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The Effects of the Degree of Liquid Mixing on Unsteady Perfor­
mance Concerning Fluid Concentrations on Fractionating Plates 

By 
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In order to investigate the effects of the degree of liquid mixing on the 
dynamics concerning fluid concentrations on a fractionating plate, four kinds of 
transfer-functions describing the unsteady performance of vapor and liquid con­
centration were derived and analysed, using two "mixing models" for expressing 

the liquid mixing phenomena on a plate. Furthmore dynamics concerning unsteady 
fluid concentration change in the multistage fractionating plates were developed 
with the results obtained on a plate. 

§ 1. Introduction 

Dynamic performance of gas-liquid contacting plate columns concerning the 

concentration changes of flow have been investigated particularly for the distil­

lation operation, assuming that vapor and liquid are perfectly mixed on each 
plate and that both leave each plate at equilibrium concentrations1,a-to). In large 

columns for industrial use, however, it is doubtful whether these two assumptions 

are satisfied. 

In this paper, the effect of the degree of liquid mixing on the dynamics of 

a plate is discussed in relation to concentration change. It is most important to 

express analytically or in formulae the mixing phenomena on a plate so as to 

obtain the effect of the degree of liquid mixing on static and dynamic per­

formances. It is impossible, however, to express this phenomena faithfully or 

strictly, because the mixing state on a plate is quite complicated, and an assumed 

reasonable, "model of mixing", must be introduced to express liquid mixing 

phenomena. 

In this paper, only the problem of liquid mixing in the direction of liquid 

flow is taken account, while it is assumed that vapor and liquid in the direction 

of vapor flow are perfectly mixed on a plate where both fluids are cross-currently 

contacting each other. 

* Sanitary Engineering 
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For liquid mixing phenomena in the direction of liquid flow, two familiar 

models such as the following are adopted, and the transfer-functions which give 

the unsteady behavior of vapor and liquid concentration changes are considered 

theoretically. 

One mixing model is called the "perfect mixing model5
) ", which states that 

one fractionating plate is equivalent to a series combination of n imaginary 

perfectly mixed vessels equally divided in the direction of liquid flow, as shown 

in Fig. 1. In this model, the state of perfect liquid mixing is represented by 

n=l. The state of liquid mixing on a plate becomes apart from the perfect 

mixing state with the increase of n, and finally the perfect piston flow state is 

accomplished when n tends to infinity. 

The second model of liquid mixing is the well known "diffusional model" 

which states that "back mixing" occurs in proportion to the liquid concentration 

gradient in the direction of liquid flow so as to reduce the liquid concentration 

gradient. The liquid mixing degree is expressed by a "back mixing coefficient" 

E which is similar to an ordinary diffusion coefficient. The value of E represents 

the degree of liquid mixing, that is, perfect liquid mixing state is represented 

by E= infinity, and the degree of mixing decreases with the decrease in E. On 

the other hand, perfect piston flow is represented by E=O. The degree of liquid 

mixing on perforated plates and bubble cap trays2
), and also in multi-tubular 

heat exchangers3
,7), have been investigated by experimental methods with the 

diffusional model. 

As will be mentioned in a separate paper*\ the expression of the degree of 

mass-transfer on a plate is to be considered more carefully than the problem of 

liquid mixing, and only the expression of KLa or Kea has been concluded to be 

reasonable in the consideration of dynamics by authors' investigation, while the 

Murphree efficiency was introduced by Wood and Armstrong1
1). Therefore in 

this paper, these overall mass transfer capacity coefficients are used in respect 

to the expression of the degree of mass transfer. 

§2. Transfer-functions for concentration change by "perfect mixing model4)" 

In a fractionating plate in which vapor is in contact with liquid cross-currently 

and the hold-up of vapor is assumed to be negligibly small in comparison with 

that of liquid, the transfer-functions which express how a change in concentration 

of the inlet liquid or vapor, XI or YI in mole-fraction, is transferred to those of the 

outlet liquid or vapor, are considered in this section. With the perfect mixing 

model, it is supposed that a plate is equivalent to a system combined in series by n 

*) Unpublished 
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Fig. 1. Material balance on a plate for "perfect mixing model" 

perfectly mixed vessels as shown in Fig. 1, where the flow rates of liquid and 

vapor R and V (kg-moles/hr), the hold-up of liquid on a plate H (kg-moles) are 

constant for a given plate. Obviously from Fig. 1, in each vessel, the flow rates 

of liquid and vapor are R and V/n respectively, and the hold-up of liquid is H/n. 

In addition, it is assumed that chemical and physical properties, eg., the degree 

of mass-transfer and the relation of equilibrium between the concentrations of 

vapor and liquid are constant through all vessels. 

In these conditions, the material balance or the equation of continuity for 

the i-th vessel (in which liquid and vapor are perfectly mixed in all directions) 

is given by 

: .dx~t t) = R[x(i-1, t)-x(i, t)]+: [y1(t)-y(i, t)] (1) 

Similarly the equation of mass-transfer rate in the liquid phase is given as 

follows. 

: .dx~t t) = R[x(i-1, t)-x(i, t)]-KLaW[x(i, t)-x*(i, t)] ( 2) 

, where W (m3
) is the volume occupied by fluids in a vessel, and KLa (kg-mole/m3 hr 

unit driving force) is the overall mass transfer capacity coefficient based on the 

liquid phase and x*(i, t) is an imaginary liquid concentration which is in equili­

brium with the outlet vapor concentration y(i, t). 

Now the relation of equilibrium between the concentrations of vapor and 

liquid is supposed to be expressed by 

y(i, t) = mx*(i, t) + constant (3) 

, where m is always constant. 

The fluid concentrations x and y which are dependent on time, may be 

seperated into the steady-state terms x0
, y 0 which are independent of time and 

the unsteady-state terms Jx and Jy which are dependent on time, that is, 

x(i, t) = x0 (i) +Jx(i, t) 

y(i, f) = y0(i) + Jy(i, f) 
(4) 
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From equations (1), (2), (3) and (4) 

5.__d.dx(i, t) = .dx(i-1, t)-(l+l___· JNoL ) .dx(i, t) +l__· l.NoL .dy1(t) ( 5) 
n dt n J.+NoL n m(J.+NoL) 

, where -r, ). and NoL are the residence time of liquid on a plate, stripping factor 

and overall number of transfer units of liquid phase respectively, and given by 

Considering that the concentrations of the inlet liquid and vapor change around 

their steady-state (t<O) values x1 and Y1 by .dx1(t) and .dy1(t) at t>O, respec­

tively, .dx(i, t) and .dy(i, t) are zero at t=O, and hence equation (5) may be 

rewritten as follows. 

X(i-1,s)-(l+l__./N.N.oL +l___-rs)X(i,s)+l___· (~N~ )Y1(s)=O (6) 
n ,.. + oL n · n m + oL 

, where X(i, s) and Y(i, s) are Laplace-transforms of .dx(i, t) and .dy(i, t) with 

time t, respectively, that is, 

X(i, s) = L[.dx(i, t)] 

Y(i, s) = L[.dy(i, t)] 

From the difference equation (6) of i, the following equation (7) is obtained by 

using the boundary condition that x(i, t) at i=O is equal to the inlet liquid 

concentration x1(t). 

X(i, s) = ( 1 ;.JoL 1 r X1(s) 
1+-•--+--rs 

n J.+NoL n 

1 l.NoL 

m"I+FT;;_ [1 l ]Y () (7) 
+ J.N. - ( 1 ).N. 1 ); 1 s -rs+-_o_L_ 1+-• __ o_L_+--rs 

). + NoL n ). + NoL n 

Equation (7) indicates how the outlet liquid concentration of the i-th vessel 

changes around its steady state value in response to an arbitrary change of the 

inlet liquid or vapor concentration by the Laplace transform. From equation (7), 

the response of the outlet liquid concentration is obtained by using the following 

boundary condition. 

Xu(s) = X(i, s) at i = n 

For the response of the outlet vapor concentration, since the outlet vapor 

concentration of each vessel is different, the average concentration from a plate 

must be calculated by the following equation. 

1 " yu(t) = - :E y(i, t) 
n t=l 

(8) 
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The Laplace transform of the unsteady state term of equation (8) is given as 

follows. 
1 " Yu(s) = - :E Y(i, s) 
n 1-1 

(9) 

On the other hand, Y(i, s) is obtained from equations (1), (2) and (3) as 

follows. 

Y(i, s) = , ).H Yr(s) + ,mN"_,,,.0,L X(i, s) 
11+1voL 11+1voL 

(10) 

From equations (7), (9) and (10), the equation describing how the outlet 

vapor concentration changes around its steady state value in response to an 

arbitrary change of the inlet liquid and vapor concentration at t > 0 is obtained 

in the form of the Laplace transform as follows. 

mNoL 

Yu(s) = ~L [1- ( l ).iL l r]X1(s) 
-rs+--- 1+-•---+--rs 

J.+NoL n J.+NoL n 

). ( NbL )
2 

+[-).-+ I+N;,-;, 
J.+NoL -rs+ ANoL 

J.+NoL 

). ( NoL )
2 

~ {1 1 }] y ( ) 
(-rs+ J.NoL )2 -(1+.1__· J.NoL +l_-rs)n I s 

J.+NoL n J.+NoL n 

(11) 

From equations (7) and (11), four kinds of transfer-functions describing the 

unsteady performances of fluid concentration are obtained. 

mNoL 
G

2
(s) = Yu(s) = ~o-;_ [l- 1 ] 

X1(s) -rs+ ANoL (l+l___· lNoL +l_-rs)n 
J.+NoL n J.+NoL n 

ANoL 

). ( NoL )
2 

- 4NoL_[1 
(-rs+ ANoL )

2 

J.+NoL 

(12) 

(13) 

(14) 

(15) 
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The effect of the degree of liquid mixing on the dynamics of a fractionating 

plate can be discussed by analysing the transfer-functions given above, because 

the degree of liquid mixing is expressed by the value of n. 
First, in the case where the liquid on a plate is perfectly mixed, that is, the 

liquid mixing parameter n is equal to unity, the following transfer-functions are 

obtained from equations (12), (13), (14) and (15). 

Gi (s) = Xu(s) = 1 
X1(s) l+ ).NoL +-rs 

).+NoL 

(16) 

mNoL 

G2(s) = Yu(s) = T+N;;_ 
X1(s) l+ ANoL +-rs 

).+NoL 

(17) 

ANoL 

(18) 

(19) 

These transfer-functions are all of the first order except that expressed by 

equation (19), and they have following common time constant. 

T= ).+NoL 'I" 
).+).NoL+NoL 

Since only G,(s) is essentially different from the other three transfer-functions, 

some discussion will be given in § 4. It is worth while to notice that n, which 

describes the liquid mixing degree on a plate, is involved only in the following 

term of the four kinds of transfer-functions. 

1 

Therefore~ it may be, first of all, desirable to speculate how G,(s) is affected by 

the value of n. G1 (s) is transformed into 

(20) 

, where 
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Fig. 2. Transient response of the outlet liquid concentra­

tion with unit step change of the inlet liquid concentra­
tion with "perfect mixing model" for .>..=l, 1/ NoL=O 
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Fig. 3. Bode Diagram of 1/(1 + jwTn)n 

G1(s) expressed by equation (20) is a transfer-function of the n-th order and its 

dynamic behavior differs from the transfer-function of the first order shown by 

equation (16) with increase of n. This fact can be more explicitly seen by the 

indicial or frequency response curves in Fig. 2 and Fig. 3 calculated from the 

transfer-function G1 (s). In the perfect piston flow state which is the limiting case, 

G1(s) = exp ( - /:;faJ ·exp (--rs) (21) 

The above equation states that the value of the outlet liquid concentration chan­

ge for a unit step change of the inlet liquid concentration comes to exp ( - ;_ ~ ;faJ 
after t=-r and in frequency response the gain has a constant value of 

exp (- ;_ ~NoJ and the phase lag increases to infinity from zero with increase of w. 

From the analyses of indicial response or frequency reponse as shown above, 

G1(s), the only term involving parameter n in the four kinds of transfer-functions, 

is seriously affected by the value of n, that is, by the degree of liquid mixing. 

On the other hand, the other three kinds of transfer-functions G2(s), Gs(s) 

and G,(s) are not affected so greatly as G,(s) by the degree of liquid mixing. 

This explanation will be given in § 3 in detail. 

~ 3. Transfer-functions for concentration change with "diffusional model" 4
•
6

) 

In this section, the same problems as discussed in § 2 are analysed in the 
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l,x1 (t} Backmix,ng 
effect at z=z Y(z,t) 

z=oL_ t z=z v=z+dzt 

y, (t), G 

Backmixin;; effect 

at z=z+dz 

Fig. 4. Material balance on a plate for "diffusional model" 

form of a "distributed system" with the assumption of a "diffusional model" 

for the expression of the degree of liquid mixing. In this case the form of the 

liquid concentration distribution curve is smooth in the direction of the liquid 

flow on a plate while the liquid concentration distribution in ~ 2 is assumed to 

be stepwise. The assumptions used in this section are the same as those of the 

previous section, except for the method of expressing the degree of liquid mixing, 

and are as follows ; 

a) Vapor hold-up is negligibly small in comparison with that of the liquid 

on a plate. 

b) Liquid and vapor are perfectly mixed, that is, there is no concentration 

gradient of liquid or vapor, in the direction of vapor flow. 

c) Liquid stream is continuous and smooth, and the "diffusional model" 

can be assumed for the concentration gradient of liquid in the direction 

of liquid flow. 

d) All the physical or chemical properties, eg., the mass transfer capacity 

coefficient and the relationship of equilibrium between the concentrations 

of vapor and liquid are always constant despite of changes in fluid con­

centrations, and are independent of time and position on a plate. 

e) Mass flow rate of liquid and vapor and hold-up of liquid are always 

constant. 

In Fig. 4, L is the molar mass velocity of liquid per unit width in kg-moles/ 

m · hr, G is the molar mass velocity of vapor per cross sectional area of a plate 

in kg-moles/m2hr, l is the liquid travelling length on a plate in meters and u is 

the constant liquid linear velocity in m/hr. 

In the infinitesimal interval between z = z and z = z + dz in the direction of 

liquid flow in Fig. 4, the material balance (the equation of continuity) and the 

equation of mass transfer rate are given under the assumptions mentioned above 

as follows. 
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82x 8x 8x u E--u------(x-x*) = 0 
8z2 f)z 8t HoL 

L 8x 1 L 8x E L 82x y = y1--•---•---•---+-·--·-
G f)z u G 8t u G 8z2 

(22) 

(23) 

As in § 2, the relation of equilibrium between the concentrations of vapor 

and liquid is given by the following equation. 

y = mx* + constant (24) 

In equations (22) to (24), E is the "back mixing coefficient" in m2 /hr and 

HoL is the length of an overall liquid phase transfer unit in meters. HoL is 

essentially the same expression for the degree of mass transfer as an overall 

mass transfer capacity coefficient KLa and is equivalent to l/NoL• x and y, of 

course, are functions of time t and position z. The boundary conditions for 

equations (22) to (24) are given from the material balances at the inlet and 

outlet positions of the plate as follows ; 

E [~x] = u( x -x1) 
UZ Z=O z=O 

(25) 

and 

E[::1=1 = 0 (26) 

Using the boundary conditions (25) and (26), the following equation for the 

liquid concentration distribution on a plate is obtained from equations (22) to 

(24) in the Laplace transforms of fluid concentration changes .:Ix and .:ly from 
their steady state values x0 and y0

• 

, where 

In the above equation, ). and NoL are defined as follows ; 

l 
NoL=­

HoL 

(27) 

These parameters ). and NoL are exactly the same as those in the previous 

section. 
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From equation (27), the liquid concentration distribution on a plate is easily 

obtained, where Pe is called the "Peclet number" which gives the degree of 

liquid mixing on a plate in the direction of liquid flow, and is a function not 

only of the back mixing coefficient but also of the liquid travelling length l and 

liquid linear velocity u. That is, 

Pe=~ 

From the fact mentioned above it may be found that the degree of liquid 

mixing on a plate can be accounted for more reasonably by Pe than by the back 

mixing coefficient E alone. Therefore Pe will be used to describe the degree of 

liquid mixing on a plate, hereafter. 

Similarly, the concentration distribution of the outlet vapor may be obtained. 

The concentration of "local" outlet vapor from the infinitesimal section in the 

direction of liquid flow is a function of position z and time t, and therefore the 

average concentration of all outlet vapor rising from a plate must be calculated by 

1 fl 
y11(t) = T J

0
y(z, t)dz (28) 

From equations (23), (27) and (28), the following equation describing the 

average concentration distribution of the outlet vapor on a plate in Laplace 

transform is obtained. 

(29) 

From equations (27) and (29), the following four kinds of transfer-functions 

are obtained as well as in the case of § 2. 

Gi(s) = Xn(s) = PeePe(b2-b1) 
X1(s) b~eb2-bjeb1 

mNoL 

G2(s) = Yn(s) = T+N;;, (1 
X1(s) -rs+ J..NoL_ 

J..+NoL 

J..NoL 

(30) 

(31) 

(32) 
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,l ( NoL )
2 

_ T+N;;, [1-PeePe(b2-b1)] 

(
-rs+ ANoL )2 b~ eb2 -b1 eb1 

A+NoL 

(33) 

In both extreme conditions, that is, in the state of perfect liquid mixing 
and of perfect liquid pist'Jn flow, these transfer-functions expressed by equations 
(30) to (33) are found t:> be equivalent to the corresponding transfer functions 
obtained in § 2. 

As in § 2, the meaning of the transfer functions given by equations (30) to 
(33) can be analysed by indicial response and frequency response methods. The 
response of the outlet liquid concentration with a step change of the inlet liquid 
concentration, as one example of indicial response, is given by the following 
equation. 

(34) 

, where 

Ro= [PeeP•(b2-b1)] 
b~ eb2 - by eb1 s=o 

- 2P.ePe120:;,(o:;,-y)eskt 

Rk - cos Ok (Of,+~~)( Of.+~~ +Pe)( 0}, +~~ + /:NoL Pe) 

0·1 + P;, + ANoL p 
k 4 ,l+N, e 

Sk = - oL 
Pe·-r 

and Ok is the k-th positive 0.5------~--------,---------7 

root of 

t O 4Pe0 0.4 
an = 41J2_p2 

e 

Numerical solutions of 0.3 

equation (34), as one ex-

ample, with A=l and 1/NoL 0.2 

= 0, is shown in Fig. 5. It 

is seen from Fig. 5, that the 0.1 

1/z: 

response of the outlet liquid 

concentration deviates ra­

ther markedly from that of 

the first order system and 

its dead time increases with 

Fig. 5. Transient response of the outlet liquid concentration 
with unit step change of the inlet liquid concentration with 
"diffusional model" for ;,.. = 1, 1/ NoL = 0 
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increase in P.. This fact is more obvious from the Bode Diagram showing the 
frequency response of G1(s) as shown in Fig. 6. The response at Pe=O is 
essentially different to those at P.-=J=-0, particularly in the region of higher fre­
quency. 

Similar numerical calculations of the frequency response of G2 (s) or G3 (s) 
and G4 (s) expressed by equations (31) or (32) and (33), are shown in Fig. 7 and 8. 

Jr-------.------,-----~----~ 

Pe==oo( 

101
1-----------1---------'---

1021----------+-------I-----

10-'l--------+----------l-

104 

o· 

go• 

180' 

~ 
"'270' 

~ 
~ 
'<: 

360° 

450° 

540~0' 1il 1 10 

w?; 

Fig. 6. Bode Diagram of G1(jw) for 1'=1, 1/NoL=0 
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Fig. 8. Bode Diagram of G4(jw) for .>..=l, 1/NoL=0 
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From these diagrams it can be seen that the transfer-functions of G2 (s) or G3 (s) 

and G4(s) are slightly affected by the value of Pe, 

From these frequency response analyses, involving results for several condi­

tions in addition to the above, it may be concluded finally that the effect of the 

degree of liquid mixing on unsteady performance with respect to the fluid 

concentration on a plate is large only in the case of the signal transfer given 

by the transfer-function G1(s) and is negligibly small for those given by the 

transfer-functions G2(s), Ga(s) and G,(s). 

Therefore these transfer-functions may be substituted for with first order 

functions without large error. This fact also may be recognized in § 2. 

§ 4. Discussion of the expressions for the degree of liquid mixing and other 

problems from the view point of "dynamics" 

1. On the expressions for the degree of "liquid mixing" 

From the discussion of the transfer-functions given in § 2 and 3, it has been 

concluded that the unsteady performances expressed by the transfer-functions 

G2(s), G3(s) and G,(s) are affected but slightly by the degree of liquid mixing 

and in practice may be replaced with fair accuracy by the corresponding transfer­

functions at Pe=O, and that G1 (s) is remarkably affected by the value of n or 

Pe which is the parameter of the liquid mixing degree. In this section, the 

differences between the transfer-functions expressed by the two "liquid mixing 

models" are discussed. By comparing the four kinds of transfer-functions G1(s), 

G2(s), G3 (s) and G4 (s) given by equations (12) to (15) for the case of the "perfect 

mixing model" with those in the "diffusional model" given by equations (30) 

to (33), it is easily recognized that the difference between both models is only in 

Gi(s), that is, in the following term showing the effect of the liquid mixing degree. 

(for perfect mixing model) 

(for diffusional model) 

In the above equations, it is worth noticing that when P1 is always equal to 

P2 analytically, the two expressions for the liquid mixing degree are equivalent 

to each other in the sense of" dynamics". However, P 1 is generally not equivalent 

to P2 except for the two extreme cases when the state on a plate is one of 

perfect liquid mixing and perfect liquid piston flow. 

In the Bode Diagram of Gi(jw) based on the "diffusional model", the phase 

lag changes from zero to infinity corresponding to values of w from zero to 
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infinity, and the rate of decrease in gain becomes large with increase of w. On 
the other hand, in the Bode Diagram of G1 (jw) expressed by the "perfect mixing 
model", the phase lag approaches 90 n° and the gain decreases linearly with a 
slope of 20 n decibels per decade in the region of large w. 

From the considerations mentioned above, it may be concluded that when 
P, and P2 are not equivalent to each other, both expressions for liquid mixing 
degree are not essentially equivalent to each other in the sense of "dynamics". 

These essential differences caused by the expression of the liquid mixing 
model are not found in analyses of steady state performances, for example the 
effect of liquid mixing degree on plate efficiency. 

2. On the effect on the transfer-functions of neglecting the vapor hold-up on 
a plate. 

In the discussions given above, it was assumed that the hold-up of vapor is 
negligibly small in comparison with that of the liquid. It must be noticed that 
in the transfer-function G4 (s) expressed by equation (15) or (33), the phase lag 
and the gain for very large values of w come to zero and constant value )./().+NoL) 

respectively if the vapor is not completely in equilibrium with the liquid on a plate. 
This fact, for example, is shown in Fig. 9 for ). = 1, NoL = 3. And furthmore the 
transfer-function G4 (s) given by equation (15) or (33) expresses that the outlet 
vapor concentration change .dyu(t) is not zero at t=O, for example, with an unit 
step change of the inlet vapor concentration. These phenomena, however, can not 
occur in actual practice and therefore these irrationalities are due to neglecting 
vapor hold-up. This discussion will be given in detail in another paper*). 

1~-------~------~-------~-------~ 

60°'----c-------~~------~-------~--------~ 
102 101 1 JO 10 2 

wt 

Fig. 9. Bode Diagram of G4(jw) for ?.=1, NoL=3 

*) Unpublished. 
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§ 5. Development to multistage fractionating plates 

In § 2 and 3, the transfer-functions concerning 

fluid concentration change on a plate have been 

considered for the case where the liquid on a plate 

is not perfectly mixed. This information obtained 

from §2 and 3 can be used to procure the "dynamics" 

of fractionating plates column. 

Fractionating column has multistage fraction­

ating plates as shown in Fig. 10, in which the 

total number of plates is N. In fractionating 

plates as shown in Fig. 10, assuming that the 

transfer-functions of all plates are the same 

througout a column, the following equations are 

obtained around the k-th stage. 

L > XN♦ I t:XJ 

XN 

xk-+2 

X1r+1 

x, 

A'.,t-J 

X2 

N 

~-I 

Yk+J 

k+, 

y, 

k 

Y.-1 

k-1 

Yk-2 

Y1 

l 

Xk(s) = G1(s)Xk+1(s) +G3(s) Yk-,(s) 

Yk(s) = G2(s)Xk+1(s) +G,(s) Yk-,(s) 

and hence, 

(35) 

(36) 
6, Yo =y, 

Fig. 10. Schematic diagram 
of multi-stages fractiona­
ting plates 

From the difference equation (37), the following four kinds of transfer­

functions for multistage fractionating plates are obtained. 

, where 

gf(s) = X,(s) 
Yo(s) 

gf(s) = YN(S) 
Y0 (s) 

G3(s) (Af"-Af) 
(Af"-Af)-G,(s) (Af-1 -Af-1

) 

~~G~, (~s) (A,A2)N(A, -A2) 
(Af-Af)-G,(s) (Af-1

- Af-1
). 

1 A,, A2 = 
2
G,(s) {l+G1(s)G,(s)-G2(s)G3 (s) 

±✓ (1 +G,(s)G4 (s)-G2(s)G3 (s))2-4G,(s)G4 (s)} 

(38) 

(39) 

(40) 

(41) 

The transfer-functions as shown above can be analysed analtically in the 

form of frequency response, but it is rather difficult to obtain the indicial 

response from equations (38) to (41) 1 except for the e~treme case calculated by 
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Voetter8
). From the frequency re­

sponse analyses of gf (s), gf (s), gf1 (s) 

and gf(s) by using the NO. 1 digital 

computer of Kyoto University (KDC-

1) for several conditions of )., Pe 

and N for 1/ NoL = 0, the following 
conclusions have been made. 

1. The transfer-functions gf (s) is 

seriously affected by the value of 

Pe and the effect of Pe on the 

transfer-function gT{(s) becomes 

large with increase in the total 

number of plates N, and gf (s) can 

not be replaced easily by a simple 

equation. 

2. The transfer-functions gf(s) or 

g;'(s) is almost not affected by the 

value of N and Pe, that is, G2(s) 

and G3(s) at Pe=O may be substi­

tuted for gf(s) and gf (s) respec­

tively with considerable accuracy. 

3. The transfer-function gf(s) is 

affected slightly by the value of 

Pe, and in practice gf(s) at Pe=O 

may be substituted. In Fig. 11, the 

Bode Diagram of gft(s) is shown, 

as one example, for ). = 1, 1/ NoL = 0 

with several values of N and Pe 

as parameters. 

4. From the conclusions mentioned 
above, the only remaining problem 

"" ~ 

~ 

'" ~ 
"ls. 

]----~---------,----~ 
- P,=O 

--- P,, =2 

--- P, =5 

10-2 

10-3 

N=3 

10' 
o· 

go• 

180° 

270" 

360° 

450~(j1 1 ]{J 

WC 

Fig. 11. Bode Diagram of g/N1(jw) for 
.\=l, 1/ NoL=O 

Jo' 

for expressing simply and accurately the complicated transfer-functions of multi-

stage fractionating plates is how to express the transfer-function gf (s) simply. 

In the region of large w in frequency response, 

and hence, 

qf(jw) _,. Gi(jw)N 
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That is, gf(s) approaches the transfer-function of the system which is com­

bined of n elements, the transfer-function of which is equivalent to G1(s). From 

the point of view mentioned above, it may be worth while to define the follow­

ing two factors. 

:j' 

CN = lgf(jw)I and <PN = (-Lgf(jw))-N(-LG1(jw)) 
IG1(jw) IN 

1.6.------------,--------,------------, 

1.5 ------.... 
............... ,, 

----------~ ',~ 

1.4 ------------------- '""-\\ 
~~,.. "\ 

1.3 
------------- ::-..~~ \:\ 

.. ~~~ ,\ 
' . 

----------------
1.2 -----------

1,0 

Q9 >----------~-

10· 

5' 

1 
WT 

P, 

P, 

,0, 

Fig. 12. Diagram of CN and cf>N for 7'=10, 1/NoL=0 

=5 

=2 

=O 

JO 
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In the region of large w, CN and ¢N approach to unity and zero respectively. 

for w:}> 1 (42) 

On the other hand, in the region of very small w, 

C _ 1. lgf(jw) I _ 1- lgf(s) I _ /4 --o 
N - 1m I G ( . ) IN - 1m I G ( ) IN - constant, 'l'N 

"' 0 1 JW S·➔ O 1 S 
for w<{l (43) 

C N and ¢ N are shown in Fig. 12, as one example, with A= 10 and 1/ NoL = 0. 

From the results in the case of 1/NoL=0, the conditions given by equations 

(42) and (43) may be satisfied only in the region of wT>lO and 0T<10-2 

respectively. In Fig. 12, T is defined by 

That is, gf(s) may be estimated rather accurately only in the region of wT<10-2 

or wT>lO. 

Nomenclatures 

E Back mixing coefficient (m2 /hr) 

G vapor flow rate per unit cross-sectional area (kg-moles/m2 hr) 

H liquid hold-up (kg-moles) 

HoL overall length of transfer unit based on liquid phase Cm) 

KLa ; overall mass transfer capacity coefficient based on liquid phase 

(kg-mole/m3hr unit driving force of liquid phase) 

L liquid flow rate per unit width (kg-moles/m hr) 

L operator of Laplace transformation 

L-1 operator of Laplace inverse transformation 

l liquid travelling length (m) 

N number of plates in the fractionating column (-) 

R 

T 

u 

V 

overall number of transfer units based on liquid phase ( - ) 

Peclet's number defined by P. = t ( -) 
liquid flow rate (kg-moles/hr) 

modified time constant defined by T = 
1

: A (hr) 

modified time constant defined by Tn (J k;~oL JN -r (hr) 
. n + oL + OL 

liquid linear velocity on a plate (m/hr) 

vapor flow rate (kg-moles/hr) 

W volume occupied by fluids in a vessel (m3) 

X Laplace transformation of .Jx with time t 

x liquid concentration (mole fraction) 

Y Laplace transformation of .Jy with time t 
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y vapor concentration (mole fraction) 

z distance from liquid inlet point (m) 

1 stripping factor defined by 1 = ": or 1 = mil ( -) 
T' residence time of liquid on a plate given by T'= H or T'=j__ (hr) 

R u 
w angular frequency (rad/hr) 
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