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In the previous paper, the authors have treated the response of non-linear 
control systems with time-invariant or -variant characteristics subjected to a 
suddenly applied stationary gaussian random input. However, recent trends in 
automatic control systems have required much attention to random changes of 
circuit parameters depending on the environment. 

The description is divided into two parts. In Part I, an analytical approach 
on the statistical evaluation of the response of non-linear control systems with 
randomly time-variant characteristics is described. Part II is concerned with the 
stability of the response of non-linear time-variant control systems under the 
excitation of a random input signal. First, the stability conditions of systems 
with or without a random excitation are established from general points of view. 
Second, the stability of the system containing an on-off or a saturated charac­
teristic is explored respectively. Finally, the influence of the random excitations 
on the stability of non-linear time-variant control systems is considered in detail. 

List of Principal Symbols 

t : time variable 

t0 : any initial time 

v(t) desired signal to the system 

465 

z(t) and y(t): input and output of a non-linear element of the zero-memory 
type respectively 

u(t) : disturbance to the system 
Yo(t) and x(t) : input and output of the controlled system respectively 

A0 (t) : gaussian random coefficient 

m and c(t) : mean value and randomly fluctuating portion of A0 (t) respectively 

Rc(t1, t2), R,.(ti, t2) and R,,(t1, t2): auto-correlation functions of c(t), u(t) and 
z(t) respectively 
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" : equivalent gain of a non-linear element of the zero-memory type 

fp(z, t): time dependent gaussian probability density function of z(t) 

W1 (t) : weighting function 

¢z(t) : variance of z(t) at the time t 

¢z : variance of z(t) in the steady state 
k and T: system parameters 

E: symbol representing the ensemble average 

Introduction 

Recent trends in automatic control systems have required much attention to 

random changes of circuit parameters depending on the environment. A central 
problem in control theory is the evaluation of the non-stationary response of 

non-linear time-variant control systems with stationary or non-stationary random 

inputs. 

The authors have treated the evaluation of the non-stationary response of 

non-linear control systems subjected to a suddenly applied random input in our 

earlier paper. The present paper develops the two aspects of the study of non· 

stationary response. The first is the evaluation of the response of non-linear 

control systems with randomly time-variant characteristics. An extensive 

approach is established. The second is the mean square stability of the response 

of non-linear time-variant control systems. 

Such systems arise, for example, in the study of servomechanism and process 

control systems in which several parameters are undergoing various changes of 

environments. 

Part I: The Response of Non-Linear Control Systems 

with Randomly Time-Variant Characteristics 

1. Evaluation of the Mean Squared Value of the Response 

We consider, as shown in Fig. 1, a 

typical automatic control system con-

taining a non-linear element with zero­

memory characteristic of which the 

relation between the input z (t) and the 

output y(t) is given by y=f(z). We as­

sume that the dynamical characteristic 

of the controlled element is expressed as 

Non-Ii near element of 
zero-memory_ type 

Fig. 1. Block diagram of a non-linear 
control system with randomly time­
variant characteristics. 



Statistical Studies on the Response of Non-Linear Time-Variant Control Systems 467 
Subjected to a Suddenly Applied Stationary Gaussian Random Input 

a randomly time-variant system of the following form : 

(1.1) 

where A/s are constant coefficients and A0 (t) is a purely random coefficient with 
the form of 

(D : constant) (1. 2) 

as its auto-correlation function. The equation of this non-linear control system 

becomes 

:EA; didztCQ+ A0 (t) z(t) +kf[z(t)] = ku(t) • 
1-1 ' 

(1. 3) 

In the control system under consideration, by 
applying the statistical linearization tech­

nique, 1 ) we may replace the non-linear element 

by a linear one with equivalent gain, ,., as 

shown in Fig. 2. The relation between the 
input signal u(t) and the response z(t) of the 

equivalent linearized system can therefore be 

expressed as 

Non-linear 

Fig. 2. Illustration of the analytical 
characterization of a non-linear 
element. 

N diz(t) :E A;-dt· +Ao(t) z(t) +ktcz(t) = ku(t). 
,-1 • 

(1.4) 

In Eq. (1. 4), the equivalent gain, ,., is defined by 

(1. 5) 

where f p(Z, t) is the gaussian probability density function of z(t) at the time t. 

Since Eq. (1. 4) can, therefore, be written as 

N diz(t) :E A;-dt; +ktcz(t) = V(t), 
1-1 

(1. 6) 1 

where 

V(t) = ku(t)-Ao(t) z(t), 

if we formally express the unit-impulse­

response for the equivalent linearized control 
system governed by Eq. (1. 6) 1 as W1 (t, ~), 

then the response z (t) at the time t may be 
expressed as 

A,{t)z (t) 

ku(t) - V(t) ( ) 
---u---i w, t' .s 

Fig. 3. Block diagram of a linear­
ized control system shown in Eq. 
(l.6)1, 

(1. 7) 



468 Yoshikazu SAWARAGI, Yoshifumi SuNAHARA and Takashi SoEDA 

where t0 is the time which the input u(t) is applied. Therefore, we have 

(1. 8) 

where 

(1. 9) 

and K(t, ~) is a kernel expressed by 

(1.10) 

In order to determine the second product moment of z (t), we multiply Eq. (1. 8) 

at two time instants ti, tf = t1 + dt1 and average to give 

We assume2
) 

and 

<K(/1, ~) F(ti) z(~))av. = <K(ti, ~))av. <F(ti) z(~)>av. 

<K(tf, ~) F(t1) z(~))av. = <K(tf, ~) )av. <FCt1) z(~))av. 

(1.11) 

} (1.12) 

<KCt1, ~1) K(tf, ~2) z(~,) z(~2))av. = <KCt11 ~,) K(tf, ~2))av. <z(~1) z(~2))av. (1.13) 

Since it is easily seen that <A0 (t) >av.= 0 from Eq. (1. 2) by using Eqs. (1. 12), 

(1.13) and <K(t,~))av.=0, we have 

(1.14) 

where RzCt1, ti) and Rp(t1 , tD are auto-correlation functions of z(t) and F(t) 

respectively. Since A 0 (t) is a purely random signal, we have 

(1. 15) 

Therefore, setting t1 = tf =t and carrying out the integration with respect to ~2, 

Eq. (1. 14) becomes 

(1.16) 

where 

Since the integrand, W1 (t, ~), in Eq. (1.17) involves an unknown function, 

i.[<Pz(t) ], ') it is impossible to evaluate directly <Pz(t) by using Eq. (1. 17). There-
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fore, as we have already shown, 1
) let ti+1-t;=d; (j=0, 1, 2,···). It can thus be 

considered that the equivalent gain, ,r,, is kept a constant independent of time in 
these infinitesimally small time intervals, d/s. We denote this value by K-; at 
the time t=t;. 

If we introduce the equivalent gain, ,r,;, into Eq. (1.17), then all parameters 
involved in W1(t, ~) become constant in the time interval, d;. Therefore, W1Ct, ~) 

depends on the time interval, (t-~), between the application of an impulsive 
signal as the input and the observation of the output in this infinitesimally small 
time interval d;. From this point of view, if we use the conventional expression, 

(1. 18) 

then, from Eqs. (1.16) and (1.17), the integral equation determining the mean 
squared value, ¢,,(t), at the time t=t1 becomes as follows; 

(1.19) 

and 

(1. 20) 

In Eqs. (1. 19) and (1. 20), we must consider that 

(1. 21) 

By substituting Eq. (1. 19) into Eq. (1. 5), the equivalent gain, K-u corresponding 
to the second time interval, d 1 , becomes 

(1. 22) 

Therefore, by using the values of K-0 and K-1, we have 

¢,,(t2) = ¢FCt2) + D2
{ t W1(t2-~)

2.J./zC~) d~ + ~:: W1Ct2-~)
2.=l•/"C~) d~}, 

(1. 23) 
where 

(1. 24) 

By applying the above procedure, the integral equation determining the mean 

squared value, ¢,,Ctn), at the time t=tn is given as follows; 
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(1. 25) 

where 

(1. 26) 

and 
(j = 0, 1, 2, · · · , n -1) . (1. 27) 

2. The Method of an Approximate Calculation 

Since it is complex and tedious to calculate the value of the response, ¢z(t), 

by using Eqs. (1. 25) and (1. 27), the method of an approximate calculation is 

described in this section. When the difference between the values of equivalent 

gains "i-1 and "i very slowly change with respect to the variation of time, Eqs. 
(1. 25) and (1. 26) may be approximately written as 1 ) 

</JzCtn) = <J;F(tn) +D2 
~:: W1Ctn-~)\Jn_/zC~) d~ (2.1) 

and 

(2.2) 

where 
(2. 3) 

When the response of the system becomes the stationary state as the time 

further increases, we use another method of calculating the response. The mean 

squared value in the steady state is calculated by using </Jz=</Jz(t) It==" i.e., 

¢z = </JF+ [[ { W1(t, ~1) W1 (t, ~2) (Ao(~1)Ao(~2))av. (z(~1) z(~2))av.}d~1d~2, (2. 4) 

where 

(2. 6) 

If we use the following expression ; 1 ) 

W1(t, ~) = W1Ct-~) I , (2. 7) 
"="oo 

where 
(2. 8) 
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then the mean squared value ¢ 2 is given by 

where 

The values of 'Pz and "= can, 
thus, be determined by solving 

Eqs. (2. 8) and (2. 9) simul­

taneously. The required instant 

of time ts for the response of 

the system to reach the steady 

state is determined as already 

shown in the previous paper. 1 ) 

We, therefore, divide the time 

interval (t0 , ts) into contiguous 

disjointed intervals of As-i 

Cts-j-ts-j-1=As-j, j=O, 1,2, ···), 

(2.9) 

(2.10) 

); ~o n1 n2 . .J 

I 
I 
I 
I 

.-Cs I 
·'2 I I~ 

...._"' I : ~s-1 I 
<:) "" 

I 
: Steady I I I I ,,,_ 

I I I I state "'c::· I I l I 
-2~ I I 
·- <\) I I I I <:::"" I I I I -.·-
"'" I I I I 
~~ I I I I 

Llo 1 ✓-Lt , 1,,,....Lls-J, 1.,...L1s , 1 Time t 
"' ~ to /1 t2 t, ts-2 ts-J, {s 

Fig. 4. Equivalent gain when the time t is divided into 
contiguous disjointed intervals of .d;=t;+1-t;. 

and by a similar method described in section 1, we successively evaluate the 
values c/JzCts), "s, c/JzCts-1), ,c5_1 ··· as shown in Fig. 4. Thus, by noting that the 
respective conditions, 1C0 =1C0 at the time t=to and 1C=1Cs at the time t=ts, we can 
calculate the value of ¢ 2 (t). 

3. Examples 

Example 1 

As the first example, we assume that N = 1 and A1 = T in Eq. (1. 1) for the 
convenience of mathematical calculations. The controlled system is, in this case, 
expressed as 

(3.1) 

We assume that the stationary gaussian random disturbance which is given by 

(3. 2) 

as its auto-correlation function is applied to the system at the time t=O. The 
equation of the control system corresponding to Eqs. (1. 6) becomes 

Td~~t) +hz(t) = ku(t)-AoCt) z(t). (3. 3) 

Since, from Eq. (1. 18), the one-sided Green function associated with the left 
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hand side of Eq. (3. 3) is given by 

(3. 4) 

then the mean squared value, <J;,.(t) at the time t=t1 becomes 

(3. 5) 

where 

(3. 6) 

Therefore, we have 
(3. 7) 

where 

Considering the initial condition, <J;,.(t1) =0 at the time t1 =0, we have the 

following solution, 

</J,.(t1) = 2kti~n2 [ 1-exp {-(
2
~- ~:) t1}]. (3. 8) 

By substituting Eq. (3. 8) into Eq. (1. 5), the equivalent gain, Ku corresponding 

to 41 is calculated as shown in Eq. (1. 22). Since Eq. (1. 23) is expressed as 

<J;,.(t2) ~ </Jp(t2) + ~: [ exp {-2 ki ( t2- ~)} ¢,.( ~) ·t1 

+exp {-2 k;1 ( 11 t 2
)} <J;,.( 11 t 2)• Ct2-t1)], (3. 9) 

then, by applying the following relation, 

(3.10) 

into Eq. (3. 9), 'Pz (tJ is easily calculated. By a similar method, the mean squared 

value, </JzCtn), can be obtained by 

'PzCtn) ~ 'Pp(tn) 

+~Ea {exp {-2ki (tn- tj+
2
~4:_1)} </J,.( tj+;j_~) Ctj+i-tj)}, (3.11) 

where 

(3.12) 

and 
Kj = ,c[</Jz(tj)], (j =0,l,2,···,n-1). (3.13) 
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If we use the method of the approximate calculation described in section 2, 
the mean squared value, 1/JzCtn), from Eq. (2. 1), becomes 

,t, (t ) _ k
2
¢u [1 { ( 2k"n-1 D

2 
) t }] 'f'z n - 2k"n-1T-D2 -exp - _T ___ 'P n . (3.14) 

f(z) As shown in Fig. 5, if the non-linear characteristic 

is given by 

___ -a~,--~---,,----z 
I 
I 
I f(z) = { : 

-a 

(z>a) 

(lzl<a) 
(z<-a), 

(3.15) 

Fig, 5. The saturated non­
linear characteristic. 

then, it is easily shown that 

where 

~ o.s~-~--~--.----,----, 
.s:_ t/tu=l.O T=lO 

~ a4 
a=l.O k=l.O 

~ O.Ji-----+--+---l--=--=--+--------1 ,. 
"" 021-----+--,,...,=---t----+-------1 
~ 
? O.l 1-----:::,,j,'O"C--+----t----+---, 
"' 

0 OJ a2 0.3 
Time t 

-Numerical result obtained by Eq.(J.11) 
---Numerical result· obtained by Eq.(3. 14) 

Fig. 6. The mean squared value of the 
response of the system shown in ex­
ample 1. 

( i) mean value, m,. = 0 
(ii) auto-correlation function, 

(3. 16) 

(3. 17) 

The mean squared value, ¢z(t), can be 

computed by Eq. (3. 11) or Eqs. (3. 14) 

and (3.12). Fig. 6 shows numerical 

results of the response of the control 

system containing a non-linear element 

given by Eq. (3. 15). 

Example 2 

Let the statistical characteristic of 

a stationary gaussian random input 

be 

Cf1>0) (3.19) 

where ¢,. is the mean squared value of random disturbance. The control 
equation is the same as Example 1. 

By substituting Eq. (3.19) into Eq. (2. 2), with the help of Appendix-B, we 

have 

(3.20) 
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Therefore, from Eqs. (3. 5) and (3.19), it follows that 

T2¢zCtn) + (2kKn-1T-D 2
) c/JzCtn) = UCtn)' 

where 
(3.21) 

(3.22) 

Therefore, the solution of Eq. (3. 21) under the initial condition, c/JzCtn) I =0, 
tn~o 

is given by 

c/JzCtn) = {,;:t:n_J2k,._n_:T-D2 k,cn_1T!f,T-D2 exp{-(f,+k"y
1
)tn}]. 

(3.23) 

From Eq. (3. 23), it is easily shown that the steady solution becomes 

c/Jz = 2k2c/Ju 
(f,T+k1Cn-1)(2kT1Cn-1-D2

)' 
(3.24) 

Fig. 7. The mean squared value of the response 
of the system shown in example 2. 

where 

By using the similar method as men­

tioned above, we can thus calculate the 

value of c/Jz(t) successively. Fig. 7 

shows the result of the numerical cal­

culation of the response of the system 

containing the non-linear element 
given by Eq. (3.15). 

Part II: On the Stability of Non-linear Randomly 

Time-Variant Control Systems 

4. The Basic Concept of Stability 

Further developments of studies in this field are requiring the exploration 

of the stability of randomly time-variant non-linear control systems with or with­
out a random excitation. Let the equation of the control system, in general, be 

given by the following differential equation of the first order; 

z(t) = F[AoCt), z(t) u(t)], [ z(t) = d~~)]. (4 .1) 

When no excitation to the system exists, i.e., u(t) =0 in Eq. (4. 1), the system 

is stated to be stable, if the solution z(t) satisfies the following relation for any 

initial condition, i.e., t=t0 ; 
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limE[z(t)2]=0. (4.2) ,~,,, 

When an excitation to the system exists, i.e., u(t) =!==O in Eq. (4. 1), the system 

is stated to be stable, if the solution z(t) satisfies the following relation; 

(4.3) 

where {3 is an arbitrary constant. 

5. The Stability C,ondition of the Oont..-ol System 
' . 

without a Random Excitation 

We consider a typical control system as shown in Fig. 1. We assume that 

the dynamical characteristics of the controlled element is expressed as Eq. (3. 1) 

Fig. 8. Gaussian random coefficient 
A0(t) with the mean valve m. 

and Ao(t) is a stationary gaussian random 

coefficient expressed by 

Ao(t) = m+c(t), (5.1) 

where m is the mean value of Ao(t) as shown 

in Fig. 8. Let, moreover, the auto-correlation 

function RcCti, t2) of c(t) be 

(5.2) 

The equation of this non-linear control system becomes 

(5.3) 

For the convenience of the analysis, if the non-linear element is replaced by a 

linear one with the equivalent gain, "• as shown in Fig. 2, we have 

Td~~)+(m+h)z(t) = V(t), 

where 
V(t) = -c(t) z(t) . 

Under the assumption that " is a constant, since the one-sided Green func­
tion associated with the left hand of Eq. (5. 4) 1 becomes 

W1Ct-~) = i' exp{-mik"(t-~)}, (5.5) 

and the fundamental solution of Eq. (5.4) 1 is given by -exp {-(m+ktc)t/T}, 

then we have 
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where z=z0 is the initial value at the time t=t0 • Therefore, the mean squared 

value of z(t) is given by the following equation; 

'Pz(t) = za exp {-2m ik,c (t-to)} 

+{; t exp{-2m}k" (t-~)} 4'zC~) d~. (5. 7) 

Differentiating Eq. (5. 7) with respect to the time t, we obtain 

(5. 8) 

where c/JzCt)=dcJ,z(t)/dt. By using the definition given by Eq. (4. 2), we have the 

following result as the stability condition, 

(5.9) 

where ,c is the value of a stationary equivalent gain of non-linear characteristics. 

6. The Stability Condition of the Control System 

with a Random Excitation 

When the control system is excited by the stationary gaussian random input, 

the mean squared value 4'z(t) is given by 

where, under the assumption that the initial condition zCto)=O and -r=~1-~2 

(-r>O), 

cJ,p(t) = 'i,2 [ Ru (~1) d~1 ~:~T exp {-mi k,c (t-~2)} 

xexp {- mik"(t--r-~2)}d~2• 

From Eq. (6. 1), we have 

¢z(t) +{2(mik,c) ~:} cJ,,,(t) = U(t)' 

where 

(6. 2) 

(6.3) 

(6. 4) 

and ¢p(t) =dcJ,p(t)/dt. By using the definition established in Eq. (4. 3), the follow­

ing inequality must be satisfied 

2k,cT +2mT> D2
• (6. 5) 

Therefore, if Eq. (?· 5) holds, it can be concluded that the control system given 

by Eqs. (5. 4) is stable. 
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7. Examples 

As the first example, the on-off relay characteristic given by 

f(z) = { a 
-a 

(z>0) 

(z<0) 
(7.1) 

as shown in Fig. 9 is considered. From Eq. (4. 5), the 

equivalent gain in the steady state becomes 

Fig. 9. The on-off relay 
characteristic. 

where 

(7. 2) 

(7. 3) 

If we assume that auto-correlation function of the random disturbance to the 
system is 

(7.4) 

then, under the initial condition ¢z(t) I =0, the solution ¢z(t) of Eq. (6. 3) 
t=t0 

becomes 

( ) _ k2¢u [ { ( m + ktc D
2 

) }] 'Pz t - 2T(m+ktc)-D2 1-exp - 2-T--'I' t . (7. 5) 

Therefore, we have 

(7. 6) 

It is easily seen that Eq. (7. 6) satisfies the condition Eq. (6. 5). In order to 
obtain the region of stability and instability, from Eqs. (7. 2) and (7. 6), we have 

Since the above equation is of the second order with respect to variable, ¢z, the 

condition that these roots have the positive real value is 

(7. 8) 

If the system parameters satisfy Eq. (7. 8), the control system expressed by Eq. 

(5. 5) is stable. When T=l, Eq. (7. 8) becomes 

(7. 9) 

The relation given by Eq. (7. 9) is shown in Fig. 10. We treat the second case 

of the system containing a non-linear characteristic given by Eq. (3.16). By 
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using Eqs. (7. 6) and (3. 16), with the help of the graphical method, we can deter­

mine the region of the stability. This result is shown in Fig. 11. 

unstable 

a/ffu =4-------_ ajR;: 
5 

4 

3 

2 

1 

Stable 

S: 

(b) The relation between a/v',i,. and s1 , 

where s1=D2 -2m 

(a) The relation between m and D2 

Fig. 10. Stability plot for a non-linear control system with randomly 
time-variant characteristic containing an on-off relay element. 

Unstable 

·---. a/a;:=o 

-----:=j 

Stable 

0 04 08 rn 

(a) The relation between m and D2 

-0.B 

a/rif; 
10 
9 
8 
7 
6 

3 
2 
1 

-C.4 0 0.4 

(b) The relation a/vf. and s1 , where s1=D2-2m 

Fig. 11. Stability plot for a non-linear control system with randomly 
time-variant characteristic containing a saturated element. 
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Conclusions 

The statistical evaluation of the response of non-linear control systems with 

randomly time-variant characteristic subjected to a suddenly applied stationary 

gaussian random input is described. Although it is complex and tedious to cal­
culate the value of the response, rp,. (t), by using Eqs. (1. 25) and (1. 26), the 

procedure described in section 3 is a remarkably effective tool for calculating 

the response and for decreasing the numerical error. It is, in general, difficult 

to find out the conditions defining the stability of non-linear time-variant control 

systems. In the particular case considered here, it is, however, possible to obtain 

the stability condition. 

In the case of linear control systems, the value of rp,. does not depend on the 

stability of the system. 3) On the contrary, for non-linear control systems, the 

influence of rp,. on the stability of the system .is shown in detail with various 

kinds of interesting results. 

The procedure described here can be extended to non-linear control systems 
governed by the higher order differential equation with randomly time-variant 

coefficients. 
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Appendix A: Numerical Calculation of the Integral 

Equation given by Eq. (1. 25) 

As the method of calculating numerically the integral equation as shown in 
Eq. (1. 25), the method of MacLaurin, Newton-Cotes, Tchebyscheff or Gauss 

will be considered. Since the MacLaurin's formula is very simple and has good 

accuracy when time t is not so large, we apply this procedure in this paper. 

(A-1) 
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and 

J:h Fl~) d~ = { ~ F2( ~ h) + ~ F2( h + ~ h)} · 2h 

J:h Fl~) d~ = { : F2( ~ h) + ~ F2( h + ~ h) + : F2( 2h + ~ h) }3h 
J:h Fi~) d~= u:F2( ~ h) + !!F2(h+½ h) 

+~F2(2h+ ~ h)+~F2{3h+-}h)}4h 

r Fa(~) d~ = {ift2F2( ~ h) + i1~2F2( h + ~) 
+ iii\F2(2h+ ~ h) +1r~F2( 3h+ ~ h) 
+;f;2F2(4h+ ~ h)}sh. 

(A-2) 

(A-3) 

(A-4) 

(A-5) 

By applying the above equations, we can successively evaluate the response z(t) 

of the non-linear control system. For example, applying Eq. (A-1) to Eq. (1. 25), 

we have 

where d;=t;+i-t;. By noting Eq. (3.11), (A-6) becomes 

'PzCtn) = 'PF(tn) 

+D2
~ W1{tn 
J=O 

Therefore, we have 

where 

and 

Appendix B: Evaluation of ¢F(t) given by Eq. (3.20) 

Since 

it follows that 

(A-7) 

(A-8) 

(A-9) 

(A-10) 

(B-1) 
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(B-2) 

Changing the sign of the second term, Eq. (B-2) becomes 

(B-3) 

By noting the relation, Ru(T') =Ru(-T"), the above equation becomes 

(B-4) 

In Eq. (B-4), since the following function, 

(B-5) 

does not depend on the statistical properties of random input, we can easily 

evaluate this value from the control equation. The mean squared value, r/JF(t), 

can be evaluated as follows ; 

'PF(t) = 2k2 ~:Ru(T') 1[f(t, T") dT" ~ (B-6) 


