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On the Absolute Stability of Automatic Control System with
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Many authors, mainly in the Soviet, have discussed the absolute stability
of the automatic control system with one nonlinear element. In practical pro-
blems, however, we sometimes encounter the control system with many nonlinear
elements. In this paper the absolute stability of the automatic control system
with many nonlinear elements is discussed. The discussions are based on the
methods :

1. Lyapunov’s direct method.

2. Popov’s method.

The relations between the results obtained by means of these two methods are
also described.

1. Introduction

In practice of automatic control we are usually obliged to use the con-
trollers possessing nonlinear characteristics. In each particular case, some-
times it is impossible to fix rigorously the functions of the nonlinear
characteristics under the real operating conditions of the control system.
However, it is required that the control system should be stable. Further,
in practical problems it is required that the control error decays after not
only small but also any arbitrary, finite, initial displacements have been
imposed. In other words, the equilibrium should be asymptotically stable in
the whole.

From such technical viewpoints the concept of “absolute stability” was
proposed about twenty years ago. A control system is called to be absolutely
stable, if its equilibrium is asymptotically stable in the whole for any
characteristic y=¢(s) of a nonlinear element, which belongs to a class of
functions say, a class of functions ¢(¢) such that ¢(g)s>0, ¢+0 and ¢(0)=0.

At first the problem of the absolute stability of a control system with
one nonlinear element was formulated by A.I Lur’e and V. N. Postnikov'?®.
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They investigated the problem, using the Lyapunov’s direct method. Applying
the so-called Lur’e transformation and constructing the Lyapunov functions
of the type “a quadratic form plus the integral of the nonlinear function
¢(0)”. They obtained a system of quadratic equations and showed that if
the system of quadratic equations has real solutions, then the control
system is absolutely stable. Following this method V. A. Yakubovich®®,
E. N. Rozenvasser®, A. M. Letov® and other Soviet authors’® have discussed
the problem in greater detail.

I. G. Malkin, using the same type of Lyapunov functions as the above,
but not reducing the problem to the discussion of the system of quadratic
equations, gave an inequality as a sufficient condition for the absolute stability
by means of the Sylvester’s criteria®.

V. M. Popov introduced a new method of the investigation of the absolute
stability, which is different from the Lyapunov’s direct method”!’>, He gave
a sufficient condition for the absolute stability in terms of the frequency
characteristic of the linear parts of the system and showed that all the
results obtained by means of the above mentioned methods are included in
his criteria, that is, if for the system there exists a Lyapunov function of
the above type, then the Popov’s sufficient condition is satisfied. Moreover
V. A. Yakubovich proved its inverse proposition'®.

The investigations above mentioned were carried out for a system con-
taining only one nonlinear characteristic. In the practical problems, however,
we sometimes encounter the control system containing many nonlinear
characteristics. As to such control systems, extension of the Lur’e method
was discussed by A.M. Letov® and I. A. Sultanov'. It is reported that
V. M. Popov extended his method to the system with many nonlinear charac-
teristics'®, but unfortunately the paper is written in Rumanian and is not
in the hands of the authors.

In this paper the problem of the absolute stability of the system containing
m nonlinear characteristics will be discussed in detail.

2. Statement of the Problem
We shall consider a dynamical system which is described by the system
of the form

dx _ _
i Ax+ By, (2-1x

(901(01) )
y=9@) =\ : , g=0C"-x
§0m(0m)
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where x : n-dimensional state vector,
y : m-dimensional vector,
A : nXn constant matrix,
B,C: nxXm constant matrices,

and the prime denotes the transpose of matrix. ¢jo;) (j=1, - ,m) are one-
valued continuous functions which are defined for all real values ¢; (j=1,---,m)
and satisfy the following conditions

9i0)=10
@;a;)

0j

0< Skj: (j:]-:""m) (2—1)2

where &y, -+, k, are finite postive numbers or some of them infinite*. We
assume that the system (2-1) satisfies the conditions of existence and
uniqueness of solutions for all £>0 and for any initial conditions x(0).

The system (2-1); can be shown in the form of a block diagram as in
Fig. 1, where the characteristic of the linear block L. is represented by

dx _ (.
E—Ax-kBy, o C-x

g ko,

DT:—’ N. L. L. S I N oy

Fig. 1. Fig. 2.

and that of the nonlinear block N. L. is represented by

y = (o).

The conditions (2-1), are represented graphically in Fig. 2. That is to say,
the curve y;=¢;(0;) in the (s;, ;) plane is laid in the angle formed by the
o;-axis and the straight line y;=k;0;.

Now let us define the absolute stability of the system (2-1). Let the
constant matrix A to be asymptotically stable. Namely, all the roots of the
characteristic equation of A:

det(QZE—A) =0

#5(9;)

J

* For kj=cc the conditions (2-1), are reduced to the inequality 0<
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have negative real parts, where E is unit matrix. The system (2-1) is called

to be absolutely stable in [0, K1, provided that the equilibrium x=0 of the

system (2-1) is asymptotically stable in the whole for any functions ¢ a;),
k O

(j=1,---,m) satisfying the conditions (2-1),, where K:( 1'-. )
0

km
In the following paragraphs we shall investigate what conditions are to

be satisfied for the system parameters A, B and C to guarantee the absolute
stability in [0, K] of the system (2-1).

Relating to the problem of the absolute stability, the following question
arises. Is the system (2-1) asymptotically stable in the whole for any
nonlinear functions satisfying the conditions (2-1),, if the linear system
obtained by putting y;=#h;0; is asymptotically stable for all %; such that
0<h;<k; (j=1,---,m)? However the example of a system of the third order
was shown, for which the above question has negative answer'®, Thus we
must investigate the problem of the absolute stability as that of nonlinear
theory.

3. Investigation of the Absolute Stability by Means of the
Lyapunov’s Direct Method

Let us consider an ordinary differential equation of the form

dx _ _ _
&~ F@), Flo)=0 31
o . . . fix)
where x=| : is a vector in the n-dimensional vector space and f(x)=| :
Xm (%)

is a vector function which is defined for all x. We assume that the equation
(3-1) has unique solution for all £>0 and for any initial condition x(0). The
equilibrium x=0 of the equation (3-1) is asymptotically stable in the whole,
if there exists a scalar function V(x) which is continuous and differentiable
with respect to xi, -+, x,, and satisfies the following three conditions.

1°. The function V(x) is positive definite over the whole space x, that is,

Vi) >0 for x+0, Wo)=0. 3-2)
2°. The derivative g along the trajectories of the equation (3-1) is

negative definite over the whole space x, that is,

dav _ &V, .
@ " Hox, f{xy<0  for x+0 39

=0 for x=0.

3°. The function V(x) becomes infinitely large with [jx||, that is,




On the Absolute Stability of Automatic Control 351
System with Many Nonlinear Characteristics

lim V(x) = oo, : (3-4)

117 1>e0
where |iz|| is the norm of vector x, defined by llxllzsgp ETIE
J

This continuous and differentiable scalar function V(x) satisfying the above
three conditions 1°,2° and 3° is called a Lyapunov function for the equation
(3-1), which guarantees the asymptotic stability in the whole.

We shall investigate the absolute stability of the system (2-1), using the
Lyapunov function. At first let all %, -,k to be finite positive numbers.
We can formulate the following theorem.

. B 0
Theorem 1: If we can take the diagonal matrix ﬂ=(01'-. such that

m
the m xm symmetric matrix H is positive definite and for some #x#n positiv

definite P the system of quadratic equations

a——;—ﬂC’A—B’M—B’P—%C’ ~0 (3-5)

has reql solutions a=(a;;), (i=1,-,m, j=1,--,n), then the system (2-1) is
absolutely stable in [0, K7, where

H= K—‘—%(ﬂC’BJrB’Cﬂ), (3-6)
1
et <7 0 )
0o L)
3
M= C[wH'a] or AAM+MA= —o’Ha. 3-7)

For the absolute stability of the system (2-1) in [0, K] it is necessary that
the linear system obtained by putting y;=#;0; in (2-1) is asymptotically stable
for any #; such that 0 <#; <k;.

Proof: We look for a Lyapunov function of the form
o 1 Ty 1 Oy
Vix) = #’Lx+5 1\ ¢ion)doi+  +5Bm\  Pm(0m)dom . (3-8)
27" ) 2 0

Where the real symmetric matrix L is obtained by operating the Lyapunov’s
operator .L on a real symmetric positive definite matrix G, that is to say,
L[G}]=L or AL+LA= —G. 3-9)

For convenience we shall use the following notations

©i(0y) do,
90(0):( : ), daz(f).
¢m(0m) dom
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Then the function V(x) of (3-8) is rewritten in the following form
V(x) = #'Lx+ S:§o(a)’ﬂda. 3-8y

At first let 8;>0, (j=1,---,m). By the Lyapunov’s theorem (Appendix I)
x’Lx is positive definite. And S:’ 90;)do;j=0, because the nonlinear charac-
teristics ¢o;), (j=1,--,m) satisfy the conditions (2-1),. Then the function
W(x) of (3-8) is positive definite over the whole space x. In our case (#;=>0,
(j=1,-,m)) V(x)=2’Lz>0 and lim x’Lx=oo, so lim V(x)=oo. Thus, for 5;=0

JETIEY IETIES
(j=1, - ,m) conditions 1° and 3° are satisfied. If some of §; (j=1,--,m) are
negative, positive definiteness of the function W(x) of (3-8) does not follow
immediately. But, as we shall show later, even if some of £; (j=1,-,m)
are negative, the conditions 1° and 3° follow from the condition 2° under the
condition that the linear system obtained by putting y;=hk;0; (j=1,+,m) in
(2-1) is asymptotically stable for any #; such that 0<#k;<k; (j=1,-,m). Let

us calculate the derivative ?1%/ along the trajectories of the system (2-1).
dv _ &0V dx;
dt };‘ ox; dt
= B2 Lt 5 Bresupd (5 asmt Boawd) (3-10)
Using (3-9)
AV . —Gx+ (o) 2BL + AC A+ H()ICB'S(0). (3-10y

Our problem is how to guarantee negative definiteness of 5%/ of (3-10) for
any nonlinear functions ¢(s;), (j=1,-,m) satisfying the conditions (2-1)..
The right-hand side of (3-10) contains the nonlinear functions ¢;(s;), (F=1,---,m)
and is not a quadratic form of vector x. Then there is no simple criterion

which guarantees negative definiteness of the right-hand side of (3-10).
av
dr

a quadratic form of the (#+m)-dimensional vector (f’) This quadratic form

may be negative diﬁnite. But this is not the case. In fact, from the repre-

If we replace ¢(o) by variable vector y, of (3-10) can be considered as

sentation of (3~ 10), can be zero for the vector (;) satisfying
é@m+éhm=0 G=1,m, (3-11)

This is a system of » linear homogeneous equation of #+m unknowns xi,---,%,,
Vi s¥m, S0 cleary this system has non-trivial solutions. This means that the
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quadratic form %%/ of (3-10) of the (m+n)-dimensional vector (; ) can not be

sign definite.
Then we use the so-called S-process™®, as in the case of the system with

one nonlinear characteristicc. We add and subtract the expression

to—K-9(0))900) = 5 (3,- 247 )o o) (3-12)
from the right-hand side of (3-10). Under the conditions (2-1), this expression
is non-negative

{o—K'¢(a)} '¢(0) > 0. (3-13)
Introducing the following expression

Sfx, ¢(0)] = x’Gx—¢(6)(2B’'L+ FC’ A)x

—{o—~K7'¢(a)} (o) —@(c)(FC’B)e(o) , (3-14)
‘Z/ of (3-10) can be rewritten in the following form
dV —1 ?,

&r = =Sz 901~ lo—K¢(a)) 9(0) . (3-15)

From (3—12"») and (3-15) if S[x, ¢(s)] is positve definite, % becomes negative
definite.

Now let us replace ¢(¢) in S by variable vector y and find the condition
for positive definiteness of S(x, y), because it is very difficult to discuss
positive definiteness of S[x, ¢(0)]. S(x,y) is a quadratic form of the (n+m)-

dimensional vector (;) as follows

S(x,3) = #Gx—2y (B'L +1poar e Vet (K- pOB)y

=@,y) G —a’\([x
—a H y ’ (3_16)
where
a=FHL +%ﬂC’A+%C’,

: 1 (3-17)
H= K™ —7(,6’C’B +B'Ch).

Therefore, if (n-+m)x{(n+m) symmetric matrix
G = < G —a’)
—-a H

is positive definite, S(x, y) becomes a positive definite quadratic form. On
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the other hand, if the matrix H is non-singular, S(x, y) can be rewritten in
the following form

S(x, y) = (y—H 'ax)H(y— H 'ax)+x(G—a’H'a)x .

Therefore, in order that S(x, y) is positive definite, it is necessary and sufficient
that m xXm matrix H be positive definite and »x# matrix

R=G—a'Ha (3-18)

is positive definite.

In view of (3-9) and (3-17), the elements g;; (, j=1, -, #) of the symmetric
matrix G and the elements a;; ({=1,-,m, j=1,-,n) of the matrix a are
dependent linearly on the elements /;; (/,7=1,--,#) of the symmetric matrix
L. Consequently if positive definite matrix R is given arbitrarily, the relation
(3-18) is a system of —;—n(nJrl) quadratic equations of %n(n%l) unknowns /;;.

Thus, if the symmetric matrix H is positive definite and for some positive
definite matrix R the system of quadratic equations (3-18) has real solutions
l;; (4, j=1, - ,n), the obtained symmetric matrix L in this manner is positive
definite. In fact, the matrix :

G =R+a’'H 'a (3-18y

is positive definite and the matrix L is obtained by operating the Lyapunov’s
operator .L on the symmetric matrix G.

B0

Thus if we take ﬂ—(o ) such that the symmetric matrix H is positive
.

definite and for some positive definite matrix R there exists a real symmetric
matrix L satisfying the relation (3-18), —S(x, »), hence, %}
definite.

Now let us prove that (3-18), the system of %—n(nJrl) quadratic equations,

becomes negative

can be reduced to a system of mn quadratic equations of the mz unknowns
a;; (=1, ,m, j=1,--,n). Operating the Lyapunov’s operator .C on the right-
and left-hanp sides of (3-18) and putting

LIR]1=P, L[H%]l=M, (3-19)
we obtain
P=L-M. (3-20)

When R is any positive definite matrix, P is also a positive definite matrix,
and vice versa, because P and R are connected by the Lyapunov’s operator
with each other. Then, we can consider P given arbitrary instead of R.
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The elements m;; (i, j=1,---,n) of the symmetric matrix M depend quadratically
on a;; (i=1,--,m, j=1,---,n). Using (3-20) and eliminating the matrix L from
(3-17) we obtain

o+ ACA-~BM-B'P-3C 0. (3-5)
This relation can be considered as a system of mn quadratic equations of
mn unknowns a;; ({=1,:,m,j=1,---,xn). If we can take the positive definite
matrix P such that the system of quadratic equations (3-5) has real solutions
a;; (=1, ,m, j=1,- ,n), then the positive definite matrix G is determined
from (3-18Y, hence L= L[G]. Thus there exists a Lyapunov function of the
form (3-8) (in our case F;=0 (j=1,---,m)) and the absolute stability of the
system (2-1) is established.

In the above arguments, we have restricted our discussions to the case
where £;>0 (j=1,-,m). But for any real numbers f#; as we show in the
following, if the linearized system of (2-1) is asymptotically stable for any
k; such that 0<h;<k; (j=1,--,m) and the condition 2° is satisfied for any
@6;) (j=1,--,m) satisfying (2-1),, then the conditions 1° and 3° are also
satisfied. The following two lemmata are extentions of those of V. A. Pliss and
E. N. Rozenvasser for the system containing one nonlinear charracteristic'®.

Lemma 1: If the function V{(x) of (3-8), in which ¢;(s;) is replaced by hjo,
satisfies the conditions 1°, 2° and 3° for any %; such that 0<k;<k;, (j=1,---,m),
then the function V(x) for any ¢;o;) satisfying the conditions (2-1), satisfies
the conditions 1°, 2° and 3°.

Proof : If we take the real numbers f; (j=1,---,m) such that f§,,--,4,>0
Bri1, 1 Am<0, the following inequality is obtained
[ 1 2 1 2
Vilx) =« Lx+—2—ﬂr+1kr+10r+1 T+ ‘|‘7ﬂmkm0m
< Vo) < La+ 3 Bkt + 4+ Bka? = Vi) (3-21)
Form the assumption, the functions Vi(x) and Vi(x) satisfy the conditions 1°

and 3°. Thus, from (3-21) the function V(x) also satisfies the conditions 1°
and 3°. Now any functions ¢o;) (j=1,---,m) are represented as follows

90;) = kio;)o;, 0 <o) <k;

Therefore, it is sufficient to verify the sign definiteness of V(x) only for
linearized system such that y;=h;o;, 0<h; <k; (j=1,---,m). Thus, if the
function
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Vilx) = x’Lx+—;—/91h16§ +oee +%ﬂmhmagn (3-22)

satisfies the conditions 1°, 2° and 3° for any #;, 0<h;<k; (j=1,---,m), then
so does the function V(x) with the same L and g as V,(x) for any ¢,0o;)
(7=1,---,m) satisfying the conditions (2-1),.

Lemma 2: In order that the function V{(x) of (3-8) guarantees the absolute
stability of the system (2-1), it is necessary and sufficient that the following
two conditions are satisfied.

(a) The linear system obtained by putting y;=0;k;0;, 6;=0 or 1(j=1,,m)
are asymptotically stable.

(b) The perivative % along the trajectories of the system (2-1) in which

§0j(0'j):hj0'j, OShJSkJ (].:1,"',7}1) is negative definite.
Proof : It is evident that the conditions (a) and (b) are necessary. Let
us prove the sufficiency of the conditions (a) and (b). As we showed

previously, if the condition (b) is satisfied, the derivative %} is negative

definite for any nonlinear characteristics ¢;(g;) (j=1,-,m) satisfying the con-
ditions (2-1),. We assume that the constants 4; (j=1,---,m) are taken such
that 8,,-,8,20, By41,*,8m<0. From the condition (a) the two linear systems
obtained by replacing y.=0,-,%,=0, y,11=kr 110,51, ,Ym=kmom and y,=kg,, -,
y,=k,0,, ¥r41=0,,9.,=0 are stable. From the condition (b) the derivatives

av, and A2 of the following functions
dt dt
o 1 2 1 2
Vix) = x Lx‘|’§ Britkriio751 +‘2“/9mkm0m
Vi) = ¥La+ 5 Bkt t - + 2kl

are negative definite. Since these functions are quadratic forms of vector
x, by the Lyapunov’s theorem the functions V,(x) and V,(x) are positive definite

and lim Vix)=c (j=1,2). Moreover, since for the function V(x) in which
[1%] o0

nonlinear characteristics ¢;(o;) (j=1,--,m) satisfy the conditions (2-1);, the
inequality
Vi(x) < V(x) < Vix)

holds, conditions 1° and 3° are satisfied for also V(x).

In view of the above two lemmata it can be concluded that if the linear
system obtained by putting y;=0;k0;, 6;=0 or 1 (j=1,---,m) is asymptotically
stable and the function V(x) of (3-8) satisfyies the condition 2° under the
restriction of the S-process, that is, the system of quadratic equations (3-5)
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has real solutions the system (2-1) is absolutely stable in [0, K]. This com-
pletes the proof of Theorem 1.

Now the above two lemmata give criteria of the absolute stability of
the system (2-1), which contain not only the case of the S-process but also
all the cases of the Lyapunov function of the type (3-8) with any real
numbers #; (j=1,---,m).

Let us consider the case in which &, ,k; are infinite and k;4,,::-,k., are
finite positive numbers in the conditions (2-1),. In this case we can discuss
analogously to the previous arguments, if we replace the matrix

1
K = (z 0 >
0o L
Fm

0 0:
L)
0 K3?!

ki O
where K2=(O . ) Namely we look for a Lyapunov function of the form
m

by the matrix

Vis) = w'Le+8: | oodort -+ | omlamion. (3-23)

The derivative %}; along the trajectories of the system (2-1) becomes

av _ _ A soior+ o, ~259No (5.

o~ —Stm el { R enkon 35 (o -2 Do o))}

S[x, pla)] = x'Gx —2¢(a) ax + ¢(0) Hp(o) (3-24)
where

a=BL+igca+dc
2 2

(3-25)

H= ( )——Z—(ﬁC’BJrB’Cﬁ) .
0 K3?

And the system of quadratic equations of the unknowns a; (1 =1, ,m

’

j=1,-,n) becomes
a—% BC'A~B'M~BP-2C 0 (3-26).
where P and M are obtained by the relations
P=[L[R], M= L[a’H a].

In this case, differently from the case where all %; (j=1,--,m) are finite
positive numbers, the real numbers 8; (j=1,---,/) must be non-negative. In
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fact, if we take some of 8,,---,4; negative, the values of the function

Vi(x) = x’Lx+%/91hla§+ +—;-.31h10%+"' +%ﬂmhmai

can be negative for sufficiently large # which have the same suffices as the
negative §.

Thus, we obtain:

0

Bm

the mxm symmetric matrix H of (3-25) is positive definite and for some nx#n

8
Theorem 2: If we can take the diagonal matrix ;9=( 1‘-. ) such that

positive definite matrix P the system of quadratic equations (3-26) has real
solutions a=(a;;) ((=1,---,m, j=1,--,n), the system (2-1) is absolutely stable

oo, 0
in {0, K]. Where K= (0 " oo ki " ) In this case the real numbers g; (j=

1,--,/) must be non-negative. Of course it is necessary that the linear system
obtained by putting y;=#h,0; (j=1,---,m) in (2-1) is asymptotically stable for
any k; such that 0</hy, - by, O0<h;<k;, (j=I1+1,---,m).

So far we have discussed the case where m xm symmetric matrix H is
positive definite. When the matrix H is not positive definite, but non-negative,
the quadratic form S(x, y) can not be positive definite. However, if we require
that the quadratic form S(x, ) is non-negative and not degenerate with
respect to x, that is, S(x, ¥)>0 for x=+0, —S(x, ¢(¢)) and therefore %}f of (3-10)
becomes negative definite over the whole space x. And as we showed
4V of (3-10) implies the
absolute stability of the system (2-1) under the condition that the linear

previously, also in this case, negative definiteness of

system obtained by putting y;=%,s; is asymptotically stable for any #; such
that 0<h;<k; (j=1,-,m).

Let the mxm symmetric matrix H to be non-negative and let rank H=/,
(0<l!<m). Then there exists an orthogonal matrix T such that

H, 0 o O
T’HT=( ), Ho=( ), By he>0.
0 0 0 n

If we transform the vector y to the vector z by

y=Tz,
S is represented in the following

H, 0
S(x,2) =xGx—2Tax—x'aTz+z’ 0 0) 2. (3-27)

We represent the m-dimensional vector z as follows
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= (2)

where z, is /~dimentional, 2z, is (m—/)-dimensional. Put the matrix 77a as

follows
)= ()
v (7 )am (%) =0, ;
a T/ a . @ (3-28)
where Ty : I X m—matrix, T : (m—I1)Xm-matrix,
@, : {Xn-matrix, w, : (m—I)Xn-matrix.

The function S(x, z) can be rewritten in the following

S(x, 2) = (H%2y— H i 2 wx)(Hy 20— Hy?wex)

+2(G —wy H \wo)x — 227w x . (3-27y
If we put
=0 (3-29)
and the matrix
R=G—-w/H v, (3-30)

is positive definite, S(x,z) becomes a non-negative quadratic form of the
(n+m)-dimensional vector (’z‘) and not degenerate with respect to x. Oper-
ating the Lyapunov’s operator on the both sides of the relation (3-30), we
obtain
P=L-M ' (3-31)
where
P= ([R], L= [L[G],

M= I[Q)O/Ho_l(l)o] = -C[a/ToHo—lToa] . (3_32)
From the relation
— /’ _1_ / _l ’
a~BL+2ﬂCA+2C
and from (3-31) eliminating the matrix L, we obtain
a= B’P+B’M+—é—ﬂC’A+%C’.

Multiplying the matrix 7 on the both sides of this relation from the left,

@\ _ (T \( P PSS P
<w1> <T1,>(BP+BM+7ﬂCA+7C>

I

[O)
. { ps R’ l ’ l ’
— (T, (BP+BM+ 2ﬂCA+2C)
"N RrR'D. ’ 1 ’ 1 ’
T, (BPFB M+ sC A+7C)
In view of (3-28) and (3-29) we obtain
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Tia = Ty ( BP+BM +% ﬂC’A+%C’) ,
0= T{(B’P+ BM +—2—ﬂC’A+7C’) .

Since from the definition of the matrix M its elements m,; (i, j=1,---,#n) are
dependent quadratically on a;; (/=1,---,m, j=1,---,n), the relation (3-33) can
be considered as a system of mn quadratic equations of unknowns a;;
(¢=1,---,m, j=1,--,n). If this system of quadratic equations has real solutions,
the quadratic form S(x, y) is nonnegative and not degenerate with respect
to «x.

Thus, if the real numbers £; (j=1,:--,m) are chosen such that the sym-
metric matrix H is non-negative and for some positive definite matrix R the
system of guadratic equations (3-33) has real solutions, the system (2-1) is
absolutely stable in [0, K.

4. The Sufficient Condition for the Absolute Stability in Terms of the
Frequency Characteristic of the Linear Parts of the System

In the paragraph 3 we discussed the absolute stability of the system
(2-1) by means of the Lyapunov’s direct method. By a different method from
it V. M. Popov gave a sufficient condition for the absolute stability of the
system with one nonlinear characteristic. The property of the Popov’s method
consists in the use of the frequency characteristic of the linear parts of the
system.

In this paragraph, extending the Popov’s method, we shall give a sufficient
condition for the absolute stability of the system (2-1) contaning m nonlinear
characteristics.

(i) The case where all &, ,k,, are finite.

The following theorem holds.

Theorem 3: Let the constant matrix A to be asymptotically stable.
Let us represent the frequency characteristic of the linear parts of the system
(2-1) W(iw) and define the m xm matrix

N(iw) = K7 +(E+iwQ) W(iw), (4-1)

kO
K= .
0 km

731
If there exists a real diagonal matrix Qz(

where

0
) such that the Hermitian
qm

matrix %{N(inN(im*} is positive definite for all w>0 and for w—» oo, the



On the Absolute Stability of Automatic Control 361
System with Many Nonlinear Characteristics

system (2-1) is absolutely stable in [0, K], where the asterisk * denotes the
transpose and complex conjugate of matrices. For the absolute stability of
the system (2-1) in [O, K] it is necessary that the linear system obtained
by putting y;=hj0; in (2-1) is asymptotically stable for any #; such that
O<h;<k; (j=1,--,m).

Note 1. The frequency characteristic W(iw) of the linear parts of the
system, whose input y and out put —o, is

W(iw) = C(A~iwE)"B, ' (4-2)

where E is unit matrix.

Note 2. When the Hermitian matrix %{N(ico)ﬁ—N(z‘w)*} is positive definite
for all @>0 and for w— =, there is a positive constant § independent of
such that for any m-dimensional vector z the inequality

z*% {N(iw) + Niiw)*}z > d2*e (4-3)

takes place for all >0 and for w->o. We shall write %{N(iw)+N(iw}*}26E

in place of (4-3) for simplicity where E is m xm unite matrix. It is noteworthy
to indicate the following relation:

| lljnniw%{N(iw)JrN(iw)*} - K—‘—%(QC’B +BCQ) (4-4)

Proof of Theorem 3: At first let all ¢, ,¢. to be positive. A solution
of the system (2-1) with the initial condition x(0)=x, is

At) = X(Pxo + S’ X(t—7)BoLo(c)]ds (4-5)
where the #nx#»n matrix X(¢) is the solution of the matrix equation

dX
2 = 4-6
7 AX ( )

with the initial condition X(o)=E and the vector function ¢[s(¢)] is one such

that
o[oy()] o:(t)
elo()] = ( : ) olt) = ( : ) = C’x(¢)
§0m[0m(t)] omt

From our assumption the null solution of the equation (4-6) is asympto-
tically stable and therefore two positive constants M, and M, can be found
such that for all >0 the inequality

XN < Mg~ Mo 47

holds, where the norm ||X|| of the matrix X is defined such that {|X||=sup|X;|.
J
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Using the vector function y(#)=¢[o()], we define the auxiliary vector
function

() for 0<¢t<T
t) = 4-8
I2() {0 for t>T (48)
where T is any positive constant. Let us consider the linear non-homogeneous
system
De — Axp+ Byglt) 4-9)
and put
ap(t) = C’xp(f). (4-10)

If the same initial condition is given for the system (2-1) and for the system
(4-9), then the equality

a(t) = orlt) for 0<t<T (4-11)

yields. From the well known properties of the linear non-homogeneous
system o,(¢#) can be represented as follows

or(t) = 52(8)+ p(8) (4-12)

where p(¢) is the term corresponding to the solution of the equation %’%’l:AxT

with the initial value x,(0) and 5,(¢) the term corresponding to the solution
of (4-9) with zero initial value. In agreement with (4-7) there exist positive
constants M, and M; such that for all >0 the following inequalities hold

oo <Mt 9] <aggota (4-13)
Now let us define the vector function £(¢) and /(f) by the formulas

—f() = or () + Q2 — K y,(0)

dt
= 5 (1)+ Q%9 _Ky,() + p(1) + QL. (4-14)
r dt r dt’
Ity = —p(t)—Q‘%’ : (4-15)

Let the Fourier transforms of the vector functions f(f), /(¢), y-(t) and G,(¢)
to be F(iw), Liw), Yr(io) and 3 r(iv), respectively. As can be seen from
(4-8), (4-9), (4-10) and (4-13) these Fourier transforms exist. By the definition
of the frequency characteristic W(iw) the equality

— S 7 (iw) = W(Ew) Y 7(io) (4-16)

takes place. Taking the Fourier transforms of the both sides of the equality
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) = = 3x(0)=Q%r 1+ K-tyr ()4 8

and using (4-16), we obtain the equality
F(io) = {(E+ioQ)W(io)+ K '} Yr(io)+ Liio) = N(io)Y r(io)+ Liéw). (4-17)
When the condition of Theorem 3:

—21- {N(iw) + N(iw)*} > 6E

is satisfied, in view of Appendix II we obtain the inequality

(" reysewas < | (4-18)
where
D= éi‘a SiwL(ia))*L(iw)da) . (4-19)

As can be seen from (4-15) the vector function /(f) is given in terms of the
solution of the linear homogeneous system, and then /(¢) is dependent merely
on the initial condition x,(6)=x(0) and independent of the constant 7. Thus,
the constant D depends only on the initial conditions x(0) and D—0 as
[lx(0)ll 0. By substituting (4-14) into the left-hand sids of (4-18) we obtain

[ 1ot K=o Lo0]) 2ot + {9 (oY Qdo < Dix) (4-20)
where
D(x) = D(o) +]én]1 4\, ¢ 0;)do;. (4-21)
From this inequality the following inequalities are obtained
[ 1otk 0L 2 Lo1at <D, (4-22)
[ ewrado = 50,7 o opdo; <. (4-23)

At first, let us assume ¢;(s;) satisfies the condition
0<s£§%@£kj, @{0) =0, (j=1,-,m) (4-24)
J

instead of (2-1),, where ¢ is a small positive constant. Then from (4-23) we
can easily obtain the inequality

_%-e]i:; 20 {TP<D. (4-25)

As we assumed all ¢, -+,¢g» to be positive and D is independent of the con-
stant 7. We can conclude that
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llo()ll < M, for all ¢>0, (4-26)
where

M, = ,/2D, 4 =min(q, " ,qm).
&q

For the solution x(¢#) of (4-5) the inequality
el < Xl 1§, Xt —0)Be [o(e)1de (4-27)
holds. From (4-7)

| XAl < Mzl  for all ¢>0, M; = uM,. (4-28)
From (4-24) and (4-26)

” S: X(#—1)Bofo(r))dr 1

<mm [ IX@E=ON1BIIp(e)Tlar
< ml|BI| | e=Moct=m>- My-|IK ()1

< nm MM, |\B)| S: Mtz < MMﬂM . (4-29)

0

From (4-26), (4-27) and (4-28) we obtained the following estimation

@il < M, (4-30)
where

M, = Msnxouw—mM;WﬂLH&H_

0
Since D—0 as ||x|l -0, M,, M;—0 as ||z,|| 0.
Consequently the equilibrium x=0 of the system (2-1) is stable in the
sense of Lyapnov. Next, we prove the equilibrium x=0 to be asymptotically
stable in the whole. From (4-22) the inequality

[7{os- goj,::")go(a )it <D

holds for each j(1<j<m). Under the conditions (4-24) the functions Go;)=

{a,-—%ﬁ")}go,-(aj) satisfy the conditions of Appendix III and from (4-26) o#)
7

dﬂj(t)

and a

are bounded, and then according to Appendix III we obtain

ltigl at)=0, (j=1,-,m) (4-31)
for any initial condition. And therefore
lti‘)rgqoj[o,-(t)] =0 (j=1,-,m). (4-32)

For the first term of the right-hand side of (4-27) the equality
lim || X@)xoll = 0
[EES
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yields from (4-7) and for the second term

” S: Xt —1)Bo[o(r)]dr

< nm||B| M, S:e—Mov—"qu [o(2)lldz

< nm||B|| M, S:ewngo [o(2)]lldz/eot .

Applying de 'Hopital rule we obtain

_ [emriefoemas
im e = lim 7 lle[o(®)]1l = 0.

Thus, we obtain i
Lim |[x(2)| = 0. (4-33)

Consnquently it has been proved that the equilibrium x=0 of the system
(2-1) containing m nonlinear characteristics satisfying the conditions (4-24) is
asymptotically stable in the whole.

Now let us prove the asymptotical stability in the whole of the equilibrium
x=0 of the system (2-1) with m nonlinear characteristics satisfying the con-
ditions (2-1),. For that purpose we define the vector function ¢.(c) as follows

@el0) = 9(o)+eEo (4-34)
or
¢8j(0j):¢j(¢7j)+50j, (j=1,-,m),
where ¢ is the same constant as in (4-24). Then the system (2-1) can be
rewritten in the following form

dx

E = AEx+ByE ) yE = go!(a): a = C"x’ (4_35)

where
A = A—eBC’. (4-36)

When ¢(c) satisfies the conditions (2-1),, ¢.(c) satisfies the conditions
e< g;‘(g,_) <kjte  (j=1,-,m).
J
The new frequency characteristics W (iw) of the linear parts of the system
(4-35), whose input is y., output —o, are expressed by means of the old one
W(iw) as follows
Weliow) = {E—eW(iw)} *W(iw) .

Let
N(iw) = K. ' +{(E+iw@Q)W.(iw) .
b1+ 2¢ 0
where K= .
0 ko +2¢
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Since all the elements of the matrices W(iw) and ioW(iw) are bounded
functions of w, there exists positive constants M; and M; such that

Wil < M,, |lioW(io)| < M, for all @>0. (4-37)
As the difference between W(iow) and W.(iw) becomes
Wliw)— W(io) = {(E—eW(iw)} ' —E} W(in) = e W(iw)®+0(c?) (4-38)

norm of the difference between %{N(iw)JrN(z’w)*} and %{N(ia))JrN(ico)*} is

”%(NE + Ng*)~% (N+N#| = % 2K~ K-
B+ i0Q We— W)+ (W WHE Q)|
o L Ue(K1P W+ W+ QUi W)W +eWHio WG|

< e(ml| WP +m? QNI W lio W -+ (K
< e(mM%+ m* M My|1QI +m|IK—1|)

In other words the difference between %{Ne(iw)ﬂve(i@)*} and %{N(im)nLN(iw)*}

is of order . Thus, the condition

5 (N(io)+ NGy} > 0F
can be replaced by the inequality
AN i)+ Noliw)*) = 0,E (4-39)

where &, is a postive constant slightly different from &. This inequality

guarantees the asymptotical stability in the whole of the system (4-35) with

goEj(Gj)
aj

the nonlinear characteristics ¢.;(o;) satisfying the condition e< <k;j+2e

(0
hence so does for egMﬁ
o

<k;+e. Consequently the equilibrium x=0 of the
system (2-1) is asymptotically stable in the whole for any nonlinear charac-
teristics ¢ (0;) satisfying the conditions (2-1),. In other words the system
(2-1) is absolutely stable in [0, K].

So far we have assumed all the diagonal elements ¢,,---,¢,» of the diagonal
matrix @ to be positive. Now let us show that the proof of Theorem 3 in
the case, where ¢, -,¢, are negative and g¢,.,,-',q» positive, is reduced to

the above proof. We represent the diagonal matrix @ as follows
0= (Ch 0)
0 @,

q 0 qr+1 0
&= y @y, qr <0, Q= » @ren, 5 qm >0,
0 q» : 0 qm

where
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The transformation of variable

(K, O> <E1 0 )
y= (o 0/ \o —g/)? (4-40)
reduces the system (2-1) to the system
dx _ K, 0) } _ (El 0) 4-41
dt—{A-i—B(O 0/ Blg _g)? (4-41)

(@1(01) )
y={: )y o=C"x,
P Om)

k0
K={ -~
0 km

and E, is »dimensional unite matrix and E, is (m —#)-dimensional unit matrix.
Under the transformation (4-40) the conditions (2-1), are preserved

where

0 gLJ((:'j) gk] , @j(O) = 0, (j = 1: ot ’m) . (4A41)

7

Because of necessity of the asymptotical stability of the linear system
obtained by replacing ¢i(o))=kws, - ,9/0,)=ks0r, Prif(0r11)=0,",Pm(om) =0 in

the system (2-1), the constant matrix AJrB(Ig1 8\C’ is asymptotically stable.

The frequency characteristic W(iw) of the linear parts of the system (4-41),
whose input is ¥ and output —o, is given as follows

- (s 0)) ()
_ ( —(Ey+ WuK)™ Wy, (Ey+ WuK) Wy

(4-42)
W {K(E\+ WuK) *Wy—E\}, —Wau— WuK(Ei+ WuK)'W,,
where W, is partitioned matrix of W(iw) as follows

Wll(i@) s le(iw)>

Wiiw) = <W21<z'w>, Wio)

For the system (4-41) we define the matrix

N(w) = K +(E+iwQ) W(io) (4-43)

~ -@Q, 0
(75 o)
0 @/
All the diagonal elements of this diagonal matrix § are positive. In view
of (4-1), (4-42) and (4-43) we obtain the relation

where
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N(Giw)+ N@Go)* = P(iw)*{N (iv) + N(io)*) P(io) (4-44)
where
(BEx+ K\ Wa)?, K(E,+K.Wy)™! le)

Pliw) = < 0, —E,

The matrix P({w) is nonsingular for all »>0.

Thus, when the Hermitian matrix »;—{N(iw)JrN(iw)*} is positive definite, also

the Hermitian matrix —12—{Ng(z'a))+ﬁ(iw)*} is positive definite. Since all the
diagonal elements of the diagonal matrix § are positive, the system (4-41) is

absolutely stable in [0, K], provided that the Hermitian matrix —é—{N (fw) +

N(@iw)*} is positive definite. Consequently if the Hermitian matrix %{N(im)%—
N(iw)*} is positive definite, the system (2-1) is absolutely stable in [0, K.
Now let us consider the case in which the condition of Theorem 3

%—{N(im)%—N(iw)*} >0E  for all >0 (4-45)

is satisfied for the diagonal matrix @ such that some of its diagonal elements
are zero i.e.

O 0 gr+1 0
Q - ) QZ: 3 Qr+1,"',4m:‘:0- (4_46)
0 Q: 0 qdm
In this case
Nlio) <I{1_1 + Wy, Wi, )
w) = .
(E:tiwQ) Wy, K,7'+(Ex+iw@Qy) W
Let ¢ to be sufficiently small number and let
Q - (€E1 0> )
= \o g (4-47)

where E, is 7Xr unit matrix, and N io)=K '+ (E+iowQ.)W(iw), then we get
%{N(mHN(i@)*} >6.E for all w>0,

from (4-45) and (4-37), where d. (>0) is slightly different from ¢ in (4-45).

Thus, the system (2-1) is absolutely stable in [0, K]. This completes the
proof of the Theorem 3.

(ii) The case where some of k,, - ,k,, are infinite,

Let us consider the case in which &y, -,k are infinite and %,.,,-:- ,k,, are
finite positive numbers. Concerning the absolute stability in this case the
following theorem holds.
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Theorem 4: Let the constant matrix 4 to be asymptotically stable and
W(iw) to be the frequency characteristic of the linear parts of the system,
whose input y and output —o. Let us define the m xm matrix

0
0

(k1+1 0 )
K2 = . .
0 km

The system (2-1) is absolutely stable in [0, K], if there exists a real diagonal

0
N(iw) = < Kl‘z) +(E+ioQ)W(io), (4-48)

where

matrix Q= (%‘ 82) such that the Hermitian matrix %{N (lw)+ N(iw)*} is positive

oo 0
o k ) For the
141,
0 "k
absolute stability of the system (2-1) in [0, K] it is necessary that the linear

definite for all w>0 and for w-— oo, where K=(

system obtained by putting y;=#,0; in (2-1) is asymptotically stable for any
hjsuch that 0<h,,--, ks and 0<h;<k; (j=[+1,--,m). Differently from Theorem
3 all the diagonal elements of the diagonal matrix @, must be non-negative.

Theorem 4 can be proved analogously to Theorem 3. A few differences
between them are the followings. First, throughout the proof the matrix

K is replaced by the matrix (8 1?2 _1). Second, in the inequality (4-29) of
the estimation of ||l2(?)]| the inequality llele(®)JI<|IKlllo(®)l| was used. But in

Rre .,
0 "k
mation. However, from the fact that the functions ¢ o;), (j=1,---,m) are
defined for all ¢; and in view of (4-26) we obtain the estimation

our case where K =< ), this inequality is useless for the esti-

Nelo(H1l < Mllo@®ll < MM,  for all >0

where M, is a finite positive constant depending on the fundtion ¢(s). Thus,
we can estimate |x(?)/| analogously as in (4-29). Finally, when k= k;= o0,
it is imposible to transform the variable y such as (4-40) for »</. Then,
4., ,q; can not take negative values.

(iii) Discussion.

In particular, the Popov’s sufficient condition for the absolute stability
of the system (2-1) with one nonlinear characteristic is such that

Re (1+ iog) W) +-}1;- >6>0 (4-49)

for all >0 and for some real ¢. Putting
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Re Wiiw) = X(w), o Im W(io) = Y(w)

the inequality (4-49) is rewritten as follows
X(@)—q¥(@)+ 12 0>0

for all >0 and for some real gq.

In other words, the system (2-2) with one nonlinear characteristic is
absolutely stable in [0, £], if we can take real ¢ such that the vector locus
of the modified frequency characteristics W(iw)=X(o)+:iY(w) is laid strictly

right from the line X—qY+—I1?=0. In this way we can give simple geometrical
interpretation of the Popov’s sufficient condition (4-49) for the absolute stability
of the system (2-1) with one nonlinear characteristic. But it seems difficult
to interpret geometrically the condition : %{N(iw)%-N(z‘w)*}ZaE for all w>0,

for the system (2-1) with m nonlinear characteristics.

5. Relation between the Problem of Existence of the Ly#punov
Functions and the Sufficient Condition for the Absolute

Stability in Terms of Frequency Characteristic.

In the paragraphs 3 and 4 we made use of the two different methods
for the investigation of the absolute stability of the system (2-1). In this
paragraph we shall discuss the relation between the results obtained by
those methods.

For the system with one nonlinear characteristic it was proved that the
necessary and sufficient condition for the existence of the Lyapunov function
of the type “a quadratic form plus the integral of the nonlinear function”
under the restriction of the S-process is the Popov’s condition (4-49)2,

For the system (2-1) with many nonlinear characteristics only the following
proposition is proved. If there exist the Lyapunov functions of the type
“a quadratic form plus integrals of the nonlinear function” under the restric-
tion of the S-process and the mXxXm symmeiric matrix H is positive definite,
then there exists a diagonal matrix @ such that the Hermitian matrix
%{N(inN(iw)*} is positive definite for all @>0 and for w—>co. The condition

of the above proposition is equivalent to positive definiteness of the (m +#u)x

G = (_S _2) (5-1)

(m-+n) symmetric matrix

where
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a= B’L+%ﬂC’A +%c', (5-2)
H= K—‘—%(ﬁC’B+B’C/9) . (5-3)

If we put Q=4, from the definition of the matrix H and from (4-4) clearly

H = line %{N(m) + N(io)*) . (5-4)

Let us define the matrix
A, = A—ioE, (5-5)

Since the matrix L is obtained by operating the Lyapunov’s operatior .l on
the symmetric matrix G, the relation

AL+LA= -G (5-6)
takes place. In view of (5-5) and (5-6) we obtain the formula
" AFL+LA,= —G. 5-7)
Defining the matrix B, as follows
B, = A, 'B = (A—iwE)™'B (5-8)

we obtain the relation
B.*NB, = —B,*(A,*L+ LA,)B.

= —{(B’L)B,+B,*B’LY} .
From (5-2)
14 __1_ ’ __1__ ’
B’'L=a 5 BC’A 5 C.
Therefore
BGB, = —[( a —%ﬁC’A—%—C’) B‘.,+B,,,*( a ~%ﬂC’A«%C’>]

Il

~(aBut Bu*a)+ 5 {(AC'A)Bu+ BJHAC'AY)
+3(C'Bu+BJC).

On the other hand from the definition of the frequency characteristic W(iw)
of the linear parts of the system, whose input is y and output —o¢, we obtain

C’'B, = C(A—iwE)'B = W(iw). (5-9)
As we put Q=/4, from the definition of the matrix N(iw), we obtain
BJ*GBy = — (aB‘.,+Bm*a)+%{N(iw)+N(iw)*} K

+ {fC’AB, + B, *(fC’AY} —%{ich W(iw)+ W(iio)*(iwQ)*} .
In view of (5-7) and (5-9)
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5 1AC/ABu + BUHAC! )~ liof W)+ (w8 W (i)
~ +(AC'B+B'CP).
Thus, we obtain
5 (N(w)+ N(i)*} = BJFGB, +(aBy+By*a)+ H. (5-10)

As the matrix G is positive definite, for non-zero (m +#n)-dimensional vector

(B"’i) we obtain the inequality

(Bwy >*(’§ (Bwy> ~ y*{BJ*GB, +(aB.,+B,*a)+ H}y>0 (5-11)
-y Y

where m-dimensional vector y is non zero. From (5-10) and (5-11) the
Hermitian matrix —;—{N(im)JrN(ia))*} is positive definite for all w>0. Thus,
for the system (2-1) with » nonlinear characteristics, existence of the Lyapunov
functions of the above type with the positive definite matrix H under the
restriction of the S-process guarantees the positive definiteness of the
Hermitian matrix %—{N(i&))+N(i&))*} for all >0 and for w— o, where Q=7.
This completes the proof of our proposition.

Now, the region of the absolute stability in the parameters space, which
is obtained by Theorem 1, depends upon the choice of the positive definite
matrix P and the real numbers 4,,--,8». But the proof of our proposition
in this paragraph is independent of the matrix P. Thus, the region of the
absolute stability obtained by Theorem 1 for all possible P and for all possible
Bi,+,Bm is contained by the region of the absolute stability obtained by
Theorem 3.

6. Some Simpe Examples

Now let us consider a simple example. A simple loop system with two
nonliner elements in series is shown in Fig. 3. If the gains of W(s) and

AR B e wats)

Fig. 3.

W4s) are both positive, this system is a positive feedback system. The
response of the system is represented by the following equations.
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£ = Axi+by, = ¢01),

£y = Aot 023, ¥2 = 9:o2),

gy = ¢ "%, gz = ¢/ %, (6-1)

Wis) = —c/(sE-Ap~b; (7=1,2)
where x; is n;-~dimensional state vector of the element Ws), b; and c; are
n;~dimensional constant vectors and A; is #; X n; constant asymptotically stable
matrix. Introducing the notations

= (0= () a- (22,
2 (30, e (0 ). weo-(1)

the system (6-1) becomes a particular case of (2-1).
Applying Theorem 3 to this system, we get the sufficient condition for
the absolute stability of the system as follows

4

ka; > {uw) + ufw) — g0(w) — g0 w)} 2

+Holgam@) -guo) + L @) ~uo)}, (6-2)
where

u{w) = Re W (iw)

1)_,'((0) =wlim W](ZCIJ) (] = 1, 2) .

It is interesting that k, and k, are contained only as a product of them. When

Wx(S):ﬁ_lTls, WZ(S):ﬁlﬁs (Ty, T,>0) (6-2) becomes

4 {1 Tl 1 +q1Tzw2}2 + _{(42_ Tyo (g~ T }2
klkg 1+ le(l)z 1 + T22w2 1 + T120)2 1 + TZZQ)Z '

It is easily seen that

(6-3)

4i  when ¢;>T
Max 1+, Two’ _ {Tk 2 *

LTz 2
w2 1+ THw 1 when ¢; < Ts.

Therefore, if ¢, and ¢, are taken as ¢,=7T:, ¢,=T,, the maximum value of
the right-hand side of (6-3) with w takes the minimum value. Thus, the
sufficient condition for the absolute stability becomes

kik, <1, (6-4)
Now, let us replace the nolinear elements by linear elements ¢ o;)=h;0;,

0<h;<k;,(j=1,2). Then, the characteristic equation for this linearized system
is
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T\T 22+ (Ty+ T)A+(A—hky) = 0.
In order that the linearized system j" M Sy s) + |
1
is asymptotically stable for all % 0+ o /\ﬂ t a
and %, such that 0<h;<k; (j=1, 2), L s

it is necessary and sufficient that

kk,<1. This condition coincides

with (6-4) exactly. This means I

that Theorem 3 gave not only 0+ o M + -
the sufficient but also the neces- T— /ﬂ sz Hats) +

sary condition for the absolute

stability for this case. Fig. 4.

Next, let us consider an ex-
ample of a multi-variable control system shown in Fig. 4. The response of
the system is given by

%= Ak + by,

£ = Akt by,  31=¢ilo),

%3 = At 1+ by,

2= Axs+by,, ¥: = @i03),

0, = /e, 0= /% te/x,,

Wis) = —C/(sE-A)7;, (7=1,-,4).

(6-5)

Introducing the notations

X1 Al 0 bl) 0 cl/; 0) ca’: 0
X = ( : ’ A= - » B = b 0\’ C= ’
x4 0 A, 2’ 0, ¢/, 0, ¢/
0, b,
0, b4

the system (6-5) becomes a particular case of (2-1). The positive definiteness

of the Hermitian matrix %{N(iw)—l—N(z‘w)*} of Theorme 3 is written as follows

(@) go@) + 5 > 0,

{ul(w) —gwfw)+ %}{m(w) —g0w)+ —2;}
> {uy( ) + ) — gy @) — g0 )} ? (6-6)
+Holguo) ~gaudo) + o) s},

where
ujw) = ReWiw), viw)=owlnW;iv).

Now, let us consider the case where
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Wi(s) = 1—_:’17? , Wals) = Wils) = ﬁ ,

W) = g +"4TS (£1, ks, T > 0).

Then, the first inequality of (6-6) always holds. The last inequality

4x,x4{(1+%ﬂl) + T( g+ kil)wz}{(H;;—) + T(qg + k:’,;‘)a)z}

> {2+ T (g +¢)0% * + (g — g0 (6-7)
If ky=o0 and k,=occ (6-7) yields

Ak~ 11+ 1 To®)(1 + ¢, Tw?) — (g1 — g (0?4 T 20*) > 0. (6-8)
When
ki > 1, (6-9)
(6-8) holds for all w>0, if we select ¢, and 4, as ¢;=¢.. When #x,<1, there
does not exist real positive ¢; and g, which make (6-8) to be true for all »>0.
Therefore, the system is absolutely stable in [0, (‘3’ fo)] if (6-9) holds.

If both %k, and k, are not infinite, (6-7) is written down as follows

ayw* +a,0*t+a, > 0, (6-10)
where
a, = 4/c1/c4T2((11 + ;11,;“1)(@ +Ki4) —T%g:+q2),
@ = 4/c1/c4T{(1+7e-;1;1)(q2 +?2ch_4) +(1+k—21a)(q1 +73£_1)

—4T(Q1+42)_(41_42)2,
@ =t (142 ) (14 1) -4,

kika koxy

Thus, when

xlx4(1+ﬁ)(1+i) >1, (6-11)

kot

the inequality (6-10) holds for all >0, if we select ¢, and g, small.

That is, the system is absolutely stable in [0, (3‘ 2)], if the £, and «, satisfy
(5-12).

Now, let us replace the nonlinear elements in Fig. 4 by the linear elements
as follows

¢y(oy) = hoy, and @ 0,) = hyo0,.
The characteristic equation for this linearized system is

TZXZ +(2 + h;/Cl + thQ)TS + {1 + hllfl -+ h2/54 + hlhg(lclfc,;_ 1)} = 0 .
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Therefore, in order that the system is asymptotically stable for all %, and #,
such 0<X and 0<#,, it is necessary and sufficient that

kg > 1. (6-12)

This coincides with (6-9) exactly.
If the system should be assymptotically stable for all # and %, such that

Ok <o and 0<h <k <o,

it is necessary and sufficient that
14kt ko + Bikk1es—1) > 0.
Again, this coincides with (6-11) exactly.

7. Conclusions

In the previous paragraphs the problem of the absolute stability of the
control system with many nonilinear characteristics have been discussed.

In the paragraph 3 by means of the Lyapunov’s direct method a system
of the quadratic equations was obtained, which is the extension of the case
where the control system contains only one nonlinear characteristic, and it
was shown that if the system of quadratic equations has real solutions, then
the system (2-1) is absolutely stable. In the paper!®> the same system of
quadratic equations was obtained and the real numbers £,,:-,8,, were all
positive. But as shown in the paragraph 3 of this paper, it is not necessary
that all the A,,---,fm be positive.

In the paragraph 4 analogously to the Popov’s criteria of the absolute
stability of the control system with one nonlinear characteristic, a sufficient
condition for the sbsolute stability of the control system (2-1) with » nonlinear
characteristics in terms of the frequency characteristic was obtained.

For the system with one nonlinear characteristic, in the case where the

scalar quantity corresponding to lim —%—{N(icu)+N(iw)*} is non-negative, the
W9

system is absolutely stable if the Popov’s condition (4-49) is satisfied. But
for the system with many nonlinear characteristics in Theorem 3 we assumed

that the m xXm symmetric matrix lim —l—{N(im)+N(ia))*} was positive definite.
w-poo

In the paragraph 5 relations between the problem of existence of Lyapunov
functions and the sufficient condition for the absolute stability in terms of
the frequency characteristic are discussed. For the control system with
one nonlinear characteristic existence of the Lyapunov function of the type “a
quadratic form plus integral of nonlinear function”, under the restriction of
the S-process is equivalent to the Popov’s sufficient condition for the absolute
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stability. Buf for the system with m nonlinear characteristics it is shown
only that the former is a sufficient condition of the later.

From begining to end the constant matrix A has been assumed to be
asymptotically stable. It seems interesting to discuss the case where some
of characteristic roots of the matrix A are on the imaginary axis of complex
plane and the other are laid in the left half plane.

Appendix 1 (Lyapunov’s theorem)

Let us consider the differential equation

dar _ I-1
7 Ax (I-1)
and the quadratic form V(x)=x’Lx. The derivative %}; along the trajectories
of the equation is
dV _ .4,
T (A’L+LA)x.
Setting
A'L+LA = -G I-2)

we see that
G = —(A'L+LAY = —(LA+A’L)= G,

so that G is tha matrix of a quadratic form.

If the real matrix A is asymptotically stable, then for positive definite
matrix G the unique solution L of (I-2) exists and is positive definite.

Conversely, if for every positive definite matrix G there exists a positive
definite matrix L, then the real matrix A4 is asymptotically stable.

This theorem is proved in the reference.

Appendix II

Let the real vector functions

() (2) ky(8)
f) = (f ), g = (gf ), k() = ( : ) (I1-1)
Son(?) gm(t) kam(t)

satisfy the conditions
HABH < awexp (—5it),
gl < azexp (—Ft), (I1-2)
(@l < asexp(—p5ait),

where a;, f; (7=1, 2, 3) are positive constants,
The Fourier transforms of these functions exist
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Fi(iw) G (iw) K\(iw)
Fliw) = ( : ) , Gliw) = ( : ) , Klw)= ( : ) , (11-3)
Fliw) G om(iow) Km(iw)
where

Fi(io) = S:f,-(t)e—mdt, G (iw) = S:g,-(t)e—""’tdt, Kj(io) = S:k,-(t)e—f"’fdt.
Let us assume the existence of N(jw) satisfying the relation
Fliw) = N(iw)K (iw)+ G (iw) (11-4)

and also assume that for the Hermitian matrix L(iw):—é—{N(ia))-l-N ({w)*} the
inequality

L(iw) > 6E (II-5)

holds for all w>0, where & is a positive constant independent of w.
Then the inequality

—S: F@Y-Ktdt <C (11-6)

takes place, where C is a constant such that
=1 clorcu 11-7
¢ = gL {7 GlwrGlwde. (1-7)

Proof of this proposition.
By the Parseval formula the following equality takes place

[Creruea = = {7 PloyFiodo (11-8)
Substituting (II-4) into (II-8) we obtain
[ rerawar = L {7 (NGw)K )+ Gliw) *K o)

Since the left-hand side of this equality takes real value, so does the right-
hand side. Thus,

S:f’(t)k(t)dt=—17;t Koy Liiodo + & (™ (GlioyK(iv) + Ko} Glio) do

L{" [ ®GorL oy Lier K o) + 1 (Glio)*K(io) + K(i)*Gliv)) do |

If

Il

[:ﬂ"‘ ‘S’l

S {L(m)1/2K(m)+ L(za))””z*G(zw)} {L(zco)‘/zK(zw)Jr Liiw)~ I/Z*G(zw)}
o S: Cliw*Liiw)Cliw)da
> —8% S: Clioy* Liin)~Clio)dw .

From the inequality (II-5) we obtain
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%E > Liiw)! .

Thus,

1 S‘; Gliw)*L(io)"'C (iw)da > —

it , E ~ .
o [" GliwrE clono.

1
8=

Consequently

[ rermoar = -1 (" clwrciods.

Appendix III

If 1) a continuous function f(#) and its derivative %(?Q are bounded for >0,

2) a continuous function G(x)>0 for any x+0, G(0o)=0 and 3) S:G[f(l‘)]dt < oo,
then ltim f(=0.
oo

D
2)

3)
4)

5
6)

D

&)

9)
10)
11)
12)
13)
14)

15)

This proposition is proved in the reference.
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