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In our previous studies, the authors have described the statistical studies on
the response of non-linear control systems subjected to an ergodic stationary
Gaussian random input.

In this paper, an analytical method of the statistical evaluation of non-stationary
random responses which are considered to arise quite often for non-linear control
systems in practice is described. Firstly, a non-stationary white Gaussian random
process and a non-stationary Orenstein-Uhlenbeck one considered in this paper are
explained. Secondly, a statistical approach to find the non-stationary response of
non-linear control systems subjected to such a random signal is described. Finally,
illustrations of the analytical procedure described here are shown by several ex-
amples in detail.

1. Introduction

Various analytical studies on the evaluation of the response of non-linear
control systems subjected to Gaussian random inputs have been developed in
our previous papers®. However, we have assumed that the random signal con-
sidered in our previous works is represented by an ergodic stationary ensemble.
Strictly speaking, sometimes the random input to the system is non-stationary,
that is, the statistical characteristics of it vary with time. From the practical
viewpoint, we must, therefore, consider the case where the characteristics of
input signals applied to the system are non-ergodic and non-stationary random
signals®. A typical case of non-stationary random process is a white noise or
a Markov process whose spectral density changes with time respectively. In
this paper, we treat the following two examples. One is a non-stationary white
Gaussian noise and the other is a non-stationary Markov process. We perform
the evaluation of the mean squared value of the response of non-linear control
systems subjected to such an input.
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List of Principal Symbols
t : time variable
7z : time duration between the time instants ¢, and #,
@ and f: angular frequency and frequency respectively
s : operator with respect to the Laplace transformation
() : desired signal to the system
#(t) : Gaussian random disturbance
x(#): system output
Z(#) and »(¢): input and output of a non-linear element respectively
f[z(#)]: transfer characteristic of a non-linear element of zero-memory type
A;, k and T: circuit parameters
R.(t:; ©): the auto-correlation function of the signal (¢ dependmg on both the
time instant #, and the time duration 7

Su(ti; f): the spectral density of the signal u(#) depending on both the time
instant # and the frequency f

¢A2): the mean squared value varying with the time ¢ of z(¢)
{*>av.: the symbol representing ensemble average of -
Kz, ): the time-dependent probability density function of z(¢)

2. Statistical Characteristics of a Non-stationary Random Input
Let us consider the correlation function and the spectral density of a non-
stationary random signal #(#) applied to the control system. Since the auto-
correlation function, R.(#; ), of #(#) with respect to «(#,) and «(¢,) depending on
the time instants # and 7 is written by
uit) Ru(t,; ) = <u(t) u(t:)ay.
= <ulty) u(t1)av., (1)

! ¢ then, by using r=#—1,>0, we

0 ¢ have
Ru(ty; 8;) = <ulty) u(ty—av.
= <u(tz) u(tz + T)>av.
=Ru(t1 5 T)

=Rut:;—7). (2)

The non-stationary  auto-
correlation function is, thus,
— o— characterized by using the
t=0 time duration, r and the time

Fig. 1. Illustrations of non-stationary random signals L or ;2.
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We consider the non-stationary spectral density corresponding to Eq. (2).
The random signal considered here is divided into two cases. One is a non-
stationary random signal, #(¢), as shown in Fig. 1(a) and the other is a non-
stationary random signal, which suddenly appeared by the action of switching-on
at the time instant =0, as shown in Fig. 1(b). Therefore, the spectral density,
Su«(t; f), is given as follows;

(1) The case where #(#') is defined in the range —oo<{¢#/<#

(u(t)=0 for ¢<¢) (Fig. 1(a))

Su(t; f) = 4{ Rult; 7) cos 2xfedr . (3)
(2) The case where u(¢') is defined in the range 0<{¢'<(¢
(w(#)=0 for ¢< ¢) (Fig. 1(b))
St £) = 41, Rult; ) cos 2x fedr . (4)
When a non-stationary spectral density is k_nown, the auto-correlation function

can be obtained by applying the Inverse Fourier transformation with the help
of Appendix A.

3. Typical Examples of Non-stationary Random Signals

(a) Non-stationary White Noise®
The auto-correlation function and the spectral density of non-stationary
random signal considered here are respectively given as follows;

R.(t,; ) = N(t,; t)o(1t,—t.)) = N(t;; t,—1)0(z) (5)
and
Su(t; ) = AN(ty; ) = ko(t), (—oc0 < f< ) (6)
where § is Dirac’s Delta function and
3. e, E(t) is the amplitude of the noise
A . depending on the time #. The value
= N /f.' ;) . . .
S o PR, of the spectral density is uniformly
U ¢ L
2 distributed over the all range of the

frequency as shown in Fig. 2. When

Frequenc f .
quency the system is excited by a white noise

Fig. 2. An example of the spectral density . . .
of a non-stationary white noise whose spectral density varies with

Nonstationary
. "white” .noise

Stationary “white”

noise  input Time-variant ,/ System transfer Qutput

gain function

Fig. 3. Equivalent structure of non-stationary white noise
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time, the situation can be considered as shown in Fig. 3.

(b) Non-stationary Orenstein-Uhlenbeck Processes®
The auto-correlation function and the spectral density for the non-stationary
Orenstein-Uhlenbeck process are respectively given as follows;

Ru(t;7) = 5 exp(~flrI{1—exp (-2} (7)
and

exp(—B1t)

Su(t; f) = 0{1—9’“’ {“%t)}[ﬂz +2(gx f)2+ /92+(22nf )i

><(27rfsin27rft~/9c0527rft)], - (8)
where ¢ and # are positive constants (See Appendix B). The random process

ult)

L)

=
=
—
—
P
—
T
—
I
——
——
5
>
T ——

Fig. 4. An example of a non-stationary Orenstein-Uhlenbeck
process
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Fig. 5. An example of the non-stationary spectral density depending
on time ’
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with the auto-correlation function as shown in Eq. (7) can easily be regarded as
the Orenstein-Uhlenbeck process characterized by

Ru(t;r)lt=«.=%exp(—ﬂlrl), (9)

as the time ¢ tends to infinity”>. An example is illustrated in Fig. 4 The form
of the spectral density varying with time is shown in Fig. 5.

4. Calculations of the Mean Sqared Value, (), of the Response 2(¢)

We consider a typical control system as shown in Fig. 6 containing a
symmetric non-linear element whose instantaneous output, ¥(t), is related with
instantaneous input, 2(¢), as y=f(z). In Fig. 6,

ull)
/
t=1f
1)=0 2( 4y x (1)
ALUNEICR I Wl G (s) .
1= 1, ¥

Nen—lineer  element  of
z6ro—memory  iype

Fig. 6. Block diagram of a non-linear control system with a
.suddenly applied non-stationary random input

N
Gils) = b 2 Aust, (10)
where A; and k are constant coefficients respectively. Then we have

In the control system under the consideration, by applying the statistical
linearization technique to the non-linear element in the system, we may replace
this non-linear element by a linear one with the equivalent gain, «. The relation
between the disturbance »(#) and the response z(#) can therefore be expressed as

é, A; d:ft(f) +hra(t) = ku(t). 12)

In Eq. (12), the equivalent gain, «, is defined by
dox0] = {_af@nta nazf|”_2nz taz, (13)

where f(z, t) is the Gaussian probability density function of z(#) at the time .
If we formally express the unit-impulse-response function of the equivalent
linearized control system by W4 r;), the response z(f) at the time ¢ may be
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expressed as

= =, Wit coucedes (14)

To calculatg the auto-correlation _function for the signal z(¢), we proceed_ by
writing

ti (¢t

At)a(t,) = S:S: Wity 1) Wite, Tz)u(Tl)u(Tz)dTlde- (15)

ovio
Averaging both sides of Eq. (15) over the ensemble of random signal #»(#) and
assuming that the averaging process can be carried out under the integral sign,
we have

ettt Da. = | [ Wity e Wilty, v e e av. drsds (16)

oY

Therefore, setting ¢,=£=¢ in Eq. (16), the mean squared value, ¢.(¢), is given by

0ty = §, | Wity 20 Wilt, o) ez, drds. an

In Eq. (17), since the function W(¢, 7;) (=1, 2) involves an unknown function
such as the equivalent gain, <[¢(2)], it is impossible to directly evaluate ¢.(¢).
Therefore, as shown in the prev1ous paper‘) we con51der that ¢;.,—f;=4; (j=
0,1,2, ) and the value of equlvalent gain correspondmg to 4; is constant. The
mean squared value, ¢.(£,), of the response z(#) at the time #=1¢, is thus given by

‘px_(t)l t=ty = ‘/Jz(t‘n)

N1 ptjea(ti+n
= 3 7 Wit ) s Wilta— ) e U ey drndes, (18)

i,j=0J¢t; ¢

where Wi(t,—1;) (=1, 2) means the response of the systeni at the time ¢=¢, to
the impulsive signal appied at the time = under the assumption that x=constant.
The equivalent gain x,, (m=i, j) in Eq. (1§) is given by

Km = Nm[(bé(tm)] ’ (m =1, ]) . (19)
By consxdermg the initial condition, the mean squared value, ¢.(f), can succes-
sively be calculated from Eqs. (18) and (19). When the difference between the

values of equivalent gains ;.. and x; changes very slowly with respect to the
variation of time, Eq. (18) may apprqximately be written as®

@ulta) = § 7" Wt ) Wit 52 Wl e . (20)

5 Examples

Example 1 We con51der a non-hnear control systems given by Eq. (11). Let
N=1, A,=1 and A,=T, where 7T is the time constant of the system We
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assume that the statistical characteristic of a random input applied to the
system at the time #=0 is given by Eq.(5). We calculate the mean squared
value, ¢,(t), of the response z(¢) by using Eq. (20).

In this case, the relation between the input signal #(¢#) and the response z(f)
of the equivalent linearized control system can be expressed as

T% +28) +Rra(t) = ku(?), (1)

where ¢ is defined by Eq. (13). Since the weighting function for the equivalent
linearized control system under the assumption that r=constant is given by

Wit = Eexp{t-1tEa-o)}, >0 (22)

then, by substituting Eqs. (5) and (22) into Eq. (20), we have

bt = £ [ "exp {211k, o))

ky(zy)dr; . (23)

If the form kyz,) is given by
kfr) = {1—exp(—rr}*  (r>0), (24)
then Eq. (23) becomes

_ ¥___P Tr® _ In
¢’(t")_[2T(1+k1c) S AT AT ey D) ZA T —7T) exp{ 20 +he)22}
k2 . 2k2
tora T e T) SXP (2 — T R =77 P (— 7’")]@,,-1. (25)

We evaluate the response of the control system containing a non-linear element
with the saturated characteristic; viz.

—a (z< —a)
f@=1 z (z|<a) (26)
a (z>a)

where a is the clipping level of the non-linear characteristicc. The equivalent
gain, «, corresponding to Eq. (26) yields®

x = 20(a/y/ D) (27)
where
1 g (&
@) = /ggoexp( E)ae. 28)

Therefore, by using Eqgs. (25) and (27), we can successively evaluate the mean
squared value under the condition, x£,=1. The numerical result is shown in
Fig. 7.
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Fig. 7. The mean squared value of the response of the non-linear control system
shown in example 1
Example 2. We consider that the statistical characteristic of «(¢) is given by
Eq. (7) and the relation between the input -signal #(¢) and the response z(¢) of
the system is shown as Eq. (11). By a similar method as mentioned in Fig. 1,
¢u(ty) is calculated as follows;

1 _ 1 AT/s
5 $eltn) = kz[(l +k/c)(1+kx+/9T)+(1+k/c——ﬂT)(1+k/c+/9T)(1+k/c+/9T——2T/a)
1+ke _ T/o " _ ln
xexp {~ (LY o - R R e R {20 R0 R
T/o 2t,
“Athe— T/0)( + ket BT—2T/0) 0 (_7)] ey (29)

Fig. 8 shows the mean squared value of ‘the response of the control system
containing the non-linear element with the saturation characteristic as shown in

Eq. (26).
Example 3. The block diagram is shown in Fig. 9. The auto-correlation functioh
of the desired signal o(¢) is given
.y _ Oo _ _ _2¢
R(t;7) = exp(—pleD{l-exp (-Z)},  (8>0). (30)

Jy

Under the assumption, x=constant, since the relation between the desired signal
»(t) and the response z(f) of the equivalent linearized control system can be
expressed as

Td—g(t_’)+z(t)+k,cz(t) = T‘%—(tt)“(’)’ @0
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3
S
S
N
S 006
1y
=S
g

0 04 08 12 16 18

Time f

Fig. 8. The mean squared value of the response of the non-linear control system
shown in example 2

v 21t vt xf(t

" O © f(z) G:(
Closed +3-~ z 205

at =0

Non=linear element of
zero—memory type

Fig. 9. Block diagram of the non-linear control system shown in example 3

then the weighting function, Wy(t—1,), of the system becomes

Wit—1)) = 8(t—7,)+ 1 ;k" exp {—(1 +hi)t }TI} . >, (32)

Therefore, ¢.(¢,) becomes as follows ;

1, (t) = 1+ 8T +ke) | AT /oy,
oy A+ke)A+ke+51) AFket+ATA+ke—BTA +Ee+BT—2T/0,)

xexp{— (6’+ 1-I%k'€)t}+1+k2:’_"wT{1—exp‘(—z—f)} exp {_(/9+1_J}ﬁ)t}

2.2 2 _ ¢
+ {(1+k/c—,6’T)(1—|—kA:+ﬂT—2T/au) exp {21+ ko)1
_1-ke+58T . 3 )
1+ke+8T exp ( 2t/av)}:|x=xn_1,t=t,,- (33)
It is easily shown that the first term of Eq. (33) gives the value of the steady
state. Fig. 10 shows the mean squared value of the response of the control
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Fig. 10. The mean squared value of the response of the non-linear control
system shown in example 3

system containing a non-linear element with the saturation characteristic as
shown in Eq. (26).

6. Conclusions

In this paper, statistical characteristics of non-stationary white Gaussian
noise and non-stationary Markov process, and the statistical study on the non-
stationary random response of the system subjected to such inputs have been
described. Use is made of an extension of the equivalent gain of a non-linear
element to stationary random input to the case of non-stationary random input.

It is emphasized that the present analysis can be applied to time-variant non-
linear control systems®.

Appendix A. Calculations of the Non-stationary Spectral Density and: the

Auto-correlation Function of a Random Signal u(#)

(a) The case where u(#) is defined in the range —oco<{#'< ¢ (u(¢)=0 for ¢ >1)
If we denote the Fourier transformation of %(#) by A.(¢; f), we have

Adt; = _utrexp(—jonfirar . (A-1)
The conjugate type corresponding to Eq. (A-~1) becomes
axe; )= _we)exp (j2eftiat, (A-2)

. where the star notation for the complex conjugate is used. The joint energy
spectrum E(¢; £, is given by
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t

B )= | wemenrexp tansei-tyara . (A-3)

Taking the ensemble average of both sides of Eq. (A-3), we get
B3 fav. = |||t )t v, exp (j20ftr =N ataty . (Ad)
Let us change the region of integration in Eq. (A-4). Letting #/'—¢=r, it
follows that®

¢ o
([ ara = (avacs|” (° avae. (A-5)
By applying this relation to Eq. (A-4) and noting the following relations;

<u(8Yu(ty Vav. = <t Yty —tVav. = Rult); )
= Ut +1Vav. = Rt ; —7) = Rty —7; —7), (A-6)
we have

Bt far. = 2{ [ RUt!; 0 cos 2mfratidr. (A-T)
Therefore, the spetral denity of the input signal () can also be obtained by
Sut; £) = 22 [CE@; fDuv] = 4| Rult; ) c0s 2 frdr (A-8)

under the assumption that the initial value is zero. Multiplying cos2zfp on
the both sides of Eq. (A-8) and integrating with respect to f, we have

Rut; 0) = S:Su(t;f) cos 2z fodf . (A-9)

(b) The case where u(?) is defined in the range £ ># >0 (u(#')=0 for ' >>1)

By noting that the value of the lower bound of the integral formula given
by Egs. (A-1) and (A-2) is zero, the joint energy spectrum corresponding to
Eq. (A-4) becomes

1t .
CE(; v, = | [ @tUE Vv, exp (j207E ~ DNt . (A-10)
Changing the region of integration in Eq. (A-10) by using the following formula;
t(t Ert—T 0 t+T
([ (arvar = ({7 arvae+{ (" arae, (A-11)
we have
CE(t; fav. = 2 S: S:_TRu(t{; 1) cos 2nfrdt/dr. (A-12)

The spectral density of the signal «(#) can also be obtained by

Sults f) = 4S:R,,(t : 7) cos 2n frde . (A-13)
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It is easily shown that the auto-correlation function becomes

Rut; 0) = S:’ Sdt; F) cos 2 fodf . (A-14)

Appendix B. Calculation of the Auto-correlation Function of
Non-stationary Orenstein-Uhlenbeck Process

We assume that the random signal «(¢) is the one dimensional Gaussian
Markov process whose probability density function satisfies a Fokker-Planck

equation
{e=2L sta t5 0,9 = 0 (B-1)
where the symbol L* represents
1x = L O pty+bom 2+ (0 (B-2)

and pw, t; u,, t,) is the transition probability density function of the signal «(f)
being in the state » at the time ¢ under the condition that at time £, it was in
the state #,. The probability density function for the Orenstein-Uhlenbeck
process results from the values §,=0 and b,=1/0c=constant. Since the probability
density function obtained by considering the condition mentioned above is
given by

_ 1 _ 2uF 5
Bl 1) = 1/27ra{l—exp(—2t/a)}/2exp[ el B9

then
oult) = 5 {1—exp (-2}, B-4)

where we assume that the values of the initial conditions, #, and ¢,, are all zero.
On the other hand, the Orenstein-Uhlenbeck process is defined by the random
process with

Ru(ty T) ] fmoe = RM(T) = €xp ( —ﬂ ] T l ) X const. s (/9 > 0) ’ (B—s)

as its auto-correlation function. Therefore it can easily be shown that the auto-
correlation function of the random signal considered here is given by

Rut, 7) = g exp(—AFic]){1—exp(—2t/0)} . (B-6)
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