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Layer in Incompressible Fluids 

By 
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(Received September 1, 1961) 

In this paper, the problem of the turbulent boundary layer with pressure 
gradient is treated. While the velocity profile in the boundary layer is influenced 
by the pressure gradient, the temperature profile is not greatly influenced by the 
pressure gradient, and hence a fictitious or virtual convective heat transfer is 
considered and an auxiliary equation which determines the velocity profile is 
obtained. The results of this method of calculation are compared with the ex
perimental results. 

1. Introduction 

The turbulent boundary layer was first treated by v. Karman and Prandtl 

and later approximate methods of calculation were developed by Buri and 

Gruschwitz for the case accompanied with pressure gradient. Almost every 

approximate method applies the momentum integral equation, but to obtain the 

change in the velocity profile, another parameter or auxiliary equation is needed 

to determine the shape of the velocity profile, and Gruschwitz 1
), v. Doenhoff

Tetervin 2), and others have proposed empirical equations for the velocity shape 

parameter. The author has also published an equation in a previous paper 3
). 

In this paper, however, a virtual convective heat transfer in the boundary 

layer is introduced to obtain an auxiliary equation. 

Let x and y be rectangular coordinates, u and v be the velocity components 

along x and y respectively, p be the pressure, p be the density of fluid, c be the 

specific heat of fluid, T be the temperature of fluid, -r be the shearing stress and 

q be the heat flow in the y---direction per unit area per unit time. Then the 

equation of motion of the boundary layer is 

8u 8u 1 dp 1 8-r u --+v- = --•--+-•-
8x 8y p dx p 8y 

and the equation of heat transfer is 
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u fJT +v fJT - _ _!__ fJq 
fJx oy - PIJC fJy 

The equation of motion contains a pressure gradient term, but the equation of 

heat transfer does not, and while the velocity outside the boundary layer varies 

with the pressure gradient, the difference of temperature between the main stream 

and the wall surface does not change in the x-direction if the temperature of 

the wall surface is constant. So the problem of convective heat transfer is 

similar to the problem of flow along a flat plate in uniform flow. That is why 

virtual heat transfer is considered and, how an auxiliary equation which determines 

the shape of the velocity profile is obtained. 

2. Velocity Distribution in the Boundary Layer 

The velocity distribution in the boundary layer is assumed to be as follows, 

!±..- = 1+~ log-r;-a (1-_!-r;+-l-r;•) 
Uo IC 3 3 

(1) 

where u is the velocity at distance y from the wall surface, uo is the velocity 

outside the boundary layer, a is a parameter, IC=0.4, i'J is the thickness of the 

boundary layer and -r;= y/i'J. The shearing stress -r0 acting along the surface is 

expressed by -r0 =Cfpu6/2 or -r0 =(2put where Cf is the coefficient of local skin 

friction and c=✓cf/2. So the friction velocity becomes u*=C'Uo. 
In the neighbourhood of the wall surface, it is well-known that u/u*= 

(l/1C) log -r; + const., and it can be shown theoretically that the velocity distribution 

contains a term proportional to -r; when a pressure gradient exists. The term of 

-r;4 is rather arbitrary and is so determined that the velocity profile of eq. (1) is 

similar to the velocity profile described in the previous paper'). 

In the case of an incompressible fluid the displacement thickness i'J* and the 

momentum thickness n become as follows, 

(2) 

(3) 

Now, only the case of a smooth surface will be treated in this paper and for a 

smooth surface the following well-known relation holds in the neighbourhood of 

the wall surface even when the flow is accompanied by a pressure gradient, viz., 

u 1 1 1 u*i'J - = 5.5+- og-r;+-log-
u* IC IC V 

where v is the coefficient of kinematic viscosity. 
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From eq. (1) 

u 1 1 a - = -+--log7J---+··· u* ( ,-. ( 

and by comparing the above two equations, 

u*o (1-a ) log-
11
- = ,-. ,-s.5 ( 4) 

hence 

Equation (5) gives the relation between Reynolds number R0=u/J/11 and the 

coefficient of local skin friction and is shown in Fig. 1. 
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Fig. 1. Coefficient of local skin friction of smooth surface. 
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The coefficient of local skin friction when a= 0, denoted hereafter by Cf0 , 

can be expressed approximately by the following relations, 

Cf0 = 0.0172 R0-1! 5
, 102<R0< 104 

Cf0 = 0.0102 Ro-111
, 104<R0< 106 } (6) 

and the ratio cfl Cf
0 

at the same Reynolds number can be expressed approximately 

by the following relation. 

Cf = 1-1.38a+0.527 a5
, 0<a<0.8 

Cfo 
(7) 
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3. Heat Transfer by Convection and Auxiliary Equation 

Let the temperature of the fluid outside the boundary layer be To, the 

temperature at y be T, the temperature of the wall surface be T w, the friction 

temperature be T*, the thermal conductivity of the fluid be A, the specific heat 

of the fluid be c, the coefficient of heat transfer be a and the flow of heat from 

unit area of the wall surface per unit time be qw. Then by the definitions of 

a and T*, 

(8) 

(9) 

Assume that the Prandtl number of the fluid i.e. vpgc/). is unity and let the 

Nusselt number be N8 =afl/)., then from eqs. (8) and (9), 

(10) 

and 

(11) 

The heat-flow equation of the boundary layer is as follows, 

(12) 

So let 

(13) 

then 

~>gcu(T-To)dy =A(Tw-T0) N~ZT 
and by eq. (11), eq. (12) becomes as follows, 

__!J__ (Noflr) = No 
dx t;,fl IJ (14) 

This is the auxiliary equation of the present method. 

Strictly speaking, the temperature profile in the boundary layer is affected by 

the pressure gradient and the temperature profile becomes flatter as the adverse 

pressure gradient becomes larger, but the effect is not so large as in the case of 

the velocity profile, and so in this approximate calculation it is assumed that 

T-To = _ __!_ log'll 
T* IC 

(15) 

Then from eqs. (13) and (15) 
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8[ = 2.5-1.7 a-12.5 C 

In the neighbourhood of the wall surface, it is known that 

Tw-T = 5.5+llogu*y 
T* IC 1,1 

when the Prandtl number is unity, and hence from eqs. (4) and (15) 

From eqs. (10) and (17), 

Let 

and 

Ne= r:
2Re = CfRe 

1-a 2(1-a) 

k=--!:.L__ 
Cf/1-a) 

A=kfJT 
t;,tJ 

(16) 

(17) 

(18) 

(19) 

(20) 

then using relations of eqs. (17), (19) and (20), eq. (14) becomes as follows. 

(21) 

In the above equation, A is a function of a and Re as shown in Fig. 2 and by 

eq. (7) 

k = 1-1.38a+0.527 a5 

1-a 

in the case of the velocity profile assumed in paragraph 2. Or if eq. (21) is 

integrated between x1 and X2, then 

(22) 

When u0 = const., the value of a is zero, so k = 1, {}=or: (2.5-12.5 C), {} T= 

0(2.5-12.5 t;,) and c=✓ Cf/2, hence eq. (21) becomes as follows, 

which coincides with the momentum integral equation in this case. 

4. Practical Method of Calculation 

Integrating the momentum integral equation approximately, 
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( uof} )
115 

8 = \ {0.01032 f x u3dx + const.} , Re< 104 

JI Uo Jo 

( uof} ) 
117 

8 = \ { 0.00583 r X u3dx + const.} ' Re > 104 
JI Uo Jo 

} (23) 

Using these equations 8, Re and c10 can be easily calculated. 

Equation (21) can be transformed into the following equations if the approx

imate eqs. (6) are applied, viz., 
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Fig. 2. Relation between auxiliary function A and Reynolds number Re. 
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(24) 

If, at some point of x say x1 , a is known or assumed then the value of A 

at this point is determined by eq. (20) or Fig. 2. Therefore if the value of k is 

assumed properly, then the value of A at any other point say x2 can be found 

from eq. (21) or (24) since the values of all quantities in the equation except the 

value of A at X2 are known. Hence the values of a and Cf at x2 are determined. 

5. Numerical Examples 

Figure 3 shows an example of the change of velocity profile due to the pres

sure gradient. The flow is assumed to be such that u0 = U0 + U1x/l where U0 is 

the value of uo at x=0, and it is also assumed that Re=l03 at x=0 and that 
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R= Uol/11= 10". This figure shows the rela

tion between the value of a at x=l and U1/U0 • 

The three cases of a= 0.1, 0.3 and 0.5 at x = 0 

are shown. The dotted line shows the value 

of U1/ Uo which gives no change in velocity 

profile between x=0 and /. 

Figures 4, 5 and 6 show the results of 

calculations compared with the experimental 

results of Gruschwitz 5), Values of {} and a 

at the initial point are assumed so that the 

velocity profile fits well with the experimental 

results, and then the velocity profiles on the 

downstream side are calculated. The lines 

Fig. 3. Change of velocity profile 
parameter a when u0 = U0 + U1x/l. 

show the velocity profiles calculated by this method. In Fig. 2 the loci of the 

function A in these three examples are shown, the broken line corresponds to 

the case shown in Fig. 4, the chain line to Fig. 5 and the dotted line to Fig. 6. 

The calculated results coincide comparatively well with the experimental results. 

As to the separation of the boundary layer, it seems that the value of a or 

H=o*/fJ at the separation point depends on Re, and the condition of separation 

can not be determined by the present theory. Hence, in this calculation, it is 

assumed that the separation takes place when a becomes larger than about 0.8. 

In the present examples, separation has already occurred at x=56.72 cm in the 

Aerofoil ct= 12.• 

Wo=30.8 o/s 

0 J 4 5 6 7 8 9 10 
y mm 

Fig. 4. Comparison between theory and experiment. 
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case shown in Fig. 5. 
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Fig. 5. Comparison between theory and experiment. 
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6. Conclusion 
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Fig. 6. Comparison between theory and experiment. 

In this method of calculation, an auxiliary equation which determines the 

velocity profile is obtained. From this equation, an equation for shape factor H 

can be obtained but has a complicated form which requires numerical calculation. 

The auxiliary equation contains a number k which is a function of a, and this 

makes numerical calculation somewhat cumbersome. It is hoped to find a func

tion A which will make k constant and also that it will be possible to express 

this function in a simple analytical form. 
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