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An attempt, which expresses the fundamental equations of plasticity in com
plex representation, is offered. When the principal axes of stress are fixed in a 
body element, the complex stress and the complex strain and their increments 
are defined in Haigh- Westergaad's stress space. The yield conditions, flow rule 
and Henky and Reuss equations are given in complex form. 
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1. Introduction. In the theory of elasticity and hydrodynamics, the function 

theory is used as a mathematical tool. Formulae or theorems of the function 

theory are utilized in these regions. Basic equations, for examples stress-strain 

relations, complex potential etc., are expressed compactly in complex form. But 

such an attempt has not been presented in the theory of plasticity. 

In this paper, an attempt to represent the basic equations of plasticity in 

complex form will be proposed. 

2. Complex Representaions of States of Stress and Strain. We now re

strict our discussion to the case where the principal axes of stress are fixed in 

a body element. In this case, the principal components of the stress-increment 

are equal to the increments of the principal components of stress and the prin

cipal axes of the elastic and plastic strain increments are then coincident. 

If the common principal axes are chosen as the fixed axes of reference, we 

can describe a geometrical representation of stress and strain. 

A state of stress is completely specified by the values of the three principal 

components of stress, so that any stress state may be represented by a bound vector 

in a three dimentional space (Haigh-Westergaad's stress space), where the principal 

stresses 111 , 112, 113 are taken as Cartesian coordinates X1 , X2, X3 respectively. In 
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Fig. 1. Geometrical representation of a state 
of stress and strain. 

Fig. 1, OS is the vector (t11, t12, as), 

while OP is the vector represent

ing the deviatoric stress (aL af, a~). 

OP always lies in the plane II 

whose equation is t11 + t12 + a3 = 0, 

while PS, representing the hydros

tatic component (a, a, a) of the 

stress, is perpendicular to II. The 

orthogonal projection of the X3-axis 

on the plane II is taken as the y

axis and the perpendicular to it in 

this plane as the x-axis. If (x, y) 

are the Cartesian coordinates of P 

with respect to these axes, then 

l (1) 

Now we consider the plane II as Gauss' complex plane and write the state of 

stress as a complex quantity z : 

(2) 

If the state of stress at a point of the body is given, a complex quantity z 

is completely specified, and the latter is given, the former is specified using the 

relation af +a~+a~=O and the hydrostatic component a. Namely, a complex quan

tity z corresponds to a state of stress and vice versa. We shall call this complex 

quantity z a complex stress. 

In the same way, we can obtain the complex stress increment 

d _ dt1~-dt1{+. 13d , 
z - ✓ 2 t -v 2 l13 ' 

(3) 

where (daf, da~, daD is the deviatoric stress increment. 

We define the complex strain C, the complex elastic strain ( 8 and the complex 

plastic strain t:;,P as 

t:;, = t:;,e+t:;,P, 

t:;,8 = ~e+ir/, t;P = ~P+ir/' 

(4) 

(5) 
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(6) 

where (ef6
, e~e, e~6

) is the deviatoric elastic strain and (ef, ~, eK) the plastic strain, 
and we assume that tlie volume dilation does not occur in plastic deformation, 

namely, 

(7) 

We can divide the strain increment (de1 , de2, de3) into two parts, the elastic 

strain increment (def, de~, dei) and the plastic strain increment (def, def, de;), and 

we define the complex strain increments de;,, d(;,6 and de;,P as 

dC = d(;,6 +de;,P, 

d(;,6 = d~• + idr/ , de;,P = d~P + idrl , 

} 

( 8) 

(9) 

(10) 

The complex strain increment corresponds one-to-one with the state of strain in
crement for the same reason as the stress state. If we multiply the complex 

strain by the Young modulus E, the strain state can be specified by a point in 

Haigh-Westergaad's space. 

The parameters µ and II introduced by Lode can be represented by the argu

ments of the complex stress and of the complex plastic strain increment respec

tively. Namely 

and (11) 

3. Complex Reresentations of Stress-Strain Relations. 

I. Hencky stress-strain equations. The stress-strain equations, due to Hencky, 

have been frequently applied in special problems. We can easily verify that 

Hencky's equations are equivalent to the following complex equation: 

(12) 

where rJ> is a real scalar quantity which is positive during continued loading and 
zero during unloading and G is the shearing modulus of a given material. 
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II. Elastic derormation. If a given isotropic body is subjected to Hooke's 

law, the well-known stress-strain relations can be expressed as 

(13) 

III. Yield conditions. The yield locus on the plane II may be expressed as 

(14) 

where ]~ and 1, are stress invariants and equal to 

and 
]~ = _!_(a{2+a~2+a,2) = _!zz*= _!JzJ 2 

2 2 2 

J' = 1-ca'3+a's+a'3) = _t_· -(z3_,,,*3) 
3 3 l 2 3 6,/6 " ' 

} (15) 

where z* is the complex conjugate of z and c is a real quantity specified by a 

given material. Thus we can write it as 

F(z, z*) = c2
• (16) 

According to the isotropic work-hardening rule given by Hi!l1
) and Hodge2

), 

the yield locus expands during plastic flow retaining its shape and situation with 

respect to the origin, and the real quantity c of (16) is a function of hydrostatic 

stress a. Another rule, developed by Prager 3
), accounts for the Bauschinger effect. 

This assumes that the yield locus is rigid but undergoes a translation in the 

direction of the strain increment. Prager's rule was modifi~d by Ziegler4
) and 

this modified rules can be expressed in our complex representation as 

F[(z-A), (z*-A*)] = c2
, 

where A is a complex quantity such as 

and (a1, ~. a3) represents the total translation and satisfies 

IV. Flow Rule. Levy-Mises' flow rule is written as 

fJf d;!f = - d). , (i = 1, 2, 3) , 
fjq~ { 

d). > 0 for loading, 
d). = 0 for unloading. 

(17) 

(18) 

(19) 

(20) 

We shall express the above flow rule in complex form. Equation (2) may be 

rewritten such as 



Complex Representation of Basic Equations in Plasticity 

Therefore we have 

namely 

l 
8F _ 8/ 8af +8f 8a~ +8f 8a~ 
8z"' 8af 8z* 8af 8z* 8a~ 8z* 

_ de~-def+ -2d~-def-de1J. 
- 2✓ 2 d.l. 

1 2✓ 6 d.l. 

_ 1 dt;P 
-2tlr' 

{ 
d.l. > 0 for loading, 
d.l. = 0 for unloading. 

This is a required flow rule represented in complex form. 

V. Von-Mises' Body. Von-Mises' yield condition is specified by 

namely 
F-J~ = c2

, 

~ zz* = c2
• 

The flow rule is, therefore, in this case 

{ 
d.l. > 0 for loading, 
d.l. = 0 for unloading. 

According to (13) and (24), we obtain the stress-strain relation as 

). dz { d.l. > 0 for loading, 
dt; = zd + 2G ' d.l. = 0 for unloading. 

which denotes the Reuss equations. 

If we adopt (17) as the yield condition, (23) is reduced to 

~ (z-A)(z*-A*) = c2
, 

and the flow rule is, in this case, expressed as 

dt;P = (z-A)d.l., { 
d.l. > 0 for loading, 
d.l. = 0 for unloading. 

Thus the stress-strain relation can be written as 

) ). dz { d.l. > 0 for loading, 
dt; = (z-A d + 2G ' d.l. = 0 for unloading. 
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(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 
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4. Conclusion. When the principal axes of stress are fixed in a body element, 

the complex representations of the state of stress and strain were defined in 

Haigh- Westergaad's stress space. It was proved that such defined complex stress 

and complex strain and their increments correspond to the state of stress and 

strain and vice versa. 

By means of these quantities we obtained the complex forms of fundamental 

relations in plasticity, namely Hencky equations, elastic deformation formula, yield 

conditions, flow rule and Reuss equations. 
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