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Abstract 

Previously the authors proposed the concept of 

visco-plasto-elastomer1
), a dynamical model of which 

is shown in Fig. 1, because industrial materials used 

in practice usually have visco-plasto-elastic proper­

ties in their mechanical behaviors. In this paper 

various problems are discussed on the creep theory of 

visco-plasto-elastomer. Creep, recovery and repeated 

creep phenomena are analytically treated on the 

dynamical model, and as the result, various interest­

ing phenomena and facts are found, for example, 

the existence of virgin state, dependence of the 

creep strain and the recovery strain on stress do, 

existence of the permanent set, simple relation be­

tween the virgin creep strain and non-virgin creep 

strain, and so on. 
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The phenomenological theory of visco-elastici ty 

on the mechanical behaviors of materials has already 

been established in an elegant form. But in many 

cases, behaviors of materials used in industries do 

not agree with this theory, chiefly on account of 

their non-linearity. Therefore, we have previously 

proposed that these materials should be considered 

as visco-plasto-elastomer in their mechanical be­

haviors1,2J. The visco-elastomer is, as is well known, 

S, < S2 < ·. · • < Sm 
Fig. 1 
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represented by a dynamical model composed of two kinds of elements, spring and 

dashpot, while the visco-plasto-elastomer is represented by a model composed of three 

kinds of elements, spring, dashpot and slider (Coulomb frictional mechanism). Accor­

ding to the manner in which the elements are composed, many kinds of visco-plasto­

elastomer are considered. Various creep phenomena of the 

dynamical model of strain retardation type shown in Fig. 1 are 

described in this paper. 

2. Creep 

Let us consider a case of the simplest model shown in 

Fig. 2 under a load d(t) which is a non-decreasing function of 

t. In this case, if we denote the deformation of the model by e(t), 

e(t) = 0, for d(t) < s } 

for d(t) > s 

Fig. 2 

we obtain 

(1) 

where E, r; and s are the spring constant of the spring element, the viscous coefficient 

of the dashpot element and the frictional force of the slider element of the model 

respectively. Integrating Eq. (1), we obtain 

e(t) = 0, 

e(t) = 0 11 rvet-T){d('r)-s}d-r J~ ' 

for d < S } 

for d>s 
(2) 

where 0-1/r;, JI - E/r; and t' is the instant when the following relation is satisfied. 

o(t') = s. 

When d(t) is a step function, i.e. d(t) =d0l (t), Eq. (2) becomes 

e(t, d0 ) = 0, 

e(t, do) = ~-(d0 -s)(l-e-v1), 
JI 

for 
( 3) 

Because the deformation of models corresponds to the strain of materials, let us use 

the terminology strain and stress instead of deformation and load respectively, here­

after. From Eq. (3), the strain of the model shown in Fig. 1 is given as follows: 

1 k n 0-. 
e(t, d0) = ~Edo+ I:; I:; -~(d0 -s;)(l-e-v11), 

i=1 j=I Jl1 

where k is an integer satisfying 

(4) 

If corresponding distributed system is to be treated, n and m in the model shown in 

Fig. 1 should tend to infinity. Then Eq. (4) becomes 
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(5) 

where F(ll, s) is the distribution function which specifies the various mechanical be­

haviors of visco-plasto-elastic materials and the following relation is satisfied, 

The first term of the right hand side of Eq. (5) is the instantaneous strain and the 

creep strain is usually represented as follows, (omitting the instantaneous strain d 0/E 
from Eq. (5)), 

(6) 

Let t tend to infinity, we obtain the creep strain in equilibrium state as follows; 

(7) 

From Eq. (6), the creep rate R is given as follows: 

(8) 

where /(t, s) is the Laplace transformation of F(ll, s). Considering that F(ll, s) is 

always non-negative, we obtain from Eq. (8) and (6), 

( 9) 

(10) 

From Eq. (9) we can see that the creep rate decreases with the increase of time t. 

Eq. (10) shows the nonlinear characteristic of creep and it is remarkable that the 

creep strain Ee at any instant is not proportional to the magnitude of stress do, but 

varies with the increase of do so that d2ec/dd~ is always positive. Differentiating Eq. 

(6) twice with respect to log10 t, we have 

(11) 

Since /(t, s) is always positive and 8/(t, s)/f)t is always negative, log10 f-ec curve is 

concave upwards when t is small and convex upwards when t is large. These features 

of time dependence of creep strain of linear visco-elastomers. 
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3. Recovery 

If the load is removed after the creep strain of the model shown in Fig. 2 reach 

the equlibrium state, the strain generally decreases with time t. Let us define the 

recovery strain as the difference between the final strain in the preceding creep 

(r.e+<10/E in this case) and the strain at recovery stage. Then the recovery strain 

,:J(t, <J0) of the model shown in Fig. 2 is given as follows: 

,:J(t, <lo) = 0, 

,:J(t, llo) = Ji_ (<10 -2s)(l-e->t), 
),I 

for 

for 
(12) 

llo > 2s, 

where t is the time measured from the instant when the load is removed. Accordingly, 

the recovery strain of the distributed system is given as follows. (Omitting the 

instantaneous strain <10/ E as in case of the creep strain) : 

(13) 

Comparing this equation with Eq. (6), we can find that the simple relation, 

(14) 

holds between the creep strain and the recovery strain. Letting t tend to infinity in 

Eq. (13), we have 

(15) 

This does not coincide with ec( oo, <10 ), therefore we recognize that the following 

parmament set remains. 

r(<Jo) = ec(oo, <lo)-,:J(oo, <lo) 

= [ { ~:oF(1,1; s) (<10 -s)ds- [
012 

F(~ s) (<J0 -2s)ds}d1,1. (16) 

Now, calculating the second creep after the recovery of infinitely long time by 

the similar procedure mentioned above we obtain the second creep stain as follows : 

(17) 

This equation is the same as Eq. (13). The second recovery strain, the third creep 

strain, the third recovery strain, and so on are all of the same form as Eq. (13) or 

Eq. (17). 

From the above discussions we can point out the existence of virgin state con­

cerning creep phenomena of such materials. It is remarkable that we can see the two 
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categories of creep curves, the one of which is termed virgin creep curve specified 

by Eq. (7) and the other non-virgin creep curve specified by Eq. (17). 

4. Non-ideal creep and recovery3
) 

In this section, we treat the creep (or the recovery) when the visco-plasto­

elastomers are loaded (or unloaded) before the preceding recovery finishes (or the 

preceding creep reaches the equilibrium state). We term these creep or recovery the 

non-ideal creep or non-ideal recovery, and we call the creep or the recovery treated 

in the preceding sections the ideal creep or the ideal recovery. 

Firstly, let us discuss the case where the stress 110 , which has been loaded on the 

model in Fig. 2 for the period t,, is removed. Since the strain rate in this recovery 

stage is either negative or zero, (if we suppose that a strain rate is positive, a 

contradiction arise), the differential equation which prescribes the strain in this stage 

becomes as follows : 

or e = canst. 

(18a) 

(18b) 

Shifting the origin of the time to the instant of commencement of the recovery and 

solving Eq. (18a) under the initial condition, 

at t = 0 

we obtain 

where e1 is the strain given by substituting t=t, in Eq. (3), then we have 

e1 = 0, 

e, = 1-(110 -s)(l-e-~'1), 
II 

for 110 < s } 

for 110 > s. 

Differentiating Eq. (19) with respect to t, we have 

(19) 

(20) 

(21) 

Then, if e1 <0s/11, de/dt becomes positive. On the other hand, we cannot ignore the 

fact that de/dt should be either negative or zero. Therefore, if e1 <0s/11, we cannot 

use Eq. (18a) as the differential equation of creep recovery, hence we have to use 

Eq. (18b) in this case, thus de/dt=0 and e=e1 • However, in case e,>0s/1,1, Eq. (18a) 

and Eq. (19) are available for the calculation of the recovery strain. We have, then, 

from Eq. (19) and Eq. (20), 
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,:J(t, do) = 0, l (22) 

Secondly, if it is reloaded by d,, after a duration of recovery for the period t,, 

the strain is given as follows: 

e = i,(d:-s) +{e2_/'(d:-s)}e->t, for i,s e, >--
JI 

(23a) 

e = i,(do-s)+{e,-/'(do-s)}e->t for i,s (23b) e,<-
JI JI ' -JI 

where e2 is the value of Eq. (19) at t = t2 • The creep strain in this case is given by 

subtracting the initial strain e2 and e1 from Eq. (23a) and Eq. (23b) respectively. 

Therefore we have the creep strain as follows : 

ec = -{e2 i,(d:-s)} (1-e-''), 

ec = -{e,-/'(d:-s)} (1-e-' t), 
(24) 

Continuing the same procedure as mentioned above, we can evaluate the successive 

creep and recovery strains. For the load changing with time in the way shown in 

Fig. 3 (a), we obtain three kinds 

of creep and recovery curves 

shown in Fig. 3 (b) ~ Fig. 3 (d) 

according to the values of do and 

t, ,3 l In case s<d0<2s, e1 is less 

than i,s/J1 for all t1 , therefore we 

can not recognize recovery pheno­

mena as shown in Fig. 3 (d). In 

case d0 >2s, for small t, the first 

recovery does not appear but the 

recovery in succeeding stages is 

possible as shown in Fig. 3 (c), 

and for large t, , we recognize 

the first recovery as shown in 

Fig. 3 (b). 
Fig. 3 

Extending the above discussion, let us consider the first recovery of the model 

shown in Fig. 1 after the virgin creep of duration t,. From Eq. (22) we obtain the 

recovery strain as follows, 

(25) 
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where k is the integer satisfying the following two conditions, 

0k;(<10-sk)(1-e-•,t1) >0k,sk, l 
l'; ll; 

{,k+1,J (<10-Sk+1) (1-e-•it1) _::;;:_ {,k+1,;Sk+1. 
l'; ll; 

Eq. (26) is briefly rewritten as follows, 

123 

(26) 

(27) 

Therefore, the first recovery strain of the distributed system after the virgin creep of 

duration t1 is given as follows ; 

(28) 

By the same procedure as mentioned above, we obtain the creep strain in the second 

stage as follows : 

ee(t, <lo)= roo dl/ r"o F(Y, s) (<10-s)e-•t1(1-e-"')ds 
Jo h-e-•11 l' 

2-e-Wi <to 

where t2 is the duration period of first recovery. The first term of the right hand 

side of Eq. (29) is the creep strain due to the model elements which did not recover 

in the previous stage and corresponds to Eq. (23a), while the second term is the one 

due to the other elements which recovered and corresponds to Eq. (23b). 

5. Repeated creep and recovery 

If the creep of duration t1 and the recovery of duration t2 are alternately repeated 

infinitely many times, the oscillatory strain with the period t1 + t2 will be expected as 

shown in Fig. 4. In the case when time t tends to infinity, we can easily see that 

the creep and recovery strain of the type 

shown in Fig. 3 (d) does not contribute to the 

amplitude e0 but only contribute to the mean 

strain em of the oscillatory strain and the two 

types shown in Fig. 3 (b) and Fig. 3 (c) 

equally contribute to the amplitude e0 and mean 

strain em. 
Fig. 4 

Firstly, let us consider the model shown in Fig. 2. In the creep stage, we have 

the following equation and initial condition. 
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Ees:__+?Jesc+s = ao, _ } 
esc - em - eo , at f - 0 . 

In the recovery stage, we have 

Ees,+1Jes,-S = 0, 

esr = em+eo, at t = 0. } 

Solving the two equations (30) and (31), we obtain 

esc(t) = i3(a:-s) +{ (em-e
0
)-/3(a:-s)}e-vt 

es,Ct) = 0:+{Cem+eo)-0:}e-vt. 

In the stationary state, the following relations must hold. 

escCf1) = esr(0) = em+eo l 
es,Ct2) = esc(0) = em -eo, \ 

Then we have 

- /3(1lo-2s) c1-e-v'1)(1-e-V'2) 
eo - JI • 2c1-e-Vt1e-v'2) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

Secondly, we treat the distributed system by similar procedures mentioned above 

and we obtain the following relations : 

the creep strain ; 

_ i00 ia-012 F(J1, s) 1-e-vtz -vt 
ec - dJ1 --(a0-2s\ -vt -vt (1-e )ds 

o o JI -e 1 e 2 
(36) 

the recovery strain ; 

(37). 

the amplitude ; 

(38) 

the mean strain ; 

Putting t1 = t2 in these equations, we have 
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~
= J"o12 F(11 s) 1-e-vt 

ec = d = dv --'- (d0-2s) 
1 

-vt ds 
o o v +e 1 

1 ~= ~"o12 F(11 s) 11t e0 = - dv --'-(d0-2s) tanh -----1ds 
2 o o II 2 

em= i:0
{[ F(~ s) d11}(d0-s)ds-1 r12 u~ F(~ s) d11}(d0 -2s)ds 

(40) 

1 
+Edo. 

Let us consider the case when the loading of d1 + i on the visco-plasto-elastomer for 

a period t1 and the loading of d1 - i (i.e. the visco-plasto-elastomer is loaded less 

than the previous stage by do) for a period t2 are alternately repeated infinitely many 

times. Then we find the interesting fact that the ec, d and the amplitude e0 are the 

same as those given by Eqs. (36), (37) and (38) respectively, that is, the mean load 

d1 does not affect these quantities. 

6. Discussions on distribution function F(11, s) 

It was previously described that the distribution function F(11, s) is a very useful 

function for specifying mechanical behaviors of visco-plasto-elastic materials. This 

function is to be found from creep tests which cover large ranges of time t and load do. 

The distribution function, which generally has a form of Fig. 5, is calculated from the 

results of creep tests by using 

Eq. (10) 5). It is remarkable 

that the distribution function 

may also be used for the an­

alysis of mechanical behaviors 

of pure elastic, pure plastic 

materials, Newtonian fluids, 

non-Newtonian fluids and 

linear visco-elastic materials 

by giving a special form to 

them. 

FCJJ,s) 

s 
Fig. 5 

Let us consider some examples of the distribution function F(11, s), which is 

probable to be found in practical industrial materials. 

(1) If the distribution function F(11, s) is expressed as a product of two functions, 

one of which is a function of II only, say <D(11), and the other is a function of sonly, 

say cp(s), Eq. (17) becomes 

e.(t, do) = f"o 
2 
cp(s) (do-2s)ds• r= <D(II) (1-e-V')d11. 

Jo Jo II 
(41) 

In this case, let us assume as the form of cp(s) the one shown in Fig. 6 (a), (b), (c) 
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and (d). Then we have the following expressions for the non-virgin creep strain. 

Cfo f-------, 

'-------~-s s. 
(b) (a) 

f(S) 

fo --·······- r 
-o 

o'----s~,--s~.-s o~---~-s~.~s 
( C) (d) 

Fig. 6 

In case of Fig. 6 (a) : 

Ile= ({iol1/ (6- l1o) r= (!)(y) (1-e-Vt)d11' 
24 S0 Jo II 

Ile = ~(to (3a0 - 2s0) [ (/)~) (l-e-vt)d11 , 

for l1o < 2so l 
for l1o > 2so J 

In case of Fig. 6 (b) : 

Ile = ({io;o' [ (/)~) (1- e-vt)d11 , 

e = <PoSo(l1o-So) r=(/)(11) c1-e-Vt)d11' 
e 4 Jo II 

for l10 < So 

for l1o > So l 
In case of Fig. 6 (c) : 

Ile = 0, for 
l1o < S1 } 

( 
l1o )

2 (= (!)(v) (1 -vt)d for Ile= ({!0 2 -s1 Jo -
11

- -e 11, S1 < l1o < Sz 

Ile= <Po(S2-S1)Cao-S1-S2) r=(!)(y)(l-e-Vt)d11, Jo II 
for l1o > Sz 

In case of Fig. 6 (d) : 

Ile= 0, 

Ile= ({!o(l1o-2So) r= (!)(y) (1-e-Vt)d11' Jo II 

for l1o < So } 

for l1o > So 

(42) 

(43) 

(44) 

(45) 
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(2) In the case where the distribution function is represented by the expression 

F(v, s) = (f)(v)o(s)+(f)'(v)q;(s), 

where o(s) is the Dirac's a-function. 

Eq. (17) becomes 

7. Experimental results 

127 

In order to investigate the appropriateness of the creep theory we have experi, 

mented on vulcanized natural rubber used as 

vibration absorbers3
). The compounds of the 

specimen are shown in Table 1. Results of this 

experiment are shown in Fig. 7, where the creep 

strain at 0.1 min. is taken for the standard. The 

curve (1) in this figure is the virgin creep curve 

obtained by applying the stress of 1.76 kg/cm2 

on the specimen which has never been stressed 

before. The curve (2) is the creep curve in 
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Table 1 

Natural rubber 100 

Zinc oxide 5 

Stearic acid 1 

Antioxident D 2 

Sulfer 3 

Accelerator DM 0.8 

Micronex 50 

Cure: 2.5 kg/cm2 X 138°C X50min 
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second stage obtained by applying the same stress as in the virgin creep after the 

recovery of sufficiently long time. The curve (3) is the creep curve in third stage 

after the second recovery of sufficiently long time under the same stress as in the 

second stage. Curves ( 4), (5) .. · and (7) are obtained in similar ways under the 

various stresses. 

Curve (1) is the virgin creep 

curve and curves (2), (3)··· and (7) 

are non-virgin creep curves under 

various stresses. We can point out 

the remarkable fact that the exis­

tence of the virgin state was also 

confirmed experimentally in such 

material. If we illustrate the relation 

between the non-virgin creep strain 

and a0 from these data, we have 

Fig. 8. Curves in Fig. 8 are broken 

lines, all the break points of which 

have the same value a0 =2s1 =0.85 

kg/ cm2 as abscissa. Accordingly, it 

seems that F(11, s) of this material 

takes the form (l)(11)o(s)+(l)1(11)o(s­

s1). It will be interesting to relate 
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this yield stress s1 to micro structure of the material. 

We also examined experimentally whether or not the relation indicated in Eq. 

(14) holds in this material, and we found that the equation holds exactly as shown 

in Fig. 9. 

8. Concluding remarks 

We have established the creep theory of visco-plasto-elastomer, which is very 

useful for the analysis of the phenomena of creep, recovery and permanent set of 

industrial materials. It must be noticed that the above discussions are restricted to 

small deformation. In the case of large deformation this theory will be applied 

under some appropriate modifications. The authors previously applied this theory to 

the problems of large deformation in the vibration tests of rubber vibration ab­

sorbers4J. 
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