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o _ KR du., T R K cos Y

V. &y V.,  VH tan 8, n%'_N &*+ 2k sin y-tan 8, +tan® 3, 12)
12

oo _Edv._ I L £cost

V. =25V, V.H «Z2 5 k2 + 2k sin y-tan B, +tan? B3,

Then, the exit velocity V, and the turning angle # at the cascade test become as
. Mo\’ <_”1)2
%—-%J(H~%)+ v,

and tnd = () [1+( )]

Also denoting the velocity of flow along the tunnel wall as w, the result of some

(13)

calculations gives the velocity w as follows;

I\ e KCOS 7‘(772+1)—(%—)=ﬁv2—2msinr-v+x2) (14
w = V1{1+< ) > | 5 " 3 } )
ViH [»Z2x (y-+tan By) (9> —2k sin 7=+ £2)
and the velocity w at the edge B is given as
- I\ X% gcos 7{(1—&?) tan? B, + & sin y(1 —tan? 31)}} v
Ws = V1{1+2( V1H>,,=_N tan 8;(tan® B;+ 2« siny-tan §; + &%) ’ (15)

4. Tunel Wall Interference of Turning Angle

Comparing the above obtained turning angle # with #.., the one in the cascade
composed of infinite numbers of airfoils, the tunnel wall interference upon the turning
angle can be calculated. In the latter cascade the turning angle fl.. can be given
easily by the so-called velocity diagram;

' B ( VI;C) cos 3, -
sin .. “etu( L) sna )

where I'/V,C=Cr /2 and Cp, is the lift coefficient referved to the inlet velocity V.
As numerical examples, the turning angle # and #. are plotted, as shown in

(16)

Fig. 4, to the angle 3; under the following conditions; pitch-chord ratio A=d/c=1,
I'/V,C=Cr,/2=01, 02, 03, 04, 05, and Z=2(N+1)=4, 6, 8. In the figure the
negative valus of (3; show the cascade for the accelerated flow, such as the turbine
blade cascade, and the positive values of B3, show the one for the retarded flow, such
as the pump blade cascade. From the calculated results, it is seen that the turning
angle # of the cascade test is larger than .. of the ideal cascade composed of infinite
numbers of airfoils owing to the tunnel wall interference and then it approaches more
to .. as the number of Z becomes greater.

Similarly, at the other cascade having different arrangements, the turning angles
# are calculated under the same conditions and shown in Fig. 5 and 6.
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In the above-mentioned cases, the circulation I” around each airfoil in the cascade
is assumed to be of equal magnitude to each other. In the case of a circulation with
different magnitudes, the turning angle # can be calculated by the following relations;

Uy K Iy Kcosy

V., tan B‘,;:L'_N( V.H |&®+2ksiny-tan 8, +tan® 83, ° an
v BR ( I ) KCos7

Vi #2225\ V,H J&*+2ksiny-tan B, +tan? 3, °
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Part 11
Tunnel Wall Interference upon Airfoil Characteristics in Cascade

5. Theory of Cascade® by Glauert’s Thin Airfoil Theory
In Part I, the theory of cascade is dealt under the assumption that each airfoil

can be expressed by the single vortex with the circulation I, which is put on the
1/4-chord point from the leading edge, for any shape of airfoil.
each airfoil has a circulation distribution along the chord of airfoil corresponding to
the shape and the cascade conditions.

Assume here that
The profile of airfoil in cascade can be expressed by a camber line y. and a half
thickness distribution ys with a parameter #/ as follows;

Ye=2laycosnll,
n=0

ya = > by sin nd
n=1
positive integer.

where a, and b, are the coefficients determined by a given arifoil shape, ond # is a
Then, denoting the relation;

(18)
dye _ _
dx

b
1 ¢y cos nfl
n=1

(19)

where ¢, is the coefficients determined by the camber line of a given airfoil, the
coefficients ¢, can be determined as follows;

Co = — Z;.I (2n+1) @54
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¢, = —2>2na;s,
1

Il

c; —22;,‘ 2n+1) apyy

Cy = —23 2nd,,
2

Cy = '_22_:? (2n+1) aypiy
........................ . 20

Now, denote the velocities along the upper and lower surfaces of airfoil respec-
tively as w, and w,, the mean velocity of the inlet and outlet velocities of the cascade
as V, then y=w,—w; gives the distribution of circulation and wa=%-(w,+w;)—V
gives the velocity increment due to the thickness, as well known in the Thin Airfoil
Theory.

Take the x-axis in the direction of the chord, the abscissa of the trailing edge

at x=1, and that of the leading edge at x=—1, and substitute x=cosf, and
develope 7 and wg into the following series;

S Aotan%—k i} A, sin nfl
n=1
2L
Wa . A .
and T,-smﬁ = > B, sin nfl ,
n=1

where A, and B, are the unknown

Y
z-pl. )\ ,/Y(f) coefficients determined by the

““““ 7“;~~ boundary conditions.
i d B Now, suppose the circulation
, Z@ ) 1V_r‘ distribution 7(&) along the chord
o o Vé ,,-—_-:——@_ — Uy 1 and the source-sink distribution
Zil/ A I X g(#&) along it, which is determined
/ by the half-thickness distribution,
_____ 7/,2.3:? where § expresses the position of

o=

. the point on the chord, as shown
/ in Fig. 7. Then, the induced velo-
city components at the point §=x,

Fig. 7
8 due to the above-mentioned distri-

bution, are given respectively as follows;
iy = €8 S‘ ; [1 85—
wy—ivy = %57 " 7(&) coth| T enta—) | ag
; (22)
. ig (1 R
i = Gy L a® o[ enca-)
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where 3 is the stagger angle of the cascade which has a relation to the angle 8, and
inlet incidence angle «, of B,=f+a,. Insert the upper eq. of eq. (21) into the
upper eq. of eq. (22) and develope the term coth, then

2
z{}, = TZFSin 2[3-<A0— [212 ) 1;/12 sin 283~ (Ayk%‘—) cos 8,
o (23)

o0 A Z A
v = —Ao—nz,s‘lA,, cos nfl — 24/1200323 (AO _l)—%/lz cos 28-(A.,+Tl) cos O,

where 1=d/2 is the pitch-chord ratio. Determine the source distribution ¢(§) by
means of the above induced velocity gradients along the chord, then the velocity
components #; and v, can be given from the lower eq. of eq. (22) as follows;

)}i ”sm nfl

1 sin

_u‘% = 547%2003 26-b1+{ 12 sin 233+ (

A\ & sin (n+1) f+sin (n—1) 0 ()
24/12 sin 23 ( ),%i b sind
D—I? = —m sin 23'[)1
Therefore, by the following boundary conditions

dy. vyt
dx = & V — (25>

the unknown coefficient A, can be determined as follows;

2

4 a-tCo+ a3 48/12 cos 2B+C,— 247 sin 28+,

1+27LFCOS 23
L ¢ — 12/12 cos 283-4, (26)

=
1+2~4}.—2 CcOs 23

A, = ¢,
Ay = ¢

The other coefficients B, can also be determined by the relation; wa=wuy+u,, as

follows;
2 A 2 . A 2
B, = E}P sin 26-(A(,~—2—2>+{1—27;—/12 sin 23-(A0—72)+2%[2003 2[3}-b
2
—iﬁ sin 26-<A0+ g’ )-2b2
2 A A
B, = szz sin 23-(A0+ ! )+{1 5452 Sin 2{9(A(J > )} 2b,
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B, = {1 2412 sin 28- (Ao——i» 3b, @n

”QZTZ sin 28-( A, T‘)<2bz+ 4b)
B, - {1—2%2 sin 28-(A,— ‘;2 )}.4114

2412 sin 28- (A0+ )(3b3+5b)

Thus, the velocity and pressure distributions along the surface can be calculated by
the above obtained coefficients, A, and B,, and the circulation /™ is determined as

follows;

T o A+ 4) (28)

6. Induced Velocities due to Tunnel Wall

Now, let the induced velocities along the airfoil due to the tunnel walls #, and
vy, and assume that the induced velocities #, and v, are generally smaller than the
ones, #y, vy, Uy and v, due to the neighbouring airfoils. Therefore, each airfoil in
the cascade may be replaced by the single vortex with the circulation I’ at the
1/4-chord point on the chord, and neglect the effects due to the doublet which
expresses the thickness of airfoil. Then the induced velocities %, and v, can be
determined by the following equation;

_dF, d¢ _dF,
T de dz dz

Uy — 10y (29)

where F| is the complex potential function (7) shown in Part I, and F, is a complex
potential function as follows;
Jr logsi (24 )} tim (45 ) tog sinn {5 }-
O gip — L piB
F,(2) o log sinh {d W27 4+ lim 5 log sinh i ¢Bi (z—a) (30)

ayo0

The second term of eq. (30) represents the flow in the case when the trailing vorticies
from each airfoil in the cascade flow away infinitely.

Now, express the induced velocities, u, and v,, along the chord as follows;
uw—iv,,, = (uwo*ivw0)+ (uwl—ivwl) x, (31)

where #,, and v,, are the velocity components and u,, and v, the velocity gradient
components at the considered point on the chord. These induced velocities due to
the m-th airfoil can be given at the neighbourhood of the n-th airfoil by an approxi-

mate calculation;
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ﬁ'{’i I_' El DlE “E Dz - \ v )
v = sl U ey R A E D D S A )
y+tanf sin 3,
VHZ’( )$2+(1j+tanlﬁl)2+ 21 (TIE)
vw 1 al ’
o - Lo P B g DS A B A )
|4 41 ¢ _cosfP( I
*WL( )s%wtan a2 ( Vc)
Uy DE, Cnl (4l 2l
V= 4—VH2{ £k + Rl i 314 B gy sin 22,
DB Do) Y £(8, 1)~ (DDs— BBy 3V £i(8, 1)
~I§’T’:{DIE1 0.6, —(DE-ED X 0o, 7))
vw _ ”F Al TC[’
T/L — 4VH2{ 25 D2+F2} 3 VH” L ( )Dz > cos 23,
+ e (DD BB SY £/6, 1)+ (D.Ey DED SV 1,05 1)}
S A (D ED S 18, )+ ADE S a8, 1)) (32)
where
el sec®B ey (n+tan B,) sec’ B,
D‘—S[l £ (g+tan 31)2]’ Bi=n—tan Bt e an B2
D.- D&+ (ytan B)*]+2E, E(77+tanﬁ) B E[&+ (p+tan B,)?]1—-2D,&(n+1tan B,)
= [£%+ (p+tan B2 a [&%+ (y+tan BT
D=+ 9*—1-—-2tan f, -7, E,=2&(y+tan 1)
F. — (2E(—FE,) §—(2D¢ —Dy)(y-+tan B)
! &+ (y-+tan B,)? ’
F - (2D\§ —D,) §+ (2E & —E,)(y+tan B,)
z &+ (y+tan B,)* ’
and - £§-¢, _ §+6, (33)
S (e Wy iy LR (- By R
fz(e 77) — N —Um - Nt Y

E=&m)*+@—1m)®  (§+Em)+@—7m)®’
g (e ﬂ) — (E—Em)z'_(v_“ﬂm)f___ (E’*‘em)z"(ﬂ—"?my ,
! {(E“"Em)z'*‘(ﬂ_’vm)z}z {<$+$m>2+ (77—7]m)2}2
yz(e 77) — ($—$m)(77—77m) _ (E_Em)O?—vm)
’ {(E—Em)?+ @ —7m)*}* {(§+Em)"+—pm)*}’

and then §=kxcosy, »=«ksiny and > denotes the summation except the airfoil con-

sidered, and the suffix m the corresponding values of the m-th airfoil.

It should be

noticed here that the sign of the induced velocities and velocity gradients is opposite
to the ones obtained by the eq. (32), with the reference to the co-ordinate axes, as
shown in Fig. 7.
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7. Thin Airfoil Theory of Cascade under Tunnel Wall Interference

As the above obtained velocities and velocity gradients are of various magnitudes
at the positions of each airfoil in the cascade, the distributions of circulation along
the chord become unequal to each other. Then, put the additional circulation distri-

bution 47 due to the wall interference into the following expression;

2 = 44, tan + 51 44,500, (34

then the additional circulation 67" becomes as
or ( 44, 35
Ve T ) (35)

then induced velocities due fo the obove odditional circulation 677 are similarly given

by the methods of the paragraph 5 as follows;

duy _ mcosf 44,

vV = "2z 2“‘“(2)("‘4 )

ﬁ’"’,—* — —dA,— 3144, cos ub (36)
n=1

7sinff <, ( ) ( 44, )
T 2oty
where m=0, +1, =2, +3, --- and > enotes the summation excepting m=0. Similarly
the induced velocities due to the source-sink distribution become as

Bur (B B g, Sy T cos 20} ]

Vv 14 P sind 24
o Hw \ [ & sin (n4+-1) A+sin (n~1)4 =*
i ( V ){nzsl b sin 0 127 ¢08 28 'b‘} ’ (37

2
Avq = ~(u;}/0 @l)z—%sin%‘bx

/

+ (ET“}) 2:—;sin 283+b, .

The induced velocities due to the additional distribution on each airfoil and the
induced velocities due to the wall interference should satisfy the boundary condition
on the surface of each airfoil. Thus the unknown coefficients 44, can be determined

as follows;
44, = utw/o 5472 Sin 28° { (u,{;) —b. _V)} \
+ 57 {”2412 sin 28- b} (%I/l ( ) (38)
44, = ”‘I'”;
4A, = 4A;, = - = 0. )
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Accordingly, the additional quantities 4B, for the velocity increments due to the
thickness are given as follows;

4B, = (u‘,,}o +4%){H(1 24/1200523> }

+ (u;;} ) (2b2 12&2 cos 23+b )

4B, — %(1;’7) ' (” )(b L 3b)+ (~7+‘i’{,l) 28, (39)
4B, - (1"” )(2b2+4b )+(“;° +"$) 35,
4B, = (ﬁl’j—‘)(abﬁ 5b,)+ (L0 +"—’{,1).4b4

Inserting the coefficients 44, and 4A, of the eq. (38) into the eq. (35), the following
equation is obtained;

(e )% e spsinzan oo (5 )-(%)

=) 2 ) g sin 28 (%) - )]
= "[( V) T2\ V) Taapsin 80\ | b\ y
As the eq. (40) can be on each airfoil in the cascade, the Z linear simultanous equa-
tions of 61"/ Vc are obtained. Hence the increments of circulation 61°/Vc¢ can be given

by the above-mentioned simultanous equations and, consequently, the additional
distributions of circulation can be also calculated.

(40)

Now, the above calculation was performed under the induced velocities due to
the wall interference assuming that each airfoil in the cascade has the same magnitude
of circulation. Hence, the increments obtained above of circulation 677/Vc give again
the small change of the induced velocities and velocity gradients obtained above, and the
changes denoted respectively as duy,, vy, dup, and 4v, , are obtained as follows;

-l -2

s 52 CASPACRORE 23 LA PACROY
2HE(VC)(AP)?%%

e A0 ) e 53 (20 o (%)
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1“1’0_¥7 (6F)fD DDz+EE}
1% Ve /U 2¢ D}+E3

*W{D‘ sV (E) (&, P+E SV ( 111—;)1"2(5,77)}

21 2 (VT ) e arimm

——ICI—{COSZ B> (6{; >+7r cos B3,-sin 3, Z‘/( oL ) cot (%)}

g DB DB S (O ) 1,08, )~ (DD~ BE) s (%) f08, )

—mAnE sy (3 et m- D 2 (%) gt m)
~r»—~}_]<6[;)( F)E2+2H2 sin 23, cos? 3, > (55.:‘>cosec2 (ﬂZE)

T dp e pen) ¢

+ 2 DD BB Yy (B 1108, v+ (DB DB 3 () 08, 1)

e\ t-mh 3y (2 )g1<gv>+4paw( ) aate, )

e o [0 AI"’) (6‘F) 5 (mn')
i L( Vc)( T D,— 2H2cos 23, cos? B, > Ve ) cosec® \
Further, the additional distributions of circulation due to the changes of induced
velocities obtained above are assumed as follows;

&~ 4AJ tan Dt 514 sinnf (42)
and the change of circulation (617/V¢)’ becomes as
oI 447

L) - fani 48]

Hence, the induced velocities and velocity gradients are given as follows;

duy  mcos B, ( ,, 4AY
Ty Tazr 2 (Z)AA+ )
dvy -t msin 3 m , . d4A/ (4D
V= —4dA; —n}z_;AA,, cos nl+ g — o7 M cot(T)(dAo + 5 —)
and
duy A, b sin nf
Vv ( Vv H%nb” sxnﬂ+24/12COSZB b}
At \ [ & sin (n+1) A4sin(n—1)80  =? (45)
+( 14 ){,.Z, "on sin 0 “igpcos 28 b}
dvy _ —(A““’o n* duw, \ 7
v = v )241251“23"”( % )24/123‘“23"’2
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Therefore, the coefficients 44, and 4B,’ are similarly given as follows;

AAO,:nsinBZ,c (Z)(AA 44/ )

274
— o720 28- { ( ) (Auwl)}+m$° (46)
4A] — A‘;;”L
AA; = 4AY = - =0
and
+(Az;}”°>(1+ 542 €08 23) b+(du"">(262 PcosZB b>+—47%,'ﬂ’—
4By — (AMV“’°)-2b2+(Auw‘)(b1+3bg)+ ("’;, ) “n
4B, = "’{;”0).3b3+ ("’{;”*)<2b2+4b4>
4B/ = ("’;;”0).4b3+("”"’ )caby+5b)
Consequently, the following equation is similarly obtained;
(ve) o2 () et (F)
~ e} B esm s S0 5], o

The rools of the Z linear simultanous equations (48) give the additional circulation
er/vey.

Calculating the induced velocities due to the tunnel walls by means of (817/VeY,
the ones obtained above, and repeating the above-mentioned calculation, the additional
circulation (677/V¢)” and coefficents 4A4,” and 4B,” can be determined. Thus the
same procedures can be applied to the following approximation successively.

8. Procedures of Calculation and some Numerical and Experimental Examples

Suppose a cascade composed of Z=2(N+1) or 2N-+1 airfoils having the given
shape under the cascade conditions of 8 and A. In the tunnel test, the inlet velocity
V, at the inlet of cascade and the incidence angle a; to V,; are known, but the mean
velocity V and incidence angle « to V are not yet known. Given the turning angle
@, the unknown quantities V and a can be determined by the following relations;
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tan (B, —d0) = sin (28,—8)/2 cos B, cos (B, —1)
BI:B+a1, Aﬁ:a,——a{ (49)

% =1/ sin? (2B —0)+ 4 cos? B, cos? (B, —)/2 cos (B, —0) .

Firstly, assume the turning angle § and determine the mean velocity ¥V and
incidence angle a by means of the eq. (49). Then the coefficients A, and B, and
the circulation I” can be calculated by the methods developed in the paragraph 7,
neglecting the wall interference and assuming the circulation to be equal to each airfoil.
Let the values of A,, B, and I be the solution of the zero order approximation.

Next, determine the induced velocities due to the tunnel wall interference from the
solutions of zero order approximation by means of the equations in the paragraph 8,
and then the additional coefficients 44, and 4B, and the additional circulation
(61'/Ve¢) can be calculated. Let the values, as above obtained, be the additional ones
of the first order approximation.

Further performing the same procedures from the first order approximate solutions,
the additional coefficients 4A,” and 4B,/ and additional circulation (6I"/Vc)’ can be
calculated as the second order approximate solutions. Repeating the same procedures
until the additional quantities of 4A4Y, 4By and(87°/Ve¢)” become negligibly small, the
circulation of each airfoil in the cascade can be determined; and then the turning
angle 0 can be given by the eq. (17) with the above obtained values of circulation.
Finally, examine the angle § thus obtained to see if it is equal to the first assumed
value or not.

For example, the calculation was performed, as shown in Fig. 8, in the case of

the cascade, which is composed of N.A.C.A.

6409, under the conditions of Z=5, 3,=40, 10

2=1 and «,=0°. The processes of calcu- %—V‘l Aurfoil No -2

lation are shown in the Table I, and the ) Cu=023¢ §?x;‘;’gf,’"e,,t,
numerical values in the case of the cascade . 0/9/:/7;_';.—_0‘_:_3:_7

without the tunnel wall interference are also /" 7 lower surface

of s
/

NACA6409 B=40! d=1, a=0! g=40

—

Z=3 P i upper surface.
" I
A -2 ~10{f
N - '
o i NACA 6409
Y O '{ A=10 =40
—_ I z=5 a=o0
I
——— 2__—_’,, -zol
e LE TE

Fig. 8 Fig. 9-a
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shown within the bracket in the Table I in order to show the effects of wall inter-
ference. Fig. 9 shows the pressure distribution along the chord of each airfoil, the
thick lines are ones influenced by the wall interference and the thin lines the ones
without the interference. On the other hand, the experiments of the same cascade
with the same conditions, as shown in the numerical examples, was performed.

The tested cascade is so constructed that the pressure distribution of each airfoil

10 10
12— A Aurforl No -1 b-p, - Aurfoil No. O
zV Cuy = 0250 (Theary) sy Cu = 0201 (Theory)
= 0220 (Experiment) 0180 ( Experiment )
O ] ) _ /‘g—rﬁ,‘_—_—-s—dg-;-r— O I_‘;éf ”o—_lg_oﬁaic-‘;-;‘;
lower surface Lower surface
/ / >
//o upper surface upper surface
{ o
-10 -10
NACA6409 lf NACA6409
A=10 g=40 | A=10 pg=40
Z= & K= 0 ! Z= 5 Oy= 0O°
: |
-20 ool
LE. TE Z‘OLE TE
Fig. 9-b Fig. 9-¢
10 10
E-HZ Airfeil No 1 b-p, Airfoil No. 2
&v Cuy= 0231 (Theory) Lv? C,, = 0203 (Theory)
0.108 (Experiment) -0.126 (Experiment)
- o LOWerSurfaCe o=
e s b e
o///7‘7 0o © s ©°2
o
4 O
° uppersurfac:e
ofo
! NACA6409 | NACA6409
,' A= 10 p=40° i A=10 p-_-40'
lj Z=- 5 o= 0° Z= 5 o= 0°
|
20 { - .
LE. TE 2OL.IE'. TE.

Fig. 9-d Fig. 9-¢
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Table I
0 l assumed ‘ 5° 48 | ( 5° 14) ‘ NACA 6409
@ (49) -2° 47 | (~2° 31" B =40° a=1
v/, 09618 | ( 0.9652) = 0" Z=5
r/ve (28) 0.0996 | ( 0.1150)
r/vie (49) 0.0958 | ( 0.1110) a,  0.0607 b, —00018
- - a, —0.0067 b —0.0004

52 A, ~0.0884 | (—0.0833) a, —0.0053 bs —0.0003

EEg A 0.2403 | ( 0.2397) as  0.0064

o5 Ay (26 —-0.0524 | (-0.0524) a, —0.0006
o8 Ay 00024 | ( 0.0024) as 00014 ¢ —0.0195

S a A, —0.0140 | (-0.0140) as  0.0002 ¢, 0.2636

& A 0.0024 | ( 0.0024) , ¢, —00524
. , ¢ 0.0024
B, 01119 | ( 0.1097) b, 00783 ¢, -00140
B, : —-0.0739 | (-0.0759) b, —0.0293 cs 00024
B, €19 -0.0026 | (—0.0026) by —0.0012
B, -0.0053 | (—0.0073)
B, -0.0021 | (-0.0021)
| Mo -2 -1 0 1 2
U/ V 0.0055 0.0112 0.0081 0.0117 -0.0138
Uy V (32) 0.0164 0.0131 0.0052 0.0065 0.0041
U/ V 0.0013 0.0026 0.0039 0.0019 -0.0013
Vuy/ V -0.0047 0.0029 0.0017 0.0014 -0.0116
=]

B2 er/ve) | 40 0.0553 0.0355 0.0109 0.0238 0.0065
-

o &

N 44, (38) 0.0101 0.0098 0.0026 0.0069 —0.0037

Z8 4A, —0.0048 0.0030 0.0018 0.0014 -0.0116

o,

< 4B, 0.0002 0.0211 0.0133 0.0126 -0.0226
4B, 0.0009 0.0000 0.0013 0.0004 0.0008

4B, (39) -0.0001 - 0.0003 —0.0003 0.0000 0.0002

4B, | 0.0000 —0.0002 0.0000 0.0000 0.0002

4B; | 0.0000 0.0000 0.0000 0.0000 0.0000

du,/V 0.0010 0.0033 -0.0003 0.0007 -0.0035

0,/ V (41) 0.0074 0.0029 -0.0003 -0.0003 —0.0001

du,)V -0.0014 0.0016 0.0004 0.0001 - 0.0008

40,/ V 0.0018 0.0006 0.0002 -0.0007 | -0.0033

w 8

s % 3T/ Ve) (48) 0.0249 0.0000 -0.0018 0.0016 0.0036

O g ,

9% 44y (46) 0.0070 —0.0003 -0.0007 0.0009 0.0028
g8 4AY 0.0018 0.0006 0.0002 - 0.0004 —0.0034
L a
P 4By 0.0017 0.0063 0.0001 —~0.0004 | -0.0067

4By —0.0008 0.0009 0.0002 0.0001 —0.0005

4By (47) 0.0000 0.0000 0.0000 0.0000 0.0000

4B/ 0.0000 0.0000 0.0000 0.0000 0.0000

4By 0.0000 0.0000 0.0000 0.0000 0.0000
|(13) (15) | 5° 48’ (5° 14) from (16)

can be measured, as shown in Fig. 10. The measured pressure distributions are
plotted to the corresponding figures Fig. 8, and the lift-coeflicients are also shown for
the purpose of comparing the experimental results with the theoretical ones.
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g
J } A=1 p.=40
\ g =40 a,= 0’
. Atrforl Model
with 19 orifices
’I j for Measuremet
| H AN of Pressure
L p’__».* R Distribution
| v N4
] /J._ -_H
\
\ /0T
\ /Al )
il N /; an i i
/7 !
) I
‘_L Flexible Wall /// { }
|

Fig. 10

Part jutl
Effects of Wall Boundary Layer upon Turning Angle

9. Variations of Turning Angle due to Wall Boundary Layer Effects

Finally, let us discuss the effects of wall boundary layer upon the turning angle
by means of the two-dimensional potential flow theory of cascade test in Part I. Now,
assuming the imaginary source distribution along the walls instead of the boundary
layers, the problem can be dealt with the potential flow theory.

Let the displacement thickness of the wall boundary layer be 6* and the velocity
distribution along the walls w, and then put an imaginary source distribution g(x)
along them, as shown in Fig. 11 so that they should represent the boundary layer as:

K

o = w2, (50)

Fig. 11
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where dé*/dx can be calculated by the boundary layer theory under the known velocity
distribution along the walls. Using the mapping function in Part I, the corresponding

source distribution ¢(%) along the »-axis on the ¢-plane is given by

dx do* dx
q9(n) = q(x) ar =¥ dx (51)
The velocity distribution @ is given by the eq. (14), dx/dyp by the eq. (2) and
do*/dx by the boundary layer theory, then the above source distribution ¢(%) can be
evaluated by the eq. (51). Therefore, the induced velocity w, at the point =%, can

be expressed as

we= | X0 ay. (52)

Then, the induced velocity wyp at B (3= —tan 3,) is as follows;

_1f= gy
WeB = S—oo77+tan B dy. (53)

The imaginary flows from the imaginary source distributions flow out as the
wakes into the downstream flow of cascade (z=o0). As the point z=oo corresponds
to the points ¢= *1, the strength of sinks at the points {==*1 must be

SZ g(%) dx+ S‘Z a(q) dx = Sj wdd* 4 S‘c’ wdd* .

Further, assuming that the velocity distribution w is nearly equal to the uniform
velocity V, except near the edge points B and that the boundary layer thickness is
negligibly small at the upstream walls (at A and C), the above mentioned strength

of source is approximately expressed as
B B
SA wdd*+- Sc wdd* == V,(85,+05.) = Vi0%5

where suffix # and / denote respectively the values of the upper and lower walls, and
suffix B the values at the edge points B. Thus, the complex potential function F,(¢)
due to the above sinks can be expressed by

zA[’q log ¢—1 VioE

Fo(Q) =

where 417, is an unknown quantity of circulation at = *1 and can be determined
as follows by the condition that the induced velocity w5z at the point B, which is

evaluated by the eq. (54), cansels the velocity wgeg;
q(v& .

dr'g  _ , S“’ _ViH (6 ) 55

VH = ¢ B, 7T ian B, dyp— 77 ) tan B - (55)

Hence, the velocities #r.. and vy, along the x- and y-axis at the downstream
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of cascade are induced by the above sinks and circulations. As the results of some
calculation, they become

*
u‘;:o _ —AV% sin 8 cos #;+ (%) cos” B, (56)
. 4T 5 )
[ T A R |

Therefore, the turning angle €y under the wall boundary layer effects is as follows;
Vsl || Peo
=) V) _
Ufeo LS
e () [+ (5]
where #../V; and v../V, are evaluated by the eq. (12). Thus the turning angle change
46 becomes to fr—0 by the wall boundary layer effects.
In the case of the cascade test having the suction slots as shown Fig. 1, assuming

the suction quantity of it is controlled to be equal to the above-mentioned value of
V.0, the turning angle Ay’ is given as follows;

)
v () [+ (57 )]

tan iy = tan @ (57)

tanfs = tan

(58)

where

url, Ay .

Vo= TV sin 8, cos 3,
and vrl _Al'Y

V. V.H cos? 3,

q(n)
o V.H
2 1
V.H T %€ B SW, p-+tan (8, .

i

10. Numerical Examples

A few numerical examples were performed under some conditions in order to
show the tendency of the wall boundary layer effects.

Assuming that the velocity distribution w is nearly equal to the uniform velocity
V., as mentioned in the proceeding paragraph for the sake of simplicity in calculation,
then the following integral in the eq. (55) becomes

an)
[y A L) 2T
~eyitan BT T V. \dx | 1+9~ =& dx | 1+9*°
and, assuming that dé*/dx=dd%/dx=constant, which is a very crude assumption
1 4
compared with the Prandtl-Karman’s theory®; 6=0.31 (v/V,x)5xc0x5, for the turbulent

boundary layer along the plate, then the above integral is expressed as

—oo —
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aCn).
R b~ B B e )
—oyttan B, 0T T w\dx Jud-» I+y¢ m\dx ~tan B 1+ 77

= Gl (@ 2 )

where suffix # and / denotes the upper and lower wall. Using the Prandtl-Karman’s

theory

@ ool ) ()

in the above result, the induced velocities, given by the eq. (56), become

*
Ure _ O i ﬁl-(vf"")

::‘ ’ 1 Vla* -+ (05 \% af{8E N\t [8F V3
% = oo (55); 1 (95 )} om0

where Ry=V,H/v. Hence, the turning angle 05 is determined by the eq. (57).

The numerical examples were performed under the following conditions;
Vi=30m/s, c=75mm, R,=V,c/v=15X10°, Z=8, B,=+40° :£50°, £60°, Cr,=1.0
and 0% ,=6§“=0.02 m, and the results obtained are shown in TableII. These examples
show one case of the thick boundary layer, but the effects of the wall boundary layer
have the tendency that the change of turning angle in the retarded cascade flow is

larger than the one accelarated cascade flow.

Table II
| g 60° 50° 40° —40° ~50° —60°
0y 23° 10/ 26° O/ 27° 10 15° 30/ 12° 41 9° 457
0 26° 38 29° 16’ 30° 38" 16° 32/ 13° 30 10° 23/
485 —3° 28 -3° 16’ —3° 28 -1°2 - 49 — 38
foo 23° 30/ 27° 30/ 29° 307 16° 12/ 13° ¢ 9° 54/
Conclusion

The tunnel wall interference in cascade tests upon the turning angle and airfoil
characteristics was developed by means of the conformal mapping and the Glauert’s
thin airfoil theory and compared with the several of the experimental results. The
theoretical results of the effects on the turning angle show that the turning angles are
influenced by the conditions, such as the cascade condition, numbers and arrangements
of airfoils, as shown in Fig. 4, 5 and 6. The difference between the theoretical and
experimental results of the airfoil characteristics, such as pressure distribution and lift
coefficient, will be corrected by the boundary layer effect along the surface of airfoil
itself and both side walls, the latter being especially dealt with the three-dimensional
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flow problem. Finally, the effects of boundary layer along the surfaces of the upper

and lower tunnel walls were theoretically calculated, but they will be generally smaller

than the above-mentioned effects of boundary layer along the side walls.
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