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It may be inadequate, in general, to apply Dalton’s law to an imperfect gas
mixture. In this paper, the total pressure of an imperfect gas mixture is con-
sidered from the view point of statistical mechanics. Namely, by expressing
the equation of state in the virial expansion form, the total pressure of a gas
mixture was determined analytically by using the second and the third virial
coefficients calculated from the values for each component gas. For one example,
the second and third virial coefficients of air were calculated by two methods
and compared with each other as well as with other values which were deter-
mined directly from experimental data with air. From the numerical calculations
for air and also for water-mercury vapour mixture, it has been made clear that
there is some difference between the total pressure calculated by our methods
and the value calculated from Dalton’s law, and this difference increases with
the degree of imperfectness of the gas mixture,

Introduction

Though Dalton’s law is used for the purpose of determining the total pressure
of gas mixtures from the partial pressures of the component gases, it may be not
appropriate to apply this law to an imperfect gas mixture, since this law was established
for a perfect gas. It is believed that statistical mechanics can be used for determining
the total pressure of a mixture of imperfect gases from the properties of its component
gases. In this paper, some considerations of this approach are described. The total
pressure of a gas mixture may be calculated from the equation of state of the
mixture. The equation of state of an imperfect gas mixture is expressed in the virial
expansion form, and the virial coefficients are determined from those of each com-
ponent gas under certain assumptions. Two methods are proposed here for relating
the virial coefficients of a gas mixture to those of its component gases.

In order to compare those two methods with other results, the virial coefficients

and the total pressure of air, which may be considered as a mixture of nitrogen,
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oxygen and argon, are calculated numerically. In addition, the results of numerical
calculations for water-mercury vapour mixtures are given, and the difference between
them and the results from Dalton’s law are discussed.

Analytical Considerations

In order to know the pressure of a gas mixture and its component gases in any
arbitrary condition, the equation of state of the gas mixture and its component gases
ought to be determined. From statistical thermodynamics, we know that the equation
of state of a y-component gas mixture and of its component gases may be written in
the virial expansion form as follows,
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where, b absolute pressure R: gas constant
T: absolute temperature v: specific volume
B & C: 2nd & 3rd virial coefficient (function of temperature only)
1,2, .-, v (subscript) : values for each component gas.

By means of statistical mechanics, these virial coefficients may be expressed in terms
of the intermolecular potential energy function. As the intermolecular potential energy
function, the Lennard-Jones potential function has been available for spherical nonpolar
molecules, and the Stockmayer potential function for simple polar molecules. These
functions ¢ are as follows,

Lennard-Jones potential function

@(r) = 4e{(a/r)*—(a/7)°} . (3
Stockmayer potential function
@(7,0,,0,, b—¢) = 4e{(a/N)*—(a/7)*} —(u/7)°g (0, 02, $—¢1) (4)
where, ¢ & ¢: force constants

r: intermolecular distance
. dipole moment of the molecule
g = 2cos f, cos 8, —sin 8, sin @, cos (¢;—¢,)

! & ¢: cylindrical angular coordinates of dipole vector.
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For the Lennard-Jones potential function the second and the third virial coefficients
are given as follows,

B*(T*) = j% BCH TH—2i+1/4 (5)
CH(T*) = j% D TH—(i+1)/2 (6)
T* =kT/e,

(7

B* = B/3n Ns®*, C* =C/(3nNo*)?

where, k: Boltzmann constant

N: Avogadro number.

The coefficients 57> are given by b(f>=—(2f+1/2/4j!)l7(g]—;—1)1), and the values c¢¥
have been calculated by Kihara®. For the Stockmayer potential function, the second
and third virial coefficients have been calculated by Rowlinson and others® and ex-

pressed in the following form as a function of T* and #*.

B(T) = 3nNa® B¥(T*-t*) (8)
C(T) = (3rNa*)?C*(T*-t¥) (9)
=y 8, u*=u/Ved. (10)

On the other hand, the virial coefficients for a gas mixture depend not only upon
the interaction between like molecules but also upon the interaction between unlike
molecules. Therefore, in order to calculate the virial coefficients for a gas mixture,
it is necessary to know the potential energy function expressing the interaction between
pairs of unlike molecules. i'«‘or this purpose, the following empirical combining laws
are used, which relate the force constants between unlike molecules with those between

like molecules according to Hirschfelder’s method®.
Gap = P )

Cup = (cav€9)"". ' (12)

Thus, the second virial coefficient B,g(T) is calculated by substituting these force
constants into equation (5).

For the third virial coefficient of a gas mixture, in order to relate the third virial
coefficient C,gy between unlike molecules with C,,, of the pure species, the following
equivalent force constants are assumed in the same manner.

Gagr = Mf;ﬁiﬁ (13)
aar = (€ut€g-€))°. (14)

The third virial coefficient between unlike molecules is calculated by introducing
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these equivalent force constants into equation (6) for the third virial coefficient for
a pure species.

Though the virial coefficients between different species can be calculated by using
the above mentioned method, it is considered more practical to determine the virial
coefficients of the gas mixture directly from the experimental data of the p-v-f re-
lations of the component gases. So, in this paper as the second method, the virial
coefficients of the gas mixture are determined by using the virial coefficients between
different species calculated under the assumption that the virial coefficients between
different species are given as the arithmetical mean of the virial coefficients for the

pure species as follows,

Bog = (BaBp)/2 : (15)
CaB'Y = (C,,-I—Cs—l-Cy)/S . (16)

From these virial coefficients in both methods, the second and third virial coefficients

of the gas mixture are given as follows®,

v

B(T) = 3} 33 Bup(T)a2 an
v v v

C(T) = 320 31 3 Capr( Do 2p- 21 (18)
@=1 g=1 y=1

where %, x5 and xy are the mole fractions of a-, 8-, and y-species in the mixture,
and B,, is the second virial coefficient for the pure substance «, and B, is the second
virial coefficient calculated for the different species « and 5. The B,g and C,gy have
the same meaning for any permutation of the indices, ’and Cyua is the third virial
coefficient for pure substance a.

From the second and third virial coefficients of the gas mixture obtained as above
mentioned, the pressures of the component gases and the total pressure of the gas
mixture can be calculated by using these virial coefficients. The gas constant and

the specific volume v for a gas mixture with v—-components are written as follows,

R= le‘/zi, 0=1/31 1. (19)

i=1; i=10;

Thus, the total pressure of a gas mixture can be calculated by the following

equation,

p=1(SE) (2 D) 5 S Bure s+ (2 2V 8 35 SiCaprazars} 20

i=1U; t=1V;/o=1p= ®=1 B=17
where,
x-:(l)/ii— i—a §and7 21
! M1 &3 Mw;’ ’ )

M : molecular weight.
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Numerical Example
1. For air:—

For air which is considered a mixture with three components (78 mole per cent
nitrogen, 21 mole per cent oxygen and 1 mole per cent argon), by neglecting all
coefficients beyond the third virial coefficient, the total pressure is as follows,

b= T(%+%+%){1+($+%‘)+OLA)B+(%+~7}%+%&)2C}

B = By xN?*+BoX0*+Baxa’+2Bno XN Xo+2BNnaxn xa+2Boaxaxo

C =Cnan3+Cox0°+Cax*+3Cnaaxn x4°+3Cnoo N 20*+3CnNo XN Yo
+3Cnnaxn?24+3Co0a%4%0°+3Co0aax0%42+6CNnoAXN X0 XA

where the subscripts N, O and A are the values for nitrogen, oxygen and argon,
respectively. On the other hand, the partial pressures of the component gases are
given by the following three equations,

- Bﬂ){ 1 1
jJN—T(vN 1+vNBN—I—v—NzCN}

to—T(Eo)y +vioBo+v_})_zco}

R
ba= T(v—;‘){l +viABA+leCA},
where the second and third virial coefficients of nitrogen, oxygen and argon By, Cn;
Bo, Co and B4, C4 are calculated by using the Lennard-Jones potential energy func-
tion with the force constants an =3.698 A, en/k=95.05°K ; oo=3.560A, co/k=1175°K;
d4=3.405 Z\, €a/k=119.8°K that have been given by Bird and others from the
experimental data of Horborn®’, Newitt™ and Michels®. Figures 1 & 2 show the
second and the third virial coefficients of nitrogen, oxyen and argon, respectively.
In Figs. 3 & 4, Bno, Bna, Bao; Cnoo, Cnnvo computed from the empirical com-
bining law and the equivalent force constants mentioned above, are shown with the
full lines, and those values calculated by using the arithmetical combining law for the
virial coefficients are shown with the chain lines. Figs. 5 & 6 show the second
and the third virial coefficients of air computed by the two methods described above,
and it is apparent that there is good agreement among them. In Fig. 7, for com-
parision, the second and third virial coefficients of air given by Mori® from the
experimental values of ‘air, are shown with broken lines, and the chain lines show
those calculated by using the force constants of air given by Bird and others derived
from the experimental data for air of Horborn and others!®,

From this example, it is obvious that the three values for the second virial

coefficient agree very well with each nther and the agreement between the values for
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the third virial coefficient is moderately good. And therefore, it may be adequate to

determine the second and third virial coefficients of air from the data for its com-

ponent gases, in such a way.
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Next, the total pressure of air computed by using the above described virial
coefficients are presented in Table 1, and the ratio of each those values p’—by Mori,
Bird and others from the experimental data of air—to the values p calculated by our
method from the experimental values for each component gas, are shown in Figs. 8
& 9. As shown in these figures, the values of Mori, Bird and others coincide well
with the values by our method, but the values calculated by Dalton’s law deviate
from our values. This deviation increases at constant temperature as the specific
volume of the air decreases, and it decreases as the’ temperature increases at a constant

specific volume of air, in the range of our calculations.
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Fig. 8. Relation between p’/p and the specific volume of air. (7T=1000°K)
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Fig. 9. Relation between p’/p and temperature of air. (»=0.02 m3/kg)
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- - -~ by Y. Mori, —--— by Dalton’s law
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Table 1. (»=0.02m?%kg)

Temperature °K
400 600 800 1000
By x10° m3/kg 03367 07731 09672 1'0735
B, » » ' —0-0059 0°4555 06618 0°7729
By » » —00243 03042 04475 05272
Bx10*m3/kg (1st method) 0°2580 06973 08943 09998
Bo » » (2nd method) 02613 07020 08981 10052
Cx x10° (m3/kg)? 16778 15887 15246 1'4702
Co » " 1°1085 1:0283 09907 09604
Ca » » 05296 0-4897 04719 04576
Cx10° (m3/kg)? (1st method) 15171 1°4301 1'3758 1:3283
c » » (2nd method) 15473 1+4582 1:4024 13535
by kg/cm? 46'38 70'66 9492 11109
bo 7 1227 1850 24'73 3095
by » 055 083 110 1'38
b=pyt+pot+by » 59-20 8999 12075 151°42
b » (1st method) 59'52 91-21 12275 15420
b » (20d method) 59'53 9119 12272 15415

2. For water-mercury vapoer mixture :—
For water-mercury vapour mixture, the total pressure is given as follows,
2
b= T(B.S+EM){1+ (L+i)3+(l+ L) c}
Us Um Us Um Us Uym
B = Bsxs*+2Bspxs Xm+ BarXaf

C = Csxs*+3Csspxs® X3+ 3CspmXs ¥aP +Car¥as

where the subscripts S and M are the values for steam and mercury vapour respec-
tively. And the partial pressures of the component gases are given by the following
two equations,

o (B L
bs = T(Us 1+Us Bs+vSZCs}

- 7(Ra\f1, 1 1 }
Py = T( vM){l +1)MBM+1JM2CM

where Bs and Cs are calculated by using the Stockmayer potential energy function
with the force constants os=2.65 A, es/k=380°K, ,u_\s=1.83><10—18 e.s.u., obtained from
the experimental data of Keyes and others. By and Cyus are calculated by using
the Lennard-Jones potential energy function with the force constants ¢ar=2.898 A,
ep/k=851°K, obtained from the viscosity data. And Bsas, Cssar and Csppas are calcu-
lated by the two methods mentioned above.
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———— 1st method, 1st method,
— - — 2nd method — - — 2nd method

The full lines in Figs. 10 & 11 are the second and third virial coefficients for
water-mercury vapour mixture (vs==0.03 m3/kg, vpr=0.26 m®/kg) by the first method,
and the chain lines show those by the second method. At constant specific volume
(vs=0.03 m®/kg, v3,=0.02m%/kg ; v5=0.03 m*/kg, vay=0.06 m*/kg ; vs=0.03 m3/kg, V=
0.26 m®/kg), the total pressure calculated by our method and the arithmetical sum
of the two partial pressures are compared in Figs. 12, 13 & 14 and presented in
Table 2. In these figures, the full lines represent the former, and the chain lines
the latter, and 4p is the difference between the latter and the former. Furthermore,
the broken lines show the relation of p= T(Rs/vs+Ru/va). Fig. 15 shows the
relation between the ratio p,/p and the mole fraction of mercury xar, where p,, is
the total pressure from Dalton’s law and p is the value calculated by our method.

In the range of our calculations, the difference between p, and p increases with
the mole fraction of mercury. In the region of larger mole fractions of mercury, it
may reach a maximum value and after that point, decrease with the further increase
of the mole fraction of mercury.

In general, it is not appropriate to apply Dalton’s law to a mixture of imperfect
gases as shown in the above examples. On the other hand, since a gas mixture is
treated as an imperfect gas throughout our method, the deviation of the total pressure
calculated by our method from the true value is considered to be much smaller than
that from Dalton’s law, especially in the case where the imperfectness of the gas
mixture is large.
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Temperature {°KJ

Fig. 12. Relation between the total pressure
and temperature of water-mercury vapour
mixture. (v5=0.03 m®/kg, vx=0.26 m*/kg)
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Fig. 14. Relation between the total
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Table 2. (vg=0.03 m®/kg, vx=0.26 m®/kg)

Temperature °K

700 800 900 1000 1200 1500

B x10* m¥/kg -5459 | —4330 | -3524 | -2022 | -2078 | -1305

Bg x10° m¥/kg ~3680 | -2636 | —1939 | -1457 | -0839 | —0326

3 3

B X(llostmm/e‘;go 4y | —3586 | -2563 | -1886 | -1418 | -0816 | -0318

B bod methoay | 3621 | -2588 | -1904 | -1431 | -o0824 | -0321

Carx10° (m®/kg)? | —1384 0590 1237 1376 1325 1123

Csx10° (m¥/kg)? 8401 6145 4527 3'366 2214 1'389
6 3 2

P AL 8065 5898 4347 3232 2126 1334

¢ (,Z’nd m’e'thod) 8235 6024 4.438 3-300 2170 1362

P kg/cm? 114 130 146 162 195 244

Py kg/cm? 9734 11533 13277 14984 183'45 23512

Pp=p ”“’gg Jem? 9848 11663 13423 15146 185°40 23556

» kgl/:t‘“;eth od) 97°40 11575 13351 15086 18499 23538

(2nd method) 9727 11565 13343 15079 18405 23536

Conclusion

It has been shown that it is possible to determine the total pressure of a gas
mixture by using the force constants of each component gas or the experimental
p-v-t data of each component gas. And also it has been demonstrated that it is not
appropriate to apply Dalton’s law to a mixture of imperfect gases in cases where the
degree of imperfectness of the gas mixture is large. In such cases, it may be
adequate to use our methods, i.e. the first method in which the empirical combining
law for force constants and the equivalent force constants are used, and the second
method in which the arithmetical combining law for the virial coefficients is assumed.
The results from those two methods agree very well with each other. However, since
our methods are still approximate, our results may contain some small deviation from
the true value. However, in order to certify the degree of that deviation, more

accurate experimental data of pure components and their mixtures are desired.
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