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It may be inadequate, in general, to apply Dalton's law to an imperfect gas 
mixture. In this paper, the total pressure of an imperfect gas mixture is con
sidered from the view point of statistical mechanics. Namely, by expressing 
the equation of state in the virial expansion form, the total pressure of a gas 
mixture was determined analytically by using the second and the third virial 
coefficients calculated from the values for each component gas. For one example, 
the second and third virial coefficients of air were calculated by two methods 
and compared with each other as well as with other values which were deter
mined directly from experimental data with air. From the numerical calculations 
for air and also for water-mercury vapour mixture, it has been made clear that 
there is some difference between the total pressure calculated by our methods 
and the value calculated from Dalton's law, and this difference increases with 
the degree of imperfectness of the gas mixture. 

Introduction 

247 

Though Dalton's law is used for the purpose of determining the total pressure 

of gas mixtures from the partial pressures of the component gases, it may be not 

appropriate to apply this law to an imperfect gas mixture, since this law was established 

for a perfect gas. It is believed that statistical mechanics can be used for determining 

the total pressure of a mixture of imperfect gases from the properties of its component 

gases. In this paper, some considerations of this approach are described. The total 

pressure of a gas mixture may be calculated from the equation of state of the 

mixture. The equation of state of an imperfect gas mixture is expressed in the virial 

expansion form, and the virial coefficients are determined from those of each com

ponent gas under certain assumptions. Two methods are proposed here for relating 

the virial coefficients of a gas mixture to those of its component gases. 

In order to compare those two methods with other results, the virial coefficients 

and the total pressure of air, which may be considered as a mixture of nitrogen, 
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oxygen and argon, are calculated numerically. In addition, the results of numerical 

calculations for water-mercury vapour mixtures are given, and the difference between 

them and the results from Dalton's law are discussed. 

Analytical Considerations 

In order to know the pressure of a gas mixture and its component gases in any 

arbitrary condition, the equation of state of the gas mixture and its component gases 

ought to be determined. From statistical thermodynamics, we know that the equation 

of state of a v-component gas mixture and of its component gases may be written in 

the virial expansion form as follows, 

where, 

Pv_ = l+B(T) +C(T) + 
RT v v2 

p1v1 - l+B1(T)+CiCt)+ ..... . 
R1T Vi V1 

P2V2 = l+Bz( T) + C2Ct) + ...... 
R2T V2 V2 

p : absolute pressure R : gas constant 

T : absolute temperature v : specific volume 

B & C: 2nd & 3rd virial coefficient (function of temperature only) 

1, 2, • .. , v (subscript) : values for each component gas. 

(1) 

(2) 

By means of statistical mechanics, these virial coefficients may be expressed in terms 

of the intermolecular potential energy function. As the intermolecular potential energy 

function, the Lennard-Jones potential function has been available for spherical nonpolar 

molecules, and the Stockmayer potential function for simple polar molecules. These 

functions <p are as follows, 

Lennard-Jones potential function 

(3) 

Stockmayer potential function 

where, a & e : force constants 

r : intermolecular distance 

µ : dipole moment of the molecule 

g = 2 cos fJ1 cos fJ2 -sin 81 sin fl2 cos (r/J2-<A) 

8 & rp: cylindrical angular coordinates of dipole vector. 
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For the Lennard-Jones potential function the second and the third virial coefficients 
are given as follows, 

where, 

B*(T*) = f bCi)T*-c2;+1)1• 
j=O 

C*(T*) = ~ cci)T*-c;+1);2 
J=O 

T* = kT/e, 

B* = B/i'fCNa3, C* = C/(i'tCNa3) 2 

k : Boltzmann constant 

N: Avogadro number. 

(5) 

(6) 

( 7) 

. . . I )r(v-1)1) . The coefficients bCJ) are given by b(J) = - (2'+112 4j! -"-
4
- , and the values ccn 

have been calculated by Kihara2
\ For the Stockmayer potential function, the second 

and third virial coefficients have been calculated by Rowlinson and others3
) and ex

pressed in the following form as a function of T* and t*. 

B(T) = i'fCNa3B*(T*•t*) 

C(T) = (i'tCNa3)
2C*(T*•t*) 

t* = µ*2/✓s, µ* = µ/✓ea3 • 

(8) 

(9) 

(10) 

On the other hand, the virial coefficients for a gas mixture depend not only upon 

the interaction between like molecules but also upon the interaction between unlike 

molecules. Therefore, in order to calculate the virial coefficients for a gas mixture, 

it is necessary to know the potential energy function expressing the interaction between . 
pairs of unlike molecules. For this purpose, the following empirical combining laws 

are used, which relate the force constants between unlike molecules with those between 

like molecules according to Hirschfelder's method4
). 

<1 
_ a.,+1111 

.,11--2-

e.,ll = (e.,•e11)1;2. 

(11) 

(12) 

Thus, the second virial coefficient B.,11 (T) is calculated by substituting these force 

constants into equation (5). 

For the third virial coefficient of a gas mixture, in order to relate the third virial 

coefficient C.,11y between unlike molecules with C.,.,., of the pure species, the following 

equivalent force constants are assumed in the same manner. 

_ a.,+a11+ay a.,lly - --3 ---

e.,.,y = (e.,•e11 -e1) 1! 3
• 

(13) 

(14) 

The third virial coefficient between unlike molecules is calculated by introducing 
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these equivalent force· constants into equation (6) for the third virial coefficient for 

a pure species. 

Though the virial coefficients between different species can be calculated by using 

the above mentioned method, it is considered more practical to determine the virial 

coefficients of the gas mixture directly from the experimental data of the p-v-t re

lations of the component gases. So, in this paper as the second method, the virial 

coefficients of the gas mixture are determined by using the virial coefficients between 

different species calculated under the assumption that the virial coefficients between 

different species are given as the arithmetical mean of the virial coefficients for the 

pure species as follows, 

Ba,fi = (B<1,+Bfi)/2 

C<1,fi'l' = (C(l,+Cfi+Cy)/3. 

(15) 

(16) 

From these virial coefficients in both methods, the second and third virial coefficients 

of the gas mixture are given as follows5
), 

V V 

B(T) = ~ ~ Bt1,lT)Xt1,•Xfi 
dl=l fi=l 

(17) 

V V V 

C(T) = ~ ~ ~ C.,fiy(T)x.,•xfi•Xy 
dl=l fi=l 'Y=l 

(18) 

where x.,, xfi and Xy are the mole fractions of a-, 0-, and j'-species in the mixture, 

and B.,., is the second virial coefficient for the pure substance a, and Ba,fi is the second 

virial coefficient calculated for the different species a and {3. The B.,fi and C.,fi'Y have 

the same meaning for any permutation of the indices, 'and C.,.,a, is the third virial 

coefficient for pure substance a. 
From the second and third virial coefficients of the gas mixture obtained as above 

mentioned, the pressures of the component gases and the total pressure of the gas 

mixture can be calculated by using these virial coefficients. The gas constant and 

the specific volume v for a gas mixture with 11-components are written as follows, 

(19) 

Thus, the total pressure of a gas mixture can be calculated by the following 

equation, 

(20) 

where, 

X; = (M
1 

) / t Ml , i = a, 0 and j'. 
;V; £ -1 ;V; 

(21) 

M: molecular weight. 
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Numerical Example 

1. For air:-

For air which is considered a mixture with three components (78 mole per cent 

nitrogen, 21 mole per cent oxygen and 1 mole per cent argon), by neglecting all 

coefficients beyond the third virial coefficient, the total pressure is as follows, 

p = r(RN +Ro+RA){1+(_!_+_!_+_!_)B+(1-+1-+_!_)
2c} 

VN Vo VA, VN Vo VA VN Vo VA 

B = BNXN2+Boxo2+BAXA2+2BNoXNXo+2BNAXNXA+2BoAXAXo 

C = CN XN 3+Coxo3+CAXA3+3CN AAXN XA2+3CNooXN xo2+3CNNOXN2 Xo 

+3CNNAXN2 XA+3CooAXAXo2 +3CoAAXOXA2 +6CNoAXNXoXA 

where the subscripts N, 0 and A are the values for nitrogen, oxygen and argon, 

respectively. On the other hand, the partial pressures of the component gases are 

given by the following three equations, 

where the second and third virial coefficients of nitrogen, oxygen and argon BN, CN; 

Bo, Co and BA, CA are calculated by using the Lennard-Jones potential energy func

tion with the force constants l1N=3.698A, eN!k=95.05°K; a0 =3.560A, e0 /k=117.5°K; 
t1A=3.405 A, eA/k=119.8°K that have been given by Bird and others from the 

experimental data of Horborn6
), Newitt7) and Michels8

). Figures 1 & 2 show the 

second and the third virial coefficients of nitrogen, oxyen and argon, respectively. 

In Figs. 3 & 4, BNo, BNA, BAo; CNoo, CNNO computed from the empirical com

bining law and the equivalent force constants mentioned above, are shown with the 

full lines, and those values calculated by using the arithmetical combining law for the 

virial coefficients are shown with the chain lines. Figs. 5 & 6 show the second 

and the third virial coefficients of air computed by the two methods described above, 

and it is apparent that there is good agreement among them. In Fig. 7, for com

parision, the second and third virial coefficients of air given by Mori9
) from the 

experimental values of · air, are shown with broken lines, and the chain lines show 

those calculated by using the force constants of air given by Bird and others derived 

from the experimental data for air of Horborn and others10
\ 

From this example, it is obvious that the three values for the second virial 

coefficient agree very well with each f)ther and the agreement between the values for 
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the third virial coefficient is moderately good. And therefore, it may be adequate to 

determine the second and third virial coefficients of air from the data for its com

ponent gases, in such a way. 
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Fig. 1. The second virial coefficient for 
nitrogen, oxygen and argon. 
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Fig. 2. The third virial coefficient for 
nitrogen, oxygen and argon. 
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Fig. 3. The second virial coefficient 
(BNo, BN A and B0..1.), 

1st method, 
- - - 2nd method 
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Fig. 4. The third virial coefficient 
(CNNO and CNoo). 

1st method, 
- - - 2nd method 
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Fig. 5. The second viria~ coefficient for air. 
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Fig. 6. The third virial coefficient for air. 
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by 1st method, 
by Y. Mori, 
by R. B. Bird 
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Next, the total pressure of air computed by using the above described virial 

coefficients are presented in Table 1, and the ratio of each those values P'-by Mori, 

Bird and others from the experimental data of air-to the values p calculated by our 

method from the experimental values for each component gas, are shown in Figs. 8 

& 9. As shown in these figures, the values. of Mori, Bird and others coincide well 

with the values by our method, but the values calculated by Dalton's law deviate 

from our values. This deviation increases at constant temperature as the specific 

volume of the air decreases, and it decreases as the temperature increases at a constant 

specific volume of air, in the range of our calculations. 

---- ---------~----- --
1,001---+---+---+----+---+---+----+---i ------ · 

-- --- ----~----

, __ _ ___ ,..--

-·· 0.991------+----,l-,,.,.,,,.-_-.-::;al---=-~---+---+--+-----1 

v·· ....... 
~ 

09lfw2 0,03 0.04 0.05 0,06 

Specific volume of air [ m1/ kg) 

Fig. 8. Relation between P'IP and the specific volume of air. (T=l000°K) 
by 1st method, by R. B. Bird, 

- - - - by Y. Mori, ---- by Dalton's law 

1.00 --- ... ----
r--.= --- ---~-==:.=. ------- --- .__ 

I\ 
\ 

0.99 "" -~ 
---- -------i---•• - -0,98 

400 500 600 700 800 900 1000 1100 

Temperature (°K) 

Fig. 9. Relation between p' IP and temperature of air. (v=0.02 m3/kg) 
by 1st method, by R. B. Bird, 

- - - - by Y. Mori, ---- by Dalton's law 
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Table 1. (v=0.02m3/kg) 

Temperature °K 

400 I 600 I 800 I 1000 

BNX103 m3/kg 0"3367 0"7731 0"9672 1'0735 

Bo " " -0'0059 0'4555 0'6618 0"7729 

BA " " -0'0243 0"3042 0·4475 0"5272 

Bxl03 m3/kg (1st method) 0"2580 0'6973 0"8943 0"9998 

Bo " " (2nd method) 0"2613 0·1020 0"8981 1'0052 

CNxl06 (m3/kg) 2 1"6778 1"5887 1"5246 1"4702 

Co " " 1'1085 1'0283 0"9907 0"9604 

CA " " 0"5296 0"4897 0·4719 0"4576 

Cxl06 (m3/kg)2 (1st method) 1'5171 1'4301 1"3758 1"3283 

C " " (2nd method) 1·5473 1"4582 1'4024 1"3535 

PN kg/cm2 46"38 70"66 94"92 111•09 

Po " 12•27 18"50 24"73 30"95 

PA " 0·55 0'83 1·10 1"38 

P=PN+Po+PB " 59"20 89"99 120·75 151'42 
p " (1st method) 59·52 91'21 122•75 154"20 

p " (2nd method) 59·53 91'19 122·12 154"15 

2. For water-mercury vapoer mixture : -

For water-mercury vapour mixture, the total pressure is given as follows, 

p = r(Rs+RM){1+ (_!_+_!_)s+(_!_+ _!__)
2c} 

Vs VM Vs VM Vs VM 

B = Bsxs2+2BsMXsXM+BMXM2 

C = Csxs3+3CssMXs2 xM+3CsMMXsXM2 +CMXM3 

where the subscripts S and M are the values for steam and mercury vapour respec

tively. And the partial pressures of the component gases are given by the following 

two equations, 

where Bs and Cs are calculated by using the Stockmayer potential energy function 

with the force constants as=2.65 A, es/k=380°K, µ~=1.83 x 10-18 e.s.u., obtained from 

the experimental data of Keyes and others11
\ BM and CM are calculated by using 

the Lennard-Jones potential energy function with the force constants aM=2.898 A, 
eM/k=851 °K, obtained from the viscosity data. And BsM, CssM and CsMM are calcu

lated by the two methods mentioned above. 
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Fig. 10. The second virial coefficient for 
water-mercury vapour mixture. 
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Fig. 11. The third virial coefficient for 
water-mercury vapour mixture. 

1st method, 
2nd method 

The full lines in Figs. 10 & 11 are the second and third virial coefficients for 

water-mercury vapour mixture (vs=0.03m3/kg, VM=0.26m3/kg) by the first method, 

and the chain lines show those by the second method. At constant specific volume 

(vs=0.03 m3/kg, VM=0.02m3/kg; Vs=0.03 m3/kg, VM=0.06 m3/kg; Vs=0.03 m3/kg, VM= 

0.26 m3/kg), the total pressure calculated by our method and the arithmetical sum 

of the two partial pressures are compared in Figs. 12, 13 & 14 and presented in 

Table 2. In these figures, the full lines represent the former, and the chain lines 

the latter, and dp is the difference between the latter and the former. Furthermore, 

the broken lines show the relation of p = T(Rs/vs+RMIVM), Fig. 15 shows the 

relation between the ratio p0 /p and the mole fraction of mercury XM, where Po is 

the total pressure from Dalton's law and p is the value calculated by our method. 

In the range of our calculations, the difference between p
0 

and p increases with 

the mole fraction of mercury. In the region of larger mole fractions of mercury, it 

may reach a maximum value and after that point, decrease with the further increase 

of the mole fraction of mercury. 

In general, it is not appropriate to apply Dalton's law to a mixture of imperfect 

gases as shown in the above examples. On the other hand, since a gas mixture is 

treated as an imperfect gas throughout our method, the deviation of the total pressure 

calculated by our method from the true value is considered to be much smaller than 

that from Dalton's law, especially in the case where the imperfectness of the gas 

mixture is large. 
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Fig. 12. Relation between the total pressure 
and temperature of water-mercury vapour 
mixture. (vs=0.03 m3/kg, V,1t·=0.26 m3/kg) 

Fig. 13. Relation between the total pressure 
and temperature of water-mercury vapour 
mixture. (v8 =0.03m3/kg, VM=0.06m3/kg) 
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Fig. 14. Relation between the total 
pressure and temperature of water
mercury vapour mixture. 
(vs=0.03 m3/kg, VM=0.02 m3/kg) 
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Fig. 15. Relation between Pv!P and the mole 
fraction of mercury in water-mercury vapour 
mixture. (vs=0.03 m3/kg) 
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Table 2. (v8 =0.03m3/kg, v,ir=0.26m3/kg) 

Temperature °K 

700 I 800 I 900 I 1000 I 1200 I 1500 

BM x 104 m3 /kg -5·459 -4·330 -3·524 -2•922 -2'078 -1·305 

Bs X 103 m3/kg -3·689 -2·636 -1·939 -1·457 -0·839 -0·326 

Bxl03 m3/kg -3·586 -2·563 -1·886 -1·418 -0·816 -0·318 (1st method) 

B " " -3·621 -2·588 -1·904 -1·431 -0·824 -0·321 (2nd method) 

CMx108 (m3/kg) 2 -1'384 0•590 1•237 1·376 1·325 1·123 

C8 xl06 (m3/kg)2 8·401 6·145 4·527 3·366 2·214 1·389 

Cxl06 (m3/kg)2 

(1st method) 8·065 5·898 4•347 3·232 2·126 1•334 

C " " 8·235 6·024 4.438 3•300 2·170 1·362 (2nd method) 

PM kg/cm2 1•14 1•30 1•45 1·52 1•95 2•44 

Ps kg/cm2 97•34 115•33 132·77 149·84 183'45 235·12 

Po=PM+Ps 98·48 116·63 134·23 151·46 185·40 235·56 kg/cm2 

p kg/cm2 
97'40 115·75 133·51 150·86 184·99 235•38 (1st method) 

p " 97·27 115·65 133·43 150·79 184"95 235·35 (2nd method) 
··-----------·-·--'---

Conclusion 

It has been shown that it is possible to determine the total pressure of a gas 

mixture by using the force constants of each component gas or the experimental 

P-v-t data of each component gas. And also it has been demonstrated that it is not 

appropriate to apply Dalton's law to a mixture of imperfect gases in cases where the 

degree of imperfectness of the gas mixture is large. In such cases, it may be 

adequate to use our methods, i.e. the first method in which the empirical combining 

law for force constants and the equivalent force constants are used, and the second 

method in which the arithmetical combining law for the virial coefficients is assumed. 

The results from those two methods agree very well with each other. However, since 

our methods are still approximate, our results may contain some small deviation from 

the true value. However, in order to certify the degree of that deviation, more 

accurate experimental data of pure components and their mixtures are desired. 
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