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Sampled-data Control System Design Using Reverse Element 

By 

Shigenori HAYASHI* and Satoshi HOSHINO** 

(Received July 31, 1961) 

In this paper, the authors deal with one method for the control of sampled­
data control systems. In contrast with ordinary sampled-data control systems, 
the polarity of the control signal is reversed at several instants in every sampling 
period. By deciding the instants properly, the finite settling time response can 
be obtained. Especially, for a step input, it is shown that the system error can 
be reduced to zero in one sampling period, irrespective of the order of the cont­
rolled element. Furthermore, the compensator is simpler than that for ordinary 
sampled-data control systems, because it consists only of a sampler, a hold 
element, and a reverse element which reverses the polarity of the control signal. 
Even for a controlled element with a symmetric saturation characteristic, the 
settling time has a finite value. Moreover, it is shown that the reverse element 
can be used along with an ordinary compensator containing delay elements, and 
that the settling time can be made shorter. The response for a random input is 
also analyzed for a typical sampled-data control system with a reverse element. 

I. Introduction 

Sampled-data control systems with a compensator containing delay elements 
have been treated by many authors, and the mathematical techniques and the 
theory developed for them are now well known. 

In this paper, the authors deal with sampled-data control systems of a 

different kind. In contrast with ordinary sampled-data systems, the polarity of 
the control signal is reversed at several instants in every sampling period. The 
instants and the number of reversals are determined by the sampling period and 
the characteristic of the controlled element. In the following discussion, a com­
pensator which reverses the polarity of the control signal is called a reverse 
element. 

II. System Design for a Second Order Controlled Element 

(1) Design Procedure for a Step Input 
In this section, a design procedure is discussed for the control system shown 

in Fig. 1. The polarity of the control signal is reversed when t = Ti (measured 
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from the beginning of every sampling period) as shown in Fig. 2. 
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Fig. 1. Block diagram of a sampled-data control 
system with a second order controlled element. 
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Fig. 2. Reversal of the control 
signal in a sampling period. 

The instant T1 is chosen so that the system error becomes identically zero 

after one sampling period. 

The system output c(t) for a step input is 

(1) 

where H(t) is a unit step function, and g(t) is the indicial response of the cont­

rolled element, which is written as 

g(t) = t-T(l-e-tlT) 

According to the design condition mentioned above, we obtain 

c'(To) = 0 

C (T0) = 1 } 

(2) 

( 3) 

where To is the sampling period. Substitution of Eq. (1) into Eq. (3) yields 
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Fig. 3. Conditions for finite setting time response. 
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where 
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ram = 0.5(1 + e-a) } 

_J._ = 1-2m 
KTo 

m I-Ti/To 

a= To/T 

( 4) 

( 5) 

( 6) 

The relations given by Eq. (4) are plotted in Figs. 3(a) and 3(b) with solid 

lines. Figure 4 gives the step response of the system output c(t) for a= 1. The 

polarity of the control signal is reversed when Ti/T0 =0.62, and KTo=4.2. 
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Fig. 4. Step response of the control system in Fig. 1. (a=l.0) 

(2) Design Procedure for a Ramp Input 

The discussion in the preceding section indicates that the simple control 

system shown in Fig. 1 has a finite settling time for a step input. But the 

system with a finite settling time for a ramp input should have a compensator 

containing delay elements. 

Consider the control system shown in Fig. 5, and let the time darivative of 

the system input be l/T0 • The design conditions corresponding to Eq. (3) are 
given by 
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Fig. 5. Block diagram of a sampled-data control system 
which is designed for a ramp input. 

c'(To) = 1/To 
C (To)= 2 

Substitution of Eq. (1) into Eq. (7) yields 

} 

e-am = os(1+e-a+l-2m) l 
· 2+1/a 

1 _ 1-2m 
KTo - 2+1/a 
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( 7) 

(8) 

The relations given by Eq. (8) are plotted in Figs. 3(a) and 3(b) with dotted 

lines. Figure 6 gives the step response of the system output c(t) for a=l. The 

polarity of the control signal is reversed when T1/T0 =0.73 and KT0 =6.6. 

Fig. 6. Velocity response of the control system shown 
in Fig. 5. (a=l.0). 

III. System Design for a Third Order Controlled Element 

Suppose that the transfer function of the controlled element G(s) is given as 
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G(s) = s(l+ Ts)(l+ T's) ( 9) 
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Fig ... 7. Reversal of the control 
signal in a sampling period. 

In this case, the polarity of the control signal 

is reversed twice in every sampling period as 

shown in Fig. 7. Similar to the system design 

discussed in the previous sections for a second 

order controlled element, the following conditions 

can be obtained. 

e-amz-e-am, = 0.5(1-e-0
) 

e-bmz-e-bm, = 0.5(1-e-b) } (10) 

(11) 

where 

a= TolT 

b TolT' 

m,=1-T,ITo 

m2 l-T2IT0 

(12) 

(13) 

(14) 

(15) 

The instants T, and T2 are found from Eq. (10) by solving for m, and m2, 

and using Eqs. (14) and (15). Figure 8 indicates m, and m2 as a function of 

Toi T and T0I T'. This figure is composed of two regions separated by a straight 
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Fig. 8. Conditions for finite settling time 
response. 
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Fig. 9. Step response of a control system 
with a controlled element of third degree 
given by Eq. (9). (a=2.0, b=l.0). 
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line passing through the origin. The value of m1 is shown in the right-hand 

region, and that of m2 is shown in the upper region. Figure 9 gives the step 

response of the system output c(t) for a=2.0 and b=l.0. 

For a ramp input, a similar method can also be applied to design a control 

system with a finite settling time. 

Now, it will be shown that the reverse element can be used along with an 

ordinary compensator containing delay elements. In this case the control element 

can be made simpler, and a shorter settling time can be obtained. 

Consider the control system shown in Fig. 10, including both a reverse 

element and a compensator D(z) containing delay elements. It is assumed that 

r(t) 

+ Reverse 
J c(tJ 

S(l+TS)(I+r'SJ 

Controlled 
element 

Fig. 10. Block diagram of a sampled-data control system when 
a reverse element is used along with a compensator 
D(z) containing delay elements. 

the polarity of the control signal is reversed when t= Ti in every sampling 

period, and that the system error is reduced to zero for t "2. 2 To. 

First, the function </J(t) is defined by 

</J(t) - g(t)-2g(t-T1) H(t-T1) + g(t- T 0 ) H(t- T 0 ) (16) 

where g(t) is the indicial response of the controlled element. The system output 

c(t) is written as 

c(t) = K</J(t) +Kh</JCt-To) HCt-To) 

where K and h are unknown constants. Design conditions are given by 

c' (2T0) = 0 l 
c"(2T0 ) = 0 

C (2T0 ) = 1 

Substituting Eq. (17) into Eq. (18) yields 

</J' (2 T 0 ) </J" ( To) = </J" (2 T 0 ) </J' ( T 0 ) 

D(z) = Kl-</J'(2To)z-
1
/r/J'(To) l 

1+ {l-</J(T0)}z-1 

K1i,o = </J(2To)-</J(To)</J'(2T0)/r/J'(T0 ) 

(17) 

(18) 

(19) 

Figure 11 gives the step response of the system output c(t) for a=2.0 and 

b= 1.0, and shows that two solutions exist. 
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Fig. 11. Step response of the control system shown 
in Fig. 10. (a=2.0, b=l.0). 

For the solution shown with a solid line, 

T1 = 0.72 

KTo = 3.65 

D(z) = 3.65. 1-0.36&-1 

To 1 + 0.432z-1 

For the solution shown with a dotted line, 

T1 = 0.62 

KTo = 4.80 

D(z) = ~.80. 1-0.138z-1 

To 1 + 0.325z-1 

l 

l 
IV. Extension to a General Order Controlled Element 

Assume the controlled element G(s) given as 

K 

r,, 

T,J r,, 

(20) 

(21) 

(22) 

-I( 
The polarity of the control signal is re­

versed as shown in Fig. 12. The design condi­

tions are written for a step input as Fig: 12. Reversal of the control 
signal in a saJ:?pling period. 
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a,== To/'<; 

m1 = 1-T./To 

(k = 1, 2, ... , n-1) 

(i = 1, 2, ··· , n-1) 

(i = 1, 2, · · · , n-1) 

Similar conditions can also be obtained for a ramp input. 

V. The Effect of Saturation of the Controlled Element 
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(23) 

(24) 

(25) 

It was indicated in previous sections that the system error can be reduced 

to zero in one sampling period for either a step or ramp input. For a controlled 

element with a symmetric saturation characteristic, it is clear that the settling 

2.0 

½. 
Fig. 13. Step resp<;mse of a control system with 

the controlled element given by Eq. (26) 
when the response speed is limited with 
saturation. 

time becomes longer with an increase in the input level. But when the working 

point of the controlled element enters a linear region, the system error is reduced 

to zero in one sampling period. Figure 13 shows the step response of the system 

output c(t) for a controlled element G(s) given by 

1 
G(s) = s(s+ 1) (26) 
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VI. Response for a Random Input 

In this section, the response for a random input is analysed for the control 

system shown in Fig. 1. The variance a; of the system error at sampling instants 
is given by'l 

2 _ 1 ,( I 1 1
2 dz 

a.-2nj :Y 
1
l+G(z) (f)rrCz)z (27) 

unit circle 

where G(z) is the open loop pulse transfer function, and 0rrCz) is the auto­

correlation series of the system input. 

The polarity of the control signal is reversed when t= T,. Thus G(z) is 

represented as 

(28) 

Using tables of the z-transform and the modified z-transform, we obtain 

G(z) as 

where 

and 

therefore, 

where 

m-1-T,/To 

a= To/T 

1 _ (z-e- 0 )(z-1) 
l+G(z) - z2 +C(m)z+D(m) 

C(m) =KTA(m)-(l+e-0
) 

D(m) = KTB(m) + e-a 

Assume that (/)rrCz) is given by 

(/) ( ) - (1- q2
) z 

rr Z - ( ) (l ) z-q -qz 

Substituting Eqs. (33) and (35) into Eq. (27) yields 

} 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 
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C1 = 1-e-a 

C2 = l+e-a 

do= (1-q){l+C(m) +D(m)} 

di= (3-q) + (l+q)C(m)-(l-3q)D(m) 

d2 = (3+q)-(1-q)C(m)-(1+3q)D(m) 

d3 = (l+q){l-C(m)+D(m)} 
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(37) 

Figure 14 shows the variance a; of the system error as a function of KTo and 

m when a= 1 and q=0.9. If the control system discussed above is controlled with 

Normalized gain KT,, 

Fig. 14. Variance of the system error as a function 
of KT0 and m. (a=l.O). 

an ordinary compensator containing delay elements, the optimum over-all pulse 

transfer function K(z) is given by 1
) 

K(z) = qz-1 (38) 

Therefore, the variance of the system error is equal to (l-q2
) ( = 0.19 when 

q=0.9), which is shown with a dotted line in Fig. 14. Inspection shows that the 

optimum values of KT0 and m are approximately 4 and 0.4 respectively which 

agree well with the results obtained in section II. 
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