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In our previous studies, the authors have described the statistical studies on 
the response of non-linear control systems subjected to an ergodic stationary 
Gaussian random input. 

In this paper, an analytical method of the statistical evaluation of non-stationary 
random responses which are considered to arise quite often for non-linear control 
systems in practice is described. Firstly, a non-stationary white Gaussian random 
process and a non-stationary Orenstein-Uhlenbeck one considered in this paper are 
explained. Secondly, a statistical approach to find the non-stationary response of 
non-linear control systems subjected to such a random signal is described. Finally, 
illustrations of the analytical procedure described here are shown by several ex­
amples in detail. 

1. Introduction 

Various analytical studies on the evaluation of the response of non-linear 

control systems subjected fo Gaussian random inputs have been developed in 

our previous papers1
). However, we have assumed that the random signal con­

sidered in our previous works is represented by an ergodic stationary ensemble. 
Strictly speaking, sometimes the random input to the system is non-stationary, 

that is, the statistical characteristics of it vary with time. From the practical 

viewpoint, we must, therefore, consider the case where the characteristics of 

input signals applied to the system are non-ergodic and non-stationary random 

signals2
). A typical case of non-stationary random process is a white noise or 

a Markov process whose spectral density changes with time respectively. In 
this paper, we treat the following two examples. One is a non-stationary white 

Gaussian noise and the other is a non-stationary Markov process. We perform 

the evaluation of the mean squared value of the response of non-linear control 
systems subjected to such an input. 
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List of Principal Symbols 

t : time variable 

-r : time duration between the time instants t1 and 12 

w and f: angular frequency and frequency respectively 

s operator with respect to the Laplace transformation 
v(.t) : desired signal to the system 

u(t) : Gaussian random disturbance 

x(t) : system output 

;(t) and y(t): input and output of a non-linear element respectively 

/[;{t)]: transfer characteristic of a non-linear element of zero-memory type 

A;, k and T: circuit parameters 

R,.(t1 ; , ) : the auto-correlation function of the signal u(_t) depending on both the 
time instant t1 and the time duration -r 

S,.(t1 ; /): the spectral density of the signal u(t) depending on both the time 
instant ti and the frequency f 

¢,.(t): the mean squared value varying with the time t of ;(t) 

<•)av. : the symbol representing ensemble average of • 

jl._z, t): the time-dependent probability density function of ;(t) 

2. Statistical Characteristics of a Non-stationary Random Input 

Let us consider the correlation function and the spectral density of a non­
stationary random signal u(t) applied to the control system. Since the auto­

correlation function, R,.(t1; t2), of u(t) with respect to u(t1) and u(t2) depending on 

the time instants t1 and t2 is written by 

u(t) 

-0~­

f=O 

Fig. 1. Illustrations of non-stationary random signa.Is 

R,.(t1; t2) = (u(t1) u(t2))av. 

= (u(t2) u(t1))av. , ( 1 ) 

then, by using , = t1 - t2 > 0, we 
have 

R,.(ti; t2) = (u(t1) u(t1-,)>av. 

= (u(t2)u(t2+,))av. 

=R,.(t,; ,) 

=R,.(t2;-,). (2) 

The non-stationary auto­

correlation function is, thus, 

characterized by using the 
time duration, , and· the time 
t1 or t/),4). 
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We consider the non-stationary spectral density corresponding to Eq. (2). 

The random signal considered here is divided into two cases. One is a non­

stationary random signal, u(t), as shown in Fig. l(a) and the other is a non­

stationary random signal, which suddenly appeared by the action of switching-on 

at the time instant t=O, as shown in Fig. l(b). Therefore, the spectral density, 

Su(t; f), is given as follows; 

(1) The case where u(t') is defined in the range -=<t'<t 
(u(t')=O for t<t') (Fig. l(a)) 

Su(t; f) = 4 [ Ru(t; r) cos 2rrfrdr. 

(2) The case where u(t') is defined in the range O < t' < t 
(u(t')=O for t<t') (Fig. l(b)) 

Su(t; f) = 4 ~: Ru(t; r) COS 2rrfrdr. 

(3) 

(4) 

When a non-stationary spectral density is known, the auto-correlation function 

can be obtained by applying the Inverse Fourier transformation with the help 

of Appendix A. 

3. Typical Examples of Non-stationary Random Signals 

(a) Non-stationary White Noise5l 

The auto-correlation function and the spectral density of non-stationary 

random signal considered here are respectively given as follows ; 

( 5) 
and 

( 6) 

Frequency 

Fig. 2. An example of the spectral density 
of a non-stationary white noise 

where o is Dirac's Delta function and 

k0(t1) is the amplitude of the noise 

depending on the time t1. The value 

of the spectral density is uniformly 

distributed over the all range of the 

frequency as shown in Fig. 2. When 

the system is excited by a white noise 

whose spectral density varies with 

Stationary tt white" 
noise input Time-variant 

gain 

Non stationary 
"white" .noise 

System transfer 
function 

Output 

Fig. 3. Equivalent structure of non-stationary white noise 
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time, the situation can be considered as shown in Fig. 3. 

(b) Non-stationary Orenstein-Uhlenbeck Processes6
) 

The auto-correlation function and the spectral density for the non-stationary 
Orenstein-Uhlenbeck process are respectively given as follows; 

and 

Su(t; f) = a{l-exp {-!1)}[,a2 +~g1rf)2 + 82 +~1rf)2 exp (-,Bt) 

x(2nf sin 21rft-,B cos 21rft)], 

( 7) 

(8) 

where a and ,B are positive constants (See Appendix B). The random process 

u (t} 

2.0 

1,4 

' ...._ 

;::= l2 
Jl 

~aB 
·;;; 

~ 
~ Q4 
"l:; ., 
J5-

Fig. 4. An example of a non-stationary Orenstein-Uhlenbeck 
process 

17 = 1.0 , /3 = 1.0 

f:2 

t=J.5 

f =1.0 

t=as 

0 Q4 0.8 
!-----'-----c"-:---'----,-L-,----'---,L-----'---_J__ 

1.2 L6 
Frequency f 

Fig. 5. An example of the non-_stationary spectral density depending 
on time 
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with the auto-correlation function as shown in Eq. (7) can easily be regarded as 

the Orenstein-Uhlenbeck process characterized by 

Ru(t;-r)I,= .. = ~ exp(-.Bl-rl), ( 9) 

as the time t tends to infinityn. An example is illustrated in Fig. 4. The form 

of the spectral density varyin~ with time is shown in Fi~.: 5. 

4. Calculations of the Mean Sqared Value, ¢it), of the Response z(t) 

We consider a typical control SY,Stem as sj:lown iq. Fig. 6 containing a 

symmetric non-linear element whose instantaneous output, y(t), is related with 

instantaneous input, z(t), as y= f(z). In Fig. 6, 

-if( u(I} 

I=/., 
~----, 

v(t)=O z(t} 

+· 
I( z) 

y (/) - y(t) 

Nc'n-!inear el emenl of 
zero-memory iyPe 

-t-

X (/) 

G, (s) 

Fig. 6. Block diagram of a non-linear control system with a 
.suddeply app/ied q.on-stlltionary ran.dom input · 

Gb) = kj [d A;s;, 

where A; and k are constant coefficients respectively. Then we have 

to A; d~1:) + kf[z(t)] = k u(t). 

(10) 

(11) 

In the control system under the consideration, by applying the statistical 

linearization technique to the non-linear element in the system, we may replace 

this non-linear element by a linear one with the equivalent gain, JC. The relation 

between the disturbance u(t) and the response z(t) can therefore be expressed as 

00 diz(t) 
~ A, <ii' + kJCz( t) = ku(t) • (12) 

In Eq. (12), the equivalent gain, JC, is defined by 

JC[</Jz(t)] = r .. zf(z)p(_z, t)dz/[ .. z2p(z, t)dz, (13) 

where fi..z, t) is the Gaussian probability density function of z(t) at the time t'). 
If we formally express the unit-impulse-response function of the equivalent 

linearized control system by Wi(t, -r1), the response z(t) at the time t may be 
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expressed as 

(14) 

Tq calcql~t~ the aqto-c~rr1lation function for the signal z(t}, we proceed by 
writing 

z(t1)z<t2) = W1U1, -r1) Wi(t2, -r2)u(-r1}u(-r2)d-r1d-r2. 
~
'1~'2 
to (o 

(15) 

Averaging both sides of Eq. (15) over the ensemble of random signal u(t) and 

assuming that the averaging process can be carried out under the integral sign, 

we have 

(16) 

Therefore, setting t1=t2 =t in Eq. (16), the mean squared value, ¢.(t), is given by 

¢.(t} = r: ~: W1(t, -r1) W £t, -r2)<u(-r1}u(-r2))av. d-r1d-r2. l o o 
(17) 

In Eq. (17), since the function W(t, -r;) (i=l, 2) involves an unknown function 
such as the equivalent gain, .1:[¢.(t)], it is impossible to directly evaluate ¢,,(t). 

Therefore, as shown in the previous paper'), we consider that t;+i-t;=J; (j= 
. .. , ._ ,' ' ' ' . ' 

0, 1, 2, •··) and the value of equivalent gain corresponding to J; is constant. The 

mean squared value, 'Pz<tn), of the response z(t) at the time t=tn is thus given by 

¢,,(t) I t=tn = ¢it,.) 

(18) 

where W1(tn--r1) (/=l, 2) means the response of the system at the time t=tn to 
the impulsive signal appied at the time t=-r under the assumption that .1:=constant. 

The equivalent gain .tm (m=i, j} in Eq. (18) is given by 
" ~ 

A'.:m = A:m[¢,,(tm)] , (m = i, j}. (19} 

By considering the initial condition, the mean squared value, ¢,,(t), can succes­

sively be calculated from Eqs. (18) and (19). When the difference between the 
values of equivalent gains .t;+i and .1:; changes very slowly with respect to the 
:variation of time, Eq. (18) may approximately be written as') 
' , '·'., ,l • 

(20) 

5. Exan,tples 

Exa_mpte J. We _c9n~ic:Ier a no1;1-linear control systems given by Eq. (11). Let 

N=l, Ao=l and A1= T, where .T is the time constant of the system. W~ 
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assume that the statistical characteristic of a random input applied to the 

system at the time t=O is given by Eq. (5). We calculate the mean squared 
value, cp,,(t), of the response z(_t) by using Eq. (20). 

In this case, the relation between the input signal u(t) and the response z(t) 

of the equivalent linearized control system can be expressed as 

T~: +z(_t)+k.tz(t) = ku(t), (21) 

where ,c is defined by Eq. (13). Since the weighting function for the equivalent 

linearized control system under the assumption that ,c=constant is given by 

then, by substituting Eqs. (5) and (22) into Eq. (20), we have 

If the form ko(.1) is given by 

ko(r·1) = {l-exp(-rr1)} 2 

then Eq. (23) becomes 

(r>0), 

(22) 

(23) 

(24) 

(25) 

We evaluate the response of the control system containing a non-linear element 

with the saturated characteristic ; viz. 

1
-a 

f(z) = : 

(z< -a) 
(lzl<a) 

(z>a) 

(26) 

where a is the clipping level of the non-linear characteristic. The equivalent 

gain, ,c, corresponding to Eq. (26) yields') 

IC = 2<1>(a/✓ cp,,(t)), (27) 

where 

(28) 

Therefore, by using Eqs. (25) and (27), we can successively evaluate the mean 

squared value under the condition, ,c0 = 1. The numerical result is shown in 

Fi~. 7. 
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02 ,------------.---------~-------~ 
T = 1.0 a= 1.0 

k = 1.0 l1 = 0.1 

I'= 1.0 

0 2.0 3.0 
Time I 

Fig. 7. The mean squared value of the response of the non-linear control system 
shown in example 1 

Example 2. We consider that the statistical characteristic of u(t) is given by 
Eq. (7) and the relation between the input signal u(t) and the response z(t) of 

the system is shown as Eq. (11). By a similar method as mentioned in Fig. 1, 

¢,.(tn) is calculated as follows; 

1 _ [ 1 . 4T/a 
0 </JzUn)- k2 (l+k,c)(l+k.t+.BT)+(l+k,c-,BT)(l+k,c+,BT)(l+kA:+,BT-2T/a) 

xexp {-.a( 1+
1 ;.k,c)tn }-(l +kA:)(l +k,c!j~)(l +kA:-T/a)exp {-2(1+kA:)~} 

-(l+k,c-T/a)(r:~,c+/3T-2T/a) exp ( -
2!")]\«=«n-1. (29) 

Fig. 8 shows the mean squared value of the response of the control system 
containing the non-linear element with the saturation characteristic as shown in 

Eq. (26). 

Example 3. The block diagram is shown in Fig. 9. The auto-correlation function 

of the desired signal v(.t) is given 

Rv(t;i-)= ~vexp(-,Bli-1){1-exp(-!:)}, (30) 

Under the assumption, .t=constant, since the relation between the desired signal 
v(t) and the response z(t) of the equivalent linearized control system can be 

expressed as 

Td~~t) +z(t)+kA:z(t) = rd:~t) +v(t), (31) 
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o.1s.------~------,-------.--------,-------i 

0.12 

(J= 1.0 

r = 1.0 

k = 1.0 

/3 = .0 

a= J.0 

,1 = 0.1 

""' ~ 
~ ao61------+------------,,f--------t--------t-----------i 

~ 

0 QB 1.2 1.6 

Time t 

1.8 

Fig. 8. The mean squared value of the response of the non-linear control system 
shown in example 2 

V (/) 
/ z(t) y (t) 

~u----u-----, f (z) 
Closed + 
at t =0 

Non-linear element of 
zero-memory type 

X (t) 
G, (sJ 

Fig. 9. Block diagram of the non-linear control system shown in example 3 

then the weighting function, Wi(t--r1), of the system becomes 

Therefore, cpz(t,.) becomes as follows ; 

1 ( 1+.BT(l+klc) 4k2,c2 T/av 
av cpz(t.,) = (1 +klc)(l +klc+ f,'1) + (1 +klc+ /3T)(l +k,c-.BT)(l +k,c + /3T-2T /av) 

(32) 

xexp {-(.a+ 
1

}k,c)t }+ 1 +f:~ 87{1-exp (-~)}exp {-(,a+ 1 ;k,c)t} 

+ k
2

,c
2

{cl +k,c-j3T)(l ;k,c+ /3T-2T/av) exp {-2(l +k!ctr} 

l-ktc+/3T exp(-2t/av)}] 
1 + k,c + .BT K=Kn-1, t=t,. • 

(33) 

It is easily shown that the first term of Eq. (33) gives the value of the steady 

state. Fig. 10 shows the mean squared value of the response of the control 
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o.s~----~----~-----~-----.------. 

0 0.1 

a= 1.0 

Ll = 0.1 

0.2 0.3 0.4 
Time 

Fig. 10. The mean squared value of the response of the non-linear control 
system shown in example 3 

0.5 

system containing a non-linear element with the saturation characteristic as 
shown in Eq. (26). 

6. Conclusions 

In this paper, statistical characteristics of non-stationary white Gaussian 

noise and non-stationary Markov process, and the statistical study on the non­

stationary random response of the system subjected to such inputs have been 

described. Use is made of an extension of the equivalent gain of a non-linear 
element to stationary random input to the case of non-stationary random input. 

It is emphasized that the present analysis can be applied to time-variant non­
linear control systems8). 

Appendix A. Calculations of the Non-stationary Spectral Densit.y and' the 

Auto-correlation Function of a Random Signal u(t) 

(a) The case where u(t') is defined in the range -oo<f<t (u(f)=O for t'>t) 

If we denote the Fourier transformation of u(t') by Au(t; f); we have 

Au(t; f)= [= u(t') exp (-j 2rrft)df. (A-1) 

The conjugate type corresponding to Eq. (A-1) becomes 

A;W; /)= [= u(ti') exp (j2rrfti')dti', (A-2) 

where the star notation for the complex conjugate is used. The joint energy 

spectrum E(t; f'f), is given by 
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E(t;f) = [j~
00

u(t')u(ti')exp {j2n:f(ti'-t'))dt'dti'. 

Taking the ensemble average of both sides of Eq. (A-3), we get 

<E(t; f ))av. = i~
00 

[

00 

<u(t')u(t/))av. exp { j2n:f(ti' -t')) dt' dti'. 

(A-3) 

(A-4) 

Let us change the region of integration in Eq. (A-4). Letting ti'-t' =r, it 

follows that3) 

[J~oo dt'dt/ = tJ~ dt/dr + [J~oo dt'dr. (A-5) 

By applying this relation to Eq. (A-4) and noting the following relations ; 

<u(t')u(t/))av. = <u(ti')u(ti'-r))av. = Ru(ti'; r) 

= <u(t')u(t' +r))av. = Ru(t'; -r) = Ru(ti'-r; -r), 

we have 

<E(t; f ))av. = 2 [
00 

i~ Ru(ti' ; r) COS 211:frdti' dr. 

(A-6) 

(A-7) 

Therefore, the spetral denity of the input signal u(t) can also be obtained by 

a 100 

Su(t; /) = 2 8t [ <E(t ; /))av.J = 4 Jo Ru(t; r) COS 211:frdr, (A-8) 

under the assumption that the initial value is zero. Multiplying cos 211:fp on 

the both sides of Eq. (A-8) and integrating with respect to /, we have 

Ru(t; p) = ~~ Su(t; /) cos 211:fpdf. (A-9) 

(b) The case where u(t') is defined in the range t>t'>O (u(t')=O for t'>t) 

By noting that the value of the lower bound of the integral formula given 

by Eqs. (A-1) and (A-2) is zero, the joint energy spectrum corresponding to 

Eq. (A-4) becomes 

<E(t; /))av. = ~: i: <u(ti')u(t'))av. exp {j2n:f(ti' -t'))dt/ dt'. (A-10) 

Changing the region of integration in Eq. (A-10) by using the following formula; 

it it it ~t-T ~0 it+T dti' dt' = dt/ dr + dt' dr , 
0 0 0 0 -t 0 

we have 

< E(t; /)av. = 2 i: t-T Ru(t,'; - r) COS 211:frdt,' dr. 

The spectral density of the signal u(t) can also be obtained by 

Su(t; /) = 4 ~: R,,(t; r) cos 211:frdr. 

(A-11) 

(A-12) 

(A-13) 
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It is easily shown that the auto-correlation function becomes 

Ru(t; p) = r Su(t; f) cos 21rf pdf. 

Appendix B. Calculation of the Auto-correlation Function of 

Non-stationary Orenstein-Uhlenbeck Process 

(A-14) 

We assume that the random signal u(t) is the one dimensional Gaussian 

Markov process whose probability density function satisfies a Fokker-Planck 

equation 

{L*-!
1
} p(u, t; Uo, to)= 0, 

where the symbol L* represents 

1 r;z a 
L* = 2 au2 + {bo(t)+bi(t)u} au +b,(t) 

(B-1) 

(B-2) 

and p(u, t; u0 , t0 ) is the transition probability density function of the signal u(t) 

being in the state u at the time t under the condition that at time t0 it was in 

the state u0 • The probability density function for the Orenstein-Uhlenbeck 

process results from the values b0 = 0 and b, = 1/ a= constant. Since the probability 

density function obtained by considering the condition mentioned above is 

given by 

p(u, t) = 1 exp[- Zu
2 

], (B 3) 
✓2rra{l-exp (-2t/a)) /2 a{l-exp (-2t/a)} -

then 

(B-4) 

where we assume that the values of the initial conditions, u0 and t0 , are all zero. 

On the other hand, the Orenstein-Uhlenbeck process is defined by the random 

process with 

Ru(t, r)lt=co - Ru(-,:)= exp(-,Blr\)xconst., (B-5) 

as its auto-correlation function. Therefore it can easily be shown that the auto­

correlation function of the random signal considered here is given by 

Ru(t, r) = ~ exp(-,Blrl){l-exp(-2t/a)}. (B-6) 
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