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By 
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Many authors, mainly in the Soviet, have discussed the absolute stability 
of the automatic control system with one nonlinear element. In practical pro
blems, however, we sometimes encounter the control system with many nonlinear 
elements. In this paper the absolute stability of the automatic control system 
with many nonlinear elements is discussed. The discussions are based on the 
methods: 

1. Lyapunov's direct method. 
2. Popov's method. 

The relations between the results obtained by means of these two methods are 
also described. 

1. Introduction 

In practice of automatic control we are usually obliged to use the con

trollers possessing nonlinear characteristics. In each particular case, some

times it is impossible to fix rigorously the functions of the nonlinear 

characteristics under the real operating conditions of the control system. 

However, it is required that the control system should be stable. Further, 

in practical problems it is required that the control error decays after not 

only small but also any arbitrary, finite, initial displacements have been 

imposed. In other words, the equilibrium should be asymptotically stable in 

the whole. 

From such technical viewpoints the concept of "absolute stability" was 

proposed about twenty years ago. A control system is called to be absolutely 

stable, if its equilibrium is asymptotically stable in the whole for any 

characteristic y=<p(a) of a nonlinear element, which belongs to a class of 

functions say, a class of functions <p(a) such that <p(a)a>O, a=!=O and <p(o)=O. 

At first the problem of the absolute stability of a control system with 

one nonlinear element was formulated by A. I. Lur'e and V. N. Postnikov1
•
2
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They investigated the problem, using the Lyapunov's direct method. Applying 

the so-called Lur'e transformation and constructing the Lyapunov functions 

of the type "a quadratic form plus the integral of the nonlinear function 

<p(a)". They obtained a system of quadratic equations and showed that if 

the system of quadratic equations has real solutions, then the control 

system is absolutely stable. Following this method V. A. Yakubovich5
•
8l, 

E. N. Rozenvasser9l, A. M. Letov•l and other Soviet authors13l have discussed 

the problem in greater detail. 

I. G. Malkin, using the same type of Lyapunov functions as the above, 

but not reducing the problem to the discussion of the system of quadratic 

equations, gave an inequality as a sufficient condition for the absolute stability 

by means of the Sylvester's criteria3l, 

V. M. Popov introduced a new method of the investigation of the absolute 

stability, which is different from the Lyapunov's direct method1
,
11 l, He gave 

a sufficient condition for the absolute stability in terms of the frequency 

characteristic of the linear parts of the system and showed that all the 

results obtained by means of the above mentioned methods are included in 

his criteria, that is, if for the system there exists a Lyapunov function of 

the above type, then the Popov's sufficient condition is satisfied. Moreover 

V. A. Yakubovich proved its inverse proposition12l. 

The investigations above mentioned were carried out for a system con

taining only one nonlinear characteristic. In the practical problems, however, 

we sometimes encounter the control system containing many nonlinear 

characteristics. As to such control systems, exte~sion of the Lur'e method 

was discussed by A. M. Letov•l and I. A. Sultanov1•l. It is reported that 

V. M. Popov extended his method to the system with many nonlinear charac

teristics10l, but unfortunately the paper is written in Rumanian and is not 

in the hands of the authors. 

In this paper the problem of the absolute stability of the system containing 

m nonlinear characteristics will be discussed in detail. 

2. Statement of the Problem 

We shall consider a dynamical system which is described by the system 

of the form 

dx 
dt = Ax+By, (2-l)i 

a= C'·x 
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where x : n-dimensional state vector, 

y : m-dimensional vector, 

A : n x n constant matrix, 

B, C: n x m constant matrices, 

and the prime denotes the transpose of matrix. <pj(ai) (j=l, ···, m) are one

valued continuous functions which are defined for all real values a i (j = 1, · · ·, m) 

and satisfy the following conditions 

<pj(o) = 0 

0 < <p/ai) < k· 
- Gj - 1' 

(j = 1, ... , m) 

where k1 , ... ,km are finite postive numbers or some of them infinite*. We 

assume that the system (2-1) satisfies the conditions of existence and 

uniqueness of solutions for all t:?.0 and for any initial conditions x(O). 

The system (2-1)1 can be shown in the form of a block diagram as in 

Fig. 1, where the characteristic of the linear block L. is represented by 

dx 
dt = Ax+By, -a= -C'·x 

Fig. 1. Fig. 2. 

and that of the nonlinear block N. L. is represented by 

y = <p(a). 

The conditions (2-1\ are represented graphically in Fig. 2. That is to say, 

the curve Yi=<pj(aj) in the (aj, Yi) plane is laid in the angle formed by the 

araxis and the straight line yi=kiai. 

Now let us define the absolute stability of the system (2-1). Let the 

constant matrix A to be asymptotically stable. Namely, all the roots of the 

characteristic equation of A: 

det(J.E-A) = 0 

q;-(a·) 
*Fork;== the conditions (2-1)2 are reduced to the inequality O:s;-'--'-··. 

Oj 
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have negative real parts, where Eis unit matrix. The system (2-1) is called 

to be absolutely stable in [O, K], provided that the equilibrium x=0 of the 

system (2-1) is asymptotically stable in the whole for any functions rpj(aj), 

(
k1 0) 

(j=l, •··, m) satisfying the conditions (2-1)2 , where K= ·.. . 
0 km 

In the following paragraphs we shall investigate what conditions are to 

be satisfied for the system parameters A, B and C to guarantee the absolute 

stability in [O, K] of the system (2-1). 

Relating to the problem of the absolute stability, the following question 

arises. Is the system (2-1) asymptotically stable in the whole for any 

nonlinear functions satisfying the conditions (2-1)2 , if the linear system 

obtained by putting yj=hjaj is asymptotically stable for all hj such that 

0-:::;,hrs,kj (j=l,···,m)? Howevertheexampleofa system of the third order 

was shown, for which the above question has negative answer13l. Thus we 

must investigate the problem of the absolute stability as that of nonlinear 

theory. 

3. Investigation of the Absolute Stability by Means of the 

Lyapunov's Direct Method 

Let us consider an ordinary differential equation of the form 

~: = f(x), f(o) = 0 (3-1) 

where x= ( f1 ) is a vector in then-dimensional vector space and f(x)=(ffx)) 
Xm fm(X) 

is a vector function which is defined for all x. We assume that the equation 

(3-1) has unique solution for all t:?:0 and for any initial condition x(o). The 

equilibrium x=0 of the equation (3-1) is asymptotically stable in the whole, 

if there exists a scalar function V(x) which is continuous and differentiable 

with respect to Xi, ·· · , Xm and satisfies the following three conditions. 

1 °. The function V(x) is positive definite over the whole space x, that is, 

V(x) > 0 for x=l=0, V(o) = 0. (3-2) 

2°. The derivative ~: along the trajectories of the equation (3-1) is 

negative definite over the whole space x, that is, 

for X =l= 0 

for X = 0. 

3°. The function V(x) becomes infinitely large with llxll, that is, 

(3-3) 
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\IX\\ ➔= 

where llxll is the norm of vector x, defined by llxll=sup lxj[, 
j 
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(3-4) 

This continuous and differentiable scalar function V(x) satisfying the above 

three conditions 1°, 2° and 3° is called a Lyapunov function for the equation 

(3-1), which guarantees the asymptotic stability in the whole. 

We shall investigate the absolute stability of the system (2-1), using the 

Lyapunov function. At first let all k1 , ... , km to be finite positive numbers. 

We can formulate the following theorem. 

. (~ 0) Theorem 1: If we can take the diagonal matrix /3= ·.. such that 
0 /3m 

the mxm symmetric matrix His positive definite and for some nxn positiv 

definite P the system of quadratic equations 

(3-5) 

has re~l solutions a=(a;;), (i=l, •··, m, j = 1, •··, n), then the system (2-1) is 

absolutely stable in [O, K], where 

H= K-1
- ~ (j3C'B+B'Cj3), (3-6) 

K-• ~ O· . 01 ) ' 
km 

M= ..C[a'H-1a] or A'M+MA = -a'H-1a. (3-7) 

For the absolute stability of the system (2-1) in [O, K] it is necessary that 

the linear system obtained by putting Y;=h;a; in (2-1) is asymptotically stable 

for any h; such that O :'.S: h; :'.S: k;. 

Proof: We look for a Lyapunov function of the form 

(3-8) 

Where the real symmetric matrix L is obtained by operating the Lyapunov's 

operator .f on a real symmetric positive definite matrix G, that is to say, 

.f[G] = L or A'L+LA = -G. (3-9) 

For convenience we shall use the following notations 
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Then the function V(x) of (3-8) is rewritten in the following form 

V(x) = x'Lx+ ~: cp(a)'/Ma. (3-8)' 

At first let /3/?.0, (j=l, ... , m). By the Lyapunov's theorem (Appendix I) 

x'Lx is positive definite. And r' cp j(a j)da /?:0, because the nonlinear charac

teristics cpi(aj), (j=l, ... , m) satisfy the conditions (2-n. Then the function 

V(x) of (3-8) is positive definite over the whole space x. In our case (/3/:?.0, 

(j=l, ... ,m)) V(x);?:x'Lx>0 and lim x'Lx=oo, so lim V(x)=oo. Thus, for /ii;?:0 
IIXII ➔= IIXII ➔= 

(j=l, ... ,m) conditions 1° and 3° are satisfied. If some of /3i (j=l, ... ,m) are 

negative, positive definiteness of the function V(x) of (3-8) does not follow 

immediately. But, as we shall show later, even if some of /ii (j=l, .. ·,m) 

are negative, the conditions 1 ° and 3° follow from the condition 2° under the 

condition that the linear system obtained by putting Yi=hiai (j=l, ... , m) in 

(2-1) is asymptotically stable for any hi such that 0~hj':::;,,kj (j=·l, ... , m). Let 

us calculate the derivative :: along the trajectories of the system (2-1). 

dV _ :E av dxj 
dt - j=l OXj dt 

(3-10) 

Using (3-9) 

!~ = -x'Gx+cp(a)(2B'L+ /iC' A)x+cp(a)(iC'B'cp(a). (3-10)' 

Our problem is how to guarantee negative definiteness of !~ of (3-10) for 

any nonlinear functions cpj(ai), (j=l, ... ,m) satisfying the conditions (2-1)2, 

The right-hand side of (3-10) contains the nonlinear functions cp j(a j), (j = 1, .. ·, m) 

and is not a quadratic form of vector x. Then there is no simple criterion 

which guarantees negative definiteness of the right-hand side of (3-10). 

If we replace cp(a) by variable vector y, !~ of (3-10) can be considered as 

a quadratic form of the (n + m)-dimensional vector ( ;). This quadratic form 

may be negative difinite. But this is not the case. In fact, from the repre

sentation of (3-10), !~ can be zero for the vector (;) satisfying 

(j = 1, ... , n). (3-11) 

This is a system of n linear homogeneous equation of n + m unknowns Xi, ... ,xn, 

y1 , ... ,Ym, so cleary this system has non-trivial solutions. This means that the 
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quadratic form!~ of (3-10) of the (m+n)-dimensional vector(;) can not be 

sign definite. 

Then we use the so-called S-process'3), as in the case of the system with 

one nonlinear characteristic. We add and subtract the expression 

(3-12) 

from the right-hand side of (3-10). Under the conditions (2-1)2 this expression 

is non-negative 

(3-13) 

Introducing the following expression 

S[x, 9(0)] = x'Gx-9(0)'(2B'L+/3C'A)x 

- {o-K-19(0)}'9(0)-9(0)'(/3C'B)9(0), (3-14) 

!: of (3-10) can be rewritten in the following form 

!~ = -S[x, 9(0)]- {o-K-'9(0)} 19(0). (3-15) 

From (3-13) and (3-15) if S[x, 9(0)] is positve definite, !~ becomes negative 

definite. 

Now let us replace 9(0) in S by variable vector y and find the condition 

for positive definiteness of S(x, y), because it is very difficult to discuss 

positive definiteness of S[x, 9(0)]. S(x, y) is a quadratic form of the (n + m)-

dimensional vector ( ;) as follows 

where 

S(x, y) = x'Gx-2y'( B'L + ~ /3C'A+ ~ C')x+y'(K-'-/3C'B)y 

= (x',y'>(~a -;')(;)' 

a = B' L + ~ /3C' A + ¥' , 
H= K-1

- ~ (/3C'B+B'C/3). 

Therefore, if (n+m)x(n+m) symmetric matrix 

G =(G -a') 
-a H 

(3-16) 

(3-17) 

is positive definite, S(x, y) becomes a positive definite quadratic form. On 
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the other hand, if the matrix H is non-singular, S(x, y) can be rewritten in 
the following form 

Therefore, in order that S(x, y) is positive definite, it is necessary and sufficient 
that mxm matrix H be positive definite and nxn matrix 

(3-18) 

is positive definite. 

In view of (3-9) and (3-17), the elements g;i (i, j = 1, ··· , n) of the symmetric 
matrix G and the elements aii (i= 1, ·· · , m, j = 1, ··· , n) of the matrix a are 
dependent linearly on the elements lii (i, j = 1, ··· , n) of the symmetric matrix 
L. Consequently if positive definite matrix R is given arbitrarily, the relation 

(3-18) is a system of ~ n(n + 1) quadratic equations of ~ n(n + 1) unknowns lu. 

Thus, if the symmetric matrix His positive definite and for some positive 
definite matrix R the system of quadratic equations (3-18) has real solutions 
tii (i, j = 1, •·· , n), the obtained symmetric matrix L in this manner is positive 
definite. In fact, the matrix 

(3-18)' 

is positive definite and the matrix L is obtained by operating the Lyapunov's 
operator .l' on the symmetric matrix G. 

(
/3, 0) Thus if we take /3= ·.. such that the symmetric matrix His positive 
0 /3m 

definite and for some positive definite matrix R there exists a real symmetric 

matrix L satisfying the relation (3-18), -S(x, y), hence, ~r becomes negative 

definite. 

Now let us prove that (3-18), the system of ln(n + 1) quadratic equations, 

can be reduced to a system of mn quadratic equations of the mn unknowns 
aii (i=l, •··, m, j=l, ··· ,n). Operating the Lyapunov's operator .l' on the right
and left-hanp sides of (3-18) and putting 

.l'[R] = P, .l'[a'H-1a] = M, (3-19) 

we obtain 

P=L-M. (3-20) 

When R is any positive definite matrix, P is also a positive definite matrix, 
and vice versa, because P and R are connected by the Lyapunov's operator 
with each other. Then, we can consider P given arbitrary instead of R. 



On the Absolute Stability of Automatic Control 
System with Many Nonlinear Characteristics 

355 

The elements mij (i, j = 1, •··, n) of the symmetric matrix M depend quadratically 

on au (i = 1, · ·· , m, j = 1, · • · , n). Using (3-20) and eliminating the matrix L from 

(3-17) we obtain 

a-~ /3C'A-B'M-B'P- ~ C' = 0. (3-5) 

This relation can be considered as a system of mn quadratic equations of 

mn unknowns a;; (i=l, ···, m, j=l, ···, n). If we can take the positive definite 

matrix P such that the system of quadratic equations (3-5) has real solutions 

a;; (i=l, ... , m, j=l, ···, n), then the positive definite matrix G is determined 

from (3-18)', hence L= ..C[G]. Thus there exists a Lyapunov function of the 

form (3-8) (in our case /3/?.0 (j=l, ··· ,m)) and the absolute stability of the 

system (2-1) is established. 

In the above arguments, we have restricted our discussions to the case 

where /3;?:.0 (j=l, ··· ,m). But for any real numbers /3; as we show in the 

following, if the linearized system of (2-1) is asymptotically stable for any 

h; such that 0s,,h;s,,k; (j=l, ···, m) and the condition 2° is satisfied for any 

cpj(a;) (j=l, ··· ,m) satisfying (2-1)2 , then the conditions 1° and 3° are also 

satisfied. The following two lemmata are extentions of those of V. A. Pliss and 

E. N. Rozenvasser for the system containing one nonlinear charracteristic13)_ 

Lemma 1: If the function V(x) of (3-8), in which cp;(a;) is replaced by h;a;, 

satisfies the conditions 1 °, 2° and 3° for any h; such that 0s,,h;s,,k;, (j= 1, ... ,m), 

then the function V(x) for any cpj(a;) satisfying the conditions (2-n satisfies 

the conditions 1 °, 2° and 3°. 

Proof: If we take the real numbers /3; (j==l,···,m) such that /3,,···,/3r?:.0 

f3r+ 1, ··· ,/3m<0, the following inequality is obtained 

V,(x) = x'Lx+ ~ /3r+1kr+1ar!1 + ··· + ~ /3mkma;,. 

s,, V(x) s,, x'Lx + ~ ,B,k1ar+ ··· + ~ /3,kra; = Vix) (3-21) 

Form the assumption, the functions V,(x) and V,(x) satisfy the conditions 1 ° 
and 3°. Thus, from (3-21) the function V(x) also satisfies the conditions 1 ° 

and 3°. Now any functions cp;(a;) (j=l, .. ·,m) are represented as follows 

Therefore, it is sufficient to verify the sign definiteness of V(x) only for 

linearized system such that Y;=h;a;, 0s,,h;s,,k; (j=l,···,m). Thus, if the 
function 
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(3-22) 

satisfies the conditions 1°, 2° and 3° for any hj, O~hi~ki (j=l,· .. ,m), then 
so does the function V(x) with the same L and p as Vo(x) for any <pj(ai) 

(j=l,··· ,m) satisfying the conditions (2-1\. 

Lemma 2: In order that the function V(x) of (3-8) guarantees the absolute 

stability of the system (2-1), it is necessary and sufficient that the following 

two conditions are satisfied. 

(a) The linear system obtained by putting Yi=oikiai, oi=O or l(j=l,··· ,m) 

are asymptotically stable. 

(b) The perivative !~ along the trajectories of the system (2-1) in which 

<pj(aj)=hjaj, O~hj~kj (j=l,···,m) is negative definite. 

Proof: It is evident that the conditions (a) and (b) are necessary. Let 

us prove the sufficiency of the conditions (a) and (b). As we showed 

previously, if the condition (b) is satisfied, the derivative !~ is negative 

definite for any nonlinear characteristics <pj(aj) (j=l,··· ,m) satisfying the con

ditions (2-1)2 • We assume that the constants Pj (j=l,···,m) are taken such 

that p,, ... ,Pr?::.0, Pr+i, ··· ,Pm<O. From the condition (a) the two linear systems 

obtained by replacing Y1=0,···,yr=O, Yr+1=kr+1ar+1,··· ,Ym=kmam and y,=k1a1,···, 

Yr=krar, Yr+,=0,···,ym=O are stable. From the condition (b) the derivatives 

dV, and ddV2 of the following functions 
dt t 

V1(x) = x'Lx+ ~ Pr+1kr+1ari1 + ... + ~ Pmkma! 

Vb)= x'Lx+ ~ P,k,ai+ ··· + ~ Prkra~ 

are negative definite. Since these functions are quadratic forms of vector 

x, by the Lyapunov's theorem the functions V,(x) and Vix) are positive definite 

and lim Vj(x) = oo (j = 1, 2). Moreover, since for the function V(x) in which 
11"11➔= 

nonlinear characteristics <pj(aj) (j=l,···,m) satisfy the conditions (2-1)2 , the 

inequality 

holds, conditions 1 ° and 3° are satisfied for also V(x). 

In view of the above two lemmata it can be concluded that if the linear 

system obtained by putting yj=ojkjaj, oi=O or 1 (j=l,··· ,m) is asymptotically 

stable and the function V(x) of (3-8) satisfyies the condition 2° under the 

restriction of the S-process, that is, the system of quadratic equations (3-5) 
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has real solutions the system (2-1) is absolutely stable in [O, K]. This com· 

pletes the proof of Theorem 1. 

Now the above two lemmata give criteria of the absolute stability of 

the system (2-1), which contain not only the case of the S-process but also 

all the cases of the Lyapunov function of the type (3-8) with any real 

numbers Pi (j=l,···,m). 

Let us consider the case in which ki,·",kt are infinite and k1+,,···,km are 

finite positive numbers in the conditions (2-1)2 • In this case we can discuss 

analogously to the previous arguments, if we replace the matrix 

by the matrix 

K-' = (!. 0) 
1 •• 1 

0 -
km 

c- 0 J· 
where K 2 = (kt+' ... O ). Namely we look for a Lyapunov function of the form 

0 km 
ro-, rO'm 

V(x) = x'Lx + /i, Jo <pi(a,)da, + ··· + fim Jo <J?m(am)dam. 

The derivative ~i; along the trajectories of the system (2-1) becomes 

where 

dV = -S[x, <p(a )]- { 'E, a<p j(a -)+ f (a· - <p j(a j))<p -(a·)} 
dt j=l J j=l+l J kj J J 

S[x, <p(a)] = x'Gx-2<p(a)'ax+<p(a)'H<p(a) 

a= B'L+-1pc'A+-1c 
2 2 

H=(O O )-
2
1 (pC'B+B'Cp). 

0 K21 

(3-23) 

(3-24) 

(3-25) 

And the system of quadratic equations of the unknowns a;j (i = 1, ... , m, 

j=l, ... , n) becomes 

(3-26), 

where P and Mare obtained by the relations 

P = ..C[R], M = ..C[a' H- 1a]. 

In this case, differently from the case where all ki (j=l, ... ,m) are finite 

positive numbers, the real numbers /3i (j=l, ... ,l) must be non-negative. In 
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fact, if we take some of p1 , ••• ,lit negative, the values of the function 

can be negative for sufficiently large h which have the same suffices as the 

negative /3. 
Thus, we obtain : 

Theorem 2: If we can take the diagonal matrix P= ·.. such that (
/31 0 ) 

0 /3m 
the m x m symmetric matrix H of (3-25) is positive definite and for some n x n 

positive definite matrix P the system of quadratic equations (3-26) has real 

solutions a=(a;j) (i=l, ... ,m, j=l,··· ,n), the system (2-1) is absolutely stable 

in [O, K]. Where K = (

00 

• •• oo k1+i •• O )· In this case the real numbers /3 i (j = 
0 ·km 

1, ... ,l) must be non-negative. Of course it is necessary that the linear system 
obtained by putting Yi=hpj (j=l, ... ,m) in (2-1) is asymptotically stable for 

any hi such that 0sh1,··· ,ht, 0shiskj, (j=l+l,· .. ,m). 

So far we have discussed the case where m xm symmetric matrix His 
positive definite. When the matrix His not positive definite, but non-negative, 
the quadratic form S(x,y) can not be positive definite. However, if we require 

that the quadratic form S(x, y) is non-negative and not degenerate with 

respect to x, that is, S(x, y)>0 for xcj=0, -S(x, <p(a)) and therefore !f of (3-10) 

becomes negative definite over the whole space x. And as we showed 

previously, also in this case, negative definiteness of !f of (3-10) implies the 

absolute stability of the system (2-1) under the condition that the linear 

system obtained by putting Yi=hpi is asymptotically stable for any hi such 

that 0shiski (j=l,···,m). 

Let the mxm symmetric matrix H to be non-negative and let rank H=l, 

(0slsm). Then there exists an orthogonal matrix T such that 

(
Ho 0) (h1 0) 

T'HT = 0 0 ' Ho= 0 · .. h, ' h1, ... 'he> 0. 

If we transform the vector y to the vector z by 

y = Tz, 
S is represented in the following 

(
Ho 0) S(x, z) = x 1Gx-z1 T 1ax-x1aTz+z1 

0 0 
z. 

We represent the m-dimensional vector z as follows 

(3-27) 
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where z0 is l-dimentional, z, is (m-l)-dimensional. Put the matrix T'a as 

follows 

where 

( To') (Wo) 
T'a = T,' a= w, = w, 

To' : l x m-matrix, 

Wo : /Xn-matrix, 

T,': (m-l)xm-matrix, 

w, : (m-l)xn-matrix. 

The function S(x, z) can be rewritten in the following 

If we put 

S(x, z) = (HY2zo-Ho112woxY(Ht12zo- Ho112WoX) 

+x1(G-w0'H-1wo)x-2zt'w1X. 

W1 = 0 

and the matrix 

(3-28) 

(3-27)' 

(3-29) 

(3-30) 

is positive definite, S(x, z) becomes a non-negative quadratic form of the 

(n + m )-dimensional vector ( ~) and not degenerate with respect to x. Oper

a ting the Lyapunov's operator on the both sides of the relation (3-30), we 

obtain 
P=L-M 

where 
P = ..C[R], L = ..C[G], 

M = ..C[wo'H01w0] = ..C[a'ToHo'Toa]. 

From the relation 

a= B'L +l,acA+__!_C' 
2 2 

and from (3-31) eliminating the matrix L, we obtain 

a= B'P+B'M+ ~ ,BC'A+ ~ C'. 

(3-31) 

(3-32) 

Multiplying the matrix T' on the both sides of this relation from the left, 

w = (::) = ( ~::)(B'P+B'M+ ~ ,BC'A+ ~c') 

= (T0
1

(B
1

P+B
1

M+ ~ ,BC'A+ ~C')) 
T,'(B'P+ B'M + ~ ,BC' A+~ C') . 

In view of (3-28) and (3-29) we obtain 
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To'a = T0
1

( B'P+B'M + ~ ,BC'A+ ~ C'), 
0 = Ti'( B'P+B'M + ~ ,BC'A+ ~ C'). 

(3-33) 

Since from the definition of the matrix M its elements m;; (i,j=l,···,n) are 

dependent quadratically on aij (i=l,···,m,j=l,···,n), the relation (3-33) can 

be considered as a system of mn quadratic equations of unknowns a;j 

(i = 1, ·· · ,m, j = 1, ·· ·, n). If this system of quadratic equations has real solutions, 

the quadratic form S(x, y) is nonnegative and not degenerate with respect 

to x. 

Thus, if the real numbers /3; (j=l,··· ,m) are chosen such that the sym

metric matrix His non-negative and for some positive definite matrix R the 

system of quadratic equations (3-33) has real solutions, the system (2-1) is 

absolutely stable in [O, K]. 

4. The Sufficient Condition for the Absolute Stability in Terms of the 

Frequency Characteristic of the Linear Parts of the System 

In the paragraph 3 we discussed the absolute stability of the system 

(2-1) by means of the Lyapunov's direct method. By a different method from 

it V. M. Popov gave a sufficient condition for the absolute stability of the 

system with one nonlinear characteristic. The property of the Popov's method 

consists in the use of the frequency characteristic of the linear parts of the 

system. 
In this paragraph, extending the Popov's method, we shall give a sufficient 

condition for the absolute stability of the system (2-1) contaning m nonlinear 

characteristics. 
( i) The case where all k1,··· ,km are finite. 

The following theorem holds. 

Theorem 3 : Let the constant matrix A to be asymptotically stable. 

Let us represent the frequency characteristic of the linear parts of the system 

(2-1) W(iw) and define the mxm matrix 

N(iw) = K- 1 +(E+iwQ)W(iw), (4-1) 

where 

~ (k1. 0) K~ ·. . 
0 km 

(
ql O) 

If there exists a real diagonal matrix Q= · .. 
0 qm 

such that the Hermitian 

matrix ~ {N(iw)+ N(iw)*} is positive definite for all w~O and for w -H>o, the 
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system (2-1) is absolutely stable in [O, K], where the asterisk* denotes the 

transpose and complex conjugate of matrices. For the absolute stability of 

the system (2-1) in [O, K] it is necessary that the linear system obtained 

by putting yj=hiai in (2-1) is asymptotically stable for any hj such that 

0-:::;;,hi:::;;,ki (j=l, ··· ,m). 

Note 1. The frequency characteristic W(i0) of the linear parts of the 

system, whose input y and out put -a, is 

W(i0) = C'(A-i0E)-1B, (4-2) 

where E is unit matrix. 

Note 2. When the Hermitian matrix ~ {N(i0) + N(i0)*) is positive definite 

for all 020 and for 0 - oo, there is a positive constant o independent of 0 

such that for any m-dimensional vector z the inequality 

z* ~ {N(i0)+ N(i0)*)z 2 oz*z (4-3) 

takes place for all 020 and for 0-00. We shall write ~ {N(i0)+N(i0)*)20E 

in place of (4-3) for simplicity where Eis m x m unite matrix. It is noteworthy 

to indicate the following relation: 

lim 1
2 

{N(i0)+N(iw)*) = K-1 -
2
1 (QC'B +B'CQ) 

11"11 ➔00 

(4-4) 

Proof of Theorem 3: At first let all q,, •·· ,qm to be positive. A solution 

of the system (2-1) with the initial condition x(o)=x0 is 

x(t) = X(t)x0 + ~: X(t-r)B<;o[a(,)]dr 

where the n x n matrix X(t) is the solution of the matrix equation 

dX =AX 
dt 

(4-5) 

(4-6) 

with the initial condition X(o)=E and the vector function <;o[a(t)] is one such 

that 

From our assumption the null solution of the equation (4-6) is asympto· 

tically stable and therefore two positive constants M0 and M, can be found 

such that for all t20 the inequality 

\\X(t)\\ < M,e-Mot (4-7) 

holds, where the norm IIXII of the matrix Xis defined such that \\Xll=sup\Xjl• 
j 
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Using the vector function y(t) = y'.) [ a(t)], we define the auxiliary vector 

function 

for Ost s T 

for t ~ T 
(4-8) 

where Tis any positive constant. Let us consider the linear non-homogeneous 

system 

(4-9) 

and put 
(4-10) 

If the same initial condition is given for the system (2-1) and for the system 

(4-9), then the equality 

for Ost s T (4-11) 

yields. From the well known properties of the linear non-homogeneous 

system ap(t) can be represented as follows 

(4-12) 

where p(t) is the term corresponding to the solution of the equation d:: = AxT 

with the initial value Xp(o) and ap(t) the term corresponding to the solution 

of (4-9) with zero initial value. In agreement with (4-7) there exist positive 

constants M 2 and M3 such that for all t~O the following inequalities hold 

Now let us define the vector function /(t) and l(t) by the formulas 

-f(t) = ap(t)+ Qd:r-K-lyp(t) 

= ap(t)+Qd:r-K-1yp(t) + p(t)+Q:' 

l(t) = -p(t)-Q<Ij;. 

(4-13) 

(4-14) 

(4-15) 

Let the Fourier transforms of the vector functions /(t), l(t), yp(t) and ap(t) 

to be F(i0), L(i0), Y r(i0) and ~r(i0), respectively. As can be seen from 

(4-8), (4-9), (4-10) and (4-13) these Fourier transforms exist. By the definition 

of the frequency characteristic W(i0) the equality 

-I;r(i0) = W(i0)Yr(i0) (4-16) 

takes place. Taking the Fourier transforms of the both sides of the equality 
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F(iw) = {(E+iwQ)W(iw)+K-1 }YT(iw)+L(iw) = N(iw)YT(iw)+L(iw). (4-17) 

When the condition of Theorem 3 : 

~ {N(iw) + N(iw)*} ~ oE 

is satisfied, in view of Appendix II we obtain the inequality 

-[ f(t)'yT(t)dt So, D (4-18) 

where 

D = 8;
0 
[= L(iw)*L(iw)dw. (4-19) 

As can be seen from (4-15) the vector function l(t) is given in terms of the 

solution of the linear homogeneous system, and then l(t) is dependent merely 

on the initial condition xT(o)=x(o) and independent of the constant T. Thus, 

the constant D depends only on the initial conditions x(o) and D-0 as 

llx(o)ll-➔ O. By substituting (4-14) into the left-hand sids of (4-18) we obtain 

rT r~T) -Jo {a(t)-K- 1<p[a(t)]) 1<p[a(t)]dt+ Jo <p(a)'Qda s, D(x0 ) 

where 
_ m \"j(O) 

D(x0) = D(x0)+j~qj Jo <pj(aj)daj, 

From this inequality the following inequalities are obtained 

r {a(t)-K-1<p[a(t)]) 1<p[a(t)]dt So, D' 

At first, let us assume <pj(aj) satisfies the condition 

(j = 1, ···, m) 

(4-20) 

(4-21) 

(4-22) 

(4-23) 

(4-24) 

instead of (2-1)2 , where c is a small positive constant. Then from (4-23) we 

can easily obtain the inequality 

1 m z -

2 tj'f qjaj(T) s,D. (4-25) 

As we assumed all q1 , ••• ,qm to be positive and D is independent of the con

stant T. We can conclude that 
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I la(t)I I < M, 

M, = /2jj, 
'V 1;q 

for all t "?: 0 , 

For the solution x(t) of (4-5) the inequality 

llx(t)ll s IIX(t)xoll + 11 ~: X(t-r)B9 [a(r)] drll 

holds. From (4-7) 

I IX(t)xol I s Msl lxol I for all t "?: 0 , Ms = nM1 . 

From (4-24) and (4-26) 

II t X(t-r)B<p[a(r)]dr II S nm t IIX(t-r)II IIBllll<J'(a(r)]lldr 

s nm 11B11 ~: e-MoCf-T)·M1·IIKlllla(r)lldr 

(4-26) 

(4-27) 

(4-28) 

s nmM1M, 11B11 ~: e-MoCf-T)d, s nmM;t,11B11. (4-29) 

From (4-26), (4-27) and (4-28) we obtained the following estimation 

llx(t)II s M6, (4-30) 

where 

M6 = Msllxoll +nmM:,IIBII _ 

Since n-o as llxoll-0, M,,M6-o as llxoll-0. 

Consequently the equilibrium x=O of the system (2-1) is stable in the 

sense of Lyapnov. Next, we prove the equilibrium x=O to be asymptotically 

stable in the whole. From (4-22) the inequality 

r {ar 9;i?)<p(aj)dts.D 
J 

holds for each j (1 sj s m). Under the conditions (4-24) the functions Gj(ai)= 

{ a;- <7'ji?)}<7'iaj) satisfy the conditions of Appendix III and from (4-26) aj(t) 
J 

and ddt(t) are bounded, and then according to Appendix III we obtain 

lim a;(t) = 0, 
t➔= 

for any initial condit.ion. And therefore 

lim <t'i[aj(t)] = 0 
t➔= 

(j = 1, ··· ,m) 

(j=l, ... , m). 

For the first term of the right-hand side of (4-27) the equality 

lim IIX(t)xoll = O 
t➔= 

(4-31) 

(4--32) 
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yields from (4-7) and for the second term 

II t X(t -r)B<p[a(r)]dr II ::::; nm \\B\\ M1 ~: e-MoCt-7 )\\<p [o(r)]l\dr 

::=:: nm 11B11 M1 ~: eM07 \\<p [a(r)]\ldr/eMot. 

Applying de l'Hopital rule we obtain 

r' J eM07 1i<p[o(r)]\\dr 
lim O 

Mt = lim ;-< \\<p[a(t)]II = 0. 
t➔og e O t➔oo 1Ylo 

Thus, we obtain 

lim \\x(t)II = 0. 
>:➔= 
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(4-33) 

Consnquently it has been proved that the equilibrium x=O of the system 

(2-1) containing m nonlinear characteristics satisfying the conditions (4-24) is 

asymptotically stable in the whole. 

Now let us prove the asymptotical stability in the whole of the equilibrium 

x=O of the system (2-1) with m nonlinear characteristics satisfying the con

ditions (2-1\. For that purpose we define the vector function <p,(a) as follows 

(4-34) 
or 

(j=l,···,m), 

where c is the same constant as in (4-24). Then the system (2-1) can be 

rewritten in the following form 

dx 
dt = A,x+ By,, y, = <p,(a), a= C'•x, (4-35) 

where 

A,= A-cBC'. ( 4--36) 

When <p(a) satisfies the conditions (2-1)2 , <p.(a) satisfies the conditions 

(j= l, .. ·,m). 

The new frequency characteristics W,(iw) of the linear parts of the system 

(4--35), whose input is y,, output -a, are expressed by means of the old one 

W(iw) as follows 

Let 
N,(iw) = K,- 1 +(E+iwQ)W,(iw). 

where K= (k1+2c ·.. 0 ). 
0 km+2e 
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Since all the elements of the matrices W(iw) and iw W(iw) are bounded 

functions of w, there exists positive constants M1 and M8 such that 

IIW(tw)ii-.:::;,M1, lliwW(iw)ii-.:::;,Ms for all w 2 0 . 

As the difference between W(iw) and W.(iw) becomes 

W.(iw)-W(iw) = {(E-cW(iw))-1-E} W(iw) = cW(iw)2+0(c2
) 

(4-37) 

(4-38) 

norm of the difference between ~ {N(iw)+N(i'w)*} and ~ {N(iw)+N(iw)*} is 

II~ (N. + N.*)--}(N+N*)II = -}112(K.-1 -K-1
) 

+(E+iwQ)(W.- W)+(W.- W)*(E-iwQ)II 

~ ~ ll4c(K-1)2+c W2 +c W*2 +cQ(iw W)W +c W*(iw W)*Q\\ 

-.:::;, c(m\\ W\\ 2 + m2I\QI\II Wl\\liw WII + l\(K-1)211) 
-.:::;, c(mMhm2M1MsllQI\ +ml\K-1\1 2

). 

In other words the difference between ~ {N.(iw)+ N.(iw)*) and ~ {N(iw)+ N(iw)*} 

is of order c. Thus, the condition 

~ {N(iw)+N(iw)*) 2 aE 

can be replaced by the inequality 

~ {N.(iw)+ N.(iw)*} 2 a0E (4-39) 

where a0 is a postive constant slightly different from a. This inequality 

guarantees the asymptotical stability in the whole of the system (4-35) with 

the nonlinear characteristics ,:p.j(ai) satisfying the condition c-.:::;, 9 •iai]-.:::;, ki+2c 
ai 

hence so does for c-.:::;,9 •iai)-.:::;,ki+c. Consequently the equilibrium x=O of the 
ai 

system (2-1) is asymptotically stable in the whole for any nonlinear charac-

teristics ,:pj(ai) satisfying the conditions (2-1),. In other words the system 

(2-1) is absolutely stable in [O, K]. 
So far we have assumed all the diagonal elements q1 , •·· ,qm of the diagonal 

matrix Q to be positive. Now let us show that the proof of Theorem 3 in 

the case, where q1, ··· ,qr are negative and qr+i, ··· ,qm positive, is reduced to 

the above proof. We represent the diagonal matrix Q as follows 

where 
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The transformation of variable 

O)a-(E, O ), 
0 0 -E2 

reduces the system (2-1) to the system 

dx { (K, 
dt = A+B 0 

where 
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(4-40) 

(4-41) 

and E, is r-dimensional unite matrix and E2 is (m-r)-dimensional unit matrix. 

Under the transformation (4-40) the conditions (2-1)2 are preserved 

(j = 1, ... , m). (4-41) 

Because of necessity of the asymptotical stability of the linear system 

obtained by replacing cp1(a1)=k1a1 , ••• ,cp/ar)=kr<Jr, Cf!r+1(ar+1)= 0, ··· ,Cf!m(am) = 0 in 

the system (2-1), the constant matrix A+ B( i1 g1 C' is asymptotically stable. 

The frequency characteristic W(i(i)) of the linear parts of the system (4-41), 

whose input is y and output -a, is given as follows 

- ( (K, W(i(i)) = E+ W(i(i)) O 0))-1 (E O) 
0 W(i(i)) 0 

1

-E2 

= (-(E,+ W11K1)-
1 W1~: (E1+ W11K1)-1 W12 _

1 
(4_42) 

, W2, {K,(E, + WnK,) W11 - E,) , - W22- W2,K,(E1 + WnK,) W,2 

where Wjk is partitioned matrix of W(i(i)) as follows 

W(iCt.))=(W11(iCt.)), W,h(i))). 
W2h(i)), W2h(i)) 

For the system (4-41) we define the matrix 

N(i(i)) = K-1 + (E + i(i)Q) W(i(i)) 

where 

(4-43) 

All the diagonal elements of this diagonal matrix Q are positive. In view 

of (4-1), (4-42) and (4-43) we obtain the relation 
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N(iCtJ)+ N(iCtJ)* = P(iCtJ)* {N(iCtJ)+ N(iCtJ)*) P(iCtJ) (4-44) 

where 

The matrix P(iCtJ) is nonsingular for all CtJ~O. 

Thus, when the Hermitian matrix ~ {N(iCtJ)+ N(iCtJ)*} is positive definite, also 

the Hermitian matrix ~ {N,(iCtJ) + N(iCtJ)*} is positive definite. Since all the 

diagonal elements of the diagonal matrix Qare positive, the system (4-41) is 

absolutely stable in [O, K], provided that the Hermitian matrix ~ {N(iCtJ) + 

N(iCtJ)*} is positive definite. Consequently if the Hermitian matrix ~ {N(iCtJ)+ 

N(iCtJ)*} is positive definite, the system (2-1) is absolutely stable in [O, K]. 

Now let us consider the case in which the condition of Theorem 3 

for all CtJ ~ 0 (4-45) 

is satisfied for the diagonal matrix Q such that some of its diagonal elements 

are zero i.e. 

(4-46) 

In this case 

Let c to be sufficiently small number and let 

(4-47) 

where E, is rxr unit matrix, and N,(fr,J)=K-1 -f (E+iCtJQ,)W(iCtJ), then we get 

for all CtJ ~ 0, 

from (4-45) and (4-37), where a, (>0) is slightly different from o in (4-45). 

Thus, the system (2-1) is absolutely stable in [O, K]. This completes the 

proof of the Theorem 3. 

(ii) The case where some of k,, ... ,km are infinite. 

Let us consider the case in which k,,··· ,k1 are infinite and k1+,,··· ,km are 

finite positive numbers. Concerning the absolute stability in this case the 

following theorem holds. 
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Theorem 4 : Let the constant matrix A to be asymptotically stable and 
W(iw) to be the frequency characteristic of the linear parts of the system, 

whose input y and output - a. Let us define the m x m matrix 

(4-48) 

where 

K2 = (k'+' ... 0 ) . 
0 km 

The system (2-1) is absolutely stable in [O, K], if there exists a real diagonal 

matrix Q= (i1 iJ such that the Hermitian matrix ~ {N(iw)+ N(iw)*} is positive 

definite for all w:C::0 and for w- 00 , where K=(

00

···oo k O )· For the 
f+l • 

0 ·. km 
absolute stability of the system (2-1) in [O, K] it is necessary that the linear 

system obtained by putting Yi=hp i in (2-1) is asymptotically stable for any 

hi such that Os:,h,, ··· ,h, and Os:,hjs:,kj (j =l + 1, ... ,m). Differently from Theorem 

3 all the diagonal elements of the diagonal matrix Q, must be non-negative. 

Theorem 4 can be proved analogously to Theorem 3. A few differences 

between them are the followings. First, throughout the proof the matrix 

K-1 is replaced by the matrix (8 ~-,)· Second, in the inequality (4-29) of 

the estimation of llx(t)II the inequality \\<p[a(t)]\ls;,\\Klllla(t)II was used. But in 

our case where K = (

00 

• •• = k O ), this inequality is useless for the esti-
1+1 • 

0 ·. km 

mation. However, from the fact that the functions <pj(aj), (j=l, ... ,m) are 

defined for all a j and in view of ( 4-26) we obtain the estimation 

for all t > 0 

where M9 is a finite positive constant depending on the fundtion <p(a). Thus, 

we can estimate llx(t)II analogously as in (4-29). Finally, when k,=···k1 =oo, 

it is imposible to transform the variable y such as (4-40) for rS:,l. Then, 

q,, .. ·,q1 can not take negative values. 

(iii) Discussion. 

In particular, the Popov's sufficient condition for the absolute stability 

of the system (2-1) with one nonlinear characteristic is such that 

Re (1 + iwq) W(iw) +-}- 2 o > 0 

for all w:C::0 and for some real q. Putting 

(4-49) 
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Re W(iw) = X(w), w Im W(iw) = Y(w) 

the inequality (4-49) is rewritten as follows 

X(w)-qY(w)+ ! ~ o > 0 

for all w~O and for some real q. 

In other words, the system (2-2) with one nonlinear characteristic is 

absolutely stable in [O, k], if we can take real q such that the vector locus 

of the modified frequency characteristics W(iw)=X(w)+ iY(w) is laid strictly 

right from the line X-qY + } =0. In this way we can give simple geometrical 

interpretation of the Popov's sufficient condition (4-49) for the absolute stability 

of the system (2-1) with one nonlinear characteristic. But it seems difficult 

to interpret geometrically the condition: ~ {N(iw)+N(iw)*) ~oE for all w~O, 

for the system (2-1) with m nonlinear characteristics. 

5. Relation between the Problem of Existence of the Lyapunov 

Functions and the Sufficient Condition for the Absolute 

Stability in Terms of Frequency Characteristic. 

In the paragraphs 3 and 4 we made use of the two different methods 

for the investigation of the absolute stability of the system (2-1). In this 

paragraph we shall discuss the relation between the results obtained by 

those methods. 

For the system with one nonlinear characteristic it was proved that the 

necessary and sufficient condition for the existence of the Lyapunov function 

of the type "a quadratic form plus the integral of the nonlinear function" 

under the restriction of the S-process is the Popov's condition (4-49)12). 

For the system (2-1) with many nonlinear characteristics only the following 

proposition is proved. If there exist the Lyapunov functions of the type 

"a quadratic form plus integrals of the nonlinear function" under the restric

tion of the S-process and the m x m symmetric matrix H is positive definite, 

then there exists a diagonal matrix Q such that the Hermitian matrix 

~ {N(iw) + N(iw)*) is positive definite for all w~O and for w-oo. The condition 

of the above proposition is equivalent to positive definiteness of the (m + n) x 

(m+n) symmetric matrix 

G = ( G -a') 
-a H (5-1) 

where 
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(5-2) 

(5-3) 

If we put Q=/3, from the definition of the matrix Hand from (4-4) clearly 

H = line 
2
1 {N(iw)+ N(iw)*} . 

•>➔co 

(5-4) 

Let us define the matrix 

A.,= A-iwE, (5-5) 

Since the matrix L is obtained by operating the Lyapunov's operatior .f on 

the symmetric matrix G, the relation 

A'L+LA = -G 

takes place. In view of (5-5) and (5-6) we obtain the formula 

A.,*L+LA., = -G. 

Defining the matrix B., as follows 

B., = A., - 1B = (A-iwE)-1B 

we obtain the relation 

B.,*NB., = -B.,*(A.,*L+LA.,)B., 

= -{(B'L)B.,+B.,*(B'L)'}. 

From (5-2) 

Therefore 

B.,*GB., = -[(a-~ ,BC'A- ~ c')B.,+B.,*( a - ~ /3C'A- ~ c')] 
= -(aB.,+B.,*a')+ ~ {(,8C'A)B.,+B.,*(/3C'A)'} 

+ ~ (C'B.,+B.,*C). 

(5-6) 

(5-7) 

(5-8) 

On the other hand from the definition of the frequency characteristic W(iw) 

of the linear parts of the system, whose input is y and output -a, we obtain 

As we put Q=,8, from the definition of the matrix N(iw), we obtain 

B.,*GB., = -(aB.,+B.,*a)+ ~ {N(iw)+N(iw)*)-K-1 

+ {,BC' AB.,+ B.,*(,BC' A)'} - ~ {iwQW(iw)+ W(iw)*(iwQ)*} . 

In view of (5-7) and (5-9) 

(5-9) 
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~ {/3C' AB.,+ B.,*(/3C' A)) - ~ {iCtJ/3W(iCtJ)+(iCtJ/3W(iCtJ))*) 

= ~ (/3C'B + B'C/3). 

Thus, we obtain 

~ {N(iCtJ)+N(iCtJ)*) = B.,*GB.,+(aB.,+B.,*a)+H. (5-10) 

As the matrix G is positive definite, for non-zero (m + n)-dimensional vector 

( B-".'.t) we obtain the inequality 

(5-11) 

where m-dimensional vector y is non zero. From (5-10) and (5-11) the 

Hermitian matrix ~ {N(iCtJ)+ N(iCtJ)*) is positive definite for all CtJ~O. Thus, 

for the system (2-1) with m nonlinear characteristics, existence of the Lyapunov 

functions of the above type with the positive definite matrix H under the 

restriction of the S-process guarantees the positive definiteness of the 

Hermitian matrix ~ {N(iCtJ)+ N(iCtJ)*) for all CtJ~O and for CtJ-> oo, where Q= /3. 

This completes the proof of our proposition. 

Now, the region of the absolute stability in the parameters space, which 

is obtained by Theorem 1, depends upon the choice of the positive definite 

matrix P and the real numbers /3,, ··· ,/3m, But the proof of our proposition 

in this paragraph is independent of the matrix P. Thus, the region of the 

absolute stability obtained by Theorem 1 for all possible P and for all possible 

/31 , •·· ,/3m is contained by the region of the absolute stability obtained by 

Theorem 3. 

6. Some Simpe Examples 

Now let us consider a simple example. A simple loop system with two 

nonliner elements in series is shown in Fig. 3. If the gains of W,(s) and 

Fig. 3. 

W b) are both positive, this system is a positive feedback system. The 

response of the system is represented by the following equations. 
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X1 = A1X1 + b1Y1 , 

i2 = A~2+b2Y2, 

Y1 = <pi(a1), 

Y2 = <p/a2), 

(j = 1, 2) 
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(6-1) 

where Xj is nrdimensional state vector of the element W;(s), bj and c; are 

nrdimensional constant vectors and Aj is n; x n; constant asymptotically stable 

matrix. Introducing the notations 

(
b1 0) , (0 c/) . (0 Wz(i0)) 

B = 0 b
2 

' C = ct' 0 ' W(tQJ) = Wi(i0) 0 
the system (6-1) becomes a particular case of (2-1). 

Applying Theorem 3 to this system, we get the sufficient condition for 

the absolute stability of the system as folyows 

where 

kl
2 
> {u1(0)+uiw)-q2vlw)-q1vlw)) 2 

+ { 0(q2u1(w)·-q1uz(w))+ ! (vi(w)-vlw))}2, 

uj(w) = Re W;(iw) 

v;(w) = w Im W;(iw) (j = 1, 2). 

(6-2) 

It is interesting that k1 and k2 are contained only as a product of them. When 
1 1 

Wi(s)= 1+ Tis' W2(s)= 1+ T
2
s (T1, T 2>0) (6-2) becomes 

__!_ > {l+q2T1w2 + l+q1T202}2 
+{(q2-T1)w 

k1k2 1 + T/w2 1 + T/02 1 + T/02 

It is easily seen that 

(6-3) 

Therefore, if q1 and q2 are taken as q1 = T2, q2 = T1, the maximum value of 

the right-hand side of (6-3) with w takes the minimum value. Thus, the 

sufficient condition for the absolute stability becomes 

(6-4) 

Now, let us replace the nolinear elements by linear elements <p;(a;)=h;a;, 

0-:;;,hr::;,k;, (j = 1, 2). Then, the characteristic equation for this linearized system 

is 
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In order that the linearized system 

is asymptotically stable for all h, 

and h2 such that 0s:,hr~,kj (j=l, 2), 

it is necessary and sufficient that 

k1k2 <l. This condition coincides 

with (6-4) exactly. This means 

that Theorem 3 gave not only 

the sufficient but also the neces

sary condition for the absolute 

stability for this case. 

Next, let us consider an ex-

0 + Jz 

Fig. 4. 

ample of a multi-variable control system shown in Fig. 4. The response of 

the system is given by 

i, = A,x, + b,y, , 

X2 = A2X2 + b2Y1 , 

.X3 = AaX3 + b3y2, 

.X4 = A4X4 + b4y2, 

a,= c,'x,+ca'x3, 

Introducing the notations 

Y2 = <p/a2), 
(6-5) 

a2 = ci'x2+c/X4, 

(j = 1, ... , 4). 

_ (b,, 0) -(c,', 0, ca', 0) 
B- b O ' C- ' 

2
' 0, c/, 0, c/ 

0, bs 

· 0, b4 

the system (6-5) becomes a particular case of (2-1). The positive definiteness 

of the Hermitian matrix ~ {N(iw)+N(iw)*} of Theorme 3 is written as follows 

1 
u,(w)-q,v,(w)+ k, > 0, 

{u,(w)-q,v,(w)+ !,,}{ulw)-q2vlw)+ t} 
> {ui(w)+us(w)-q,vs(w)-q2vi(w)} 2 

+{w(q1us(w)-q2ui(w))+ ! (vs(w)-vi(w))f, 

where 
uj(w) = ReW;(iw), vj(w) = w Im W;(iw). 

Now, let us consider the case where 

(6-6) 
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W,(s) = 1/Ts' Wh) = Wa(s) = 1/Ts' 
W.(s) = 1 /Ts (tc1, tc4, T > 0). 

Then, the first inequality of (6-6) always holds. The last inequality 

4tc1/C4{( 1+ k:tcJ + r( q, + k~}i2}{(1+ k;tc.) + r( q2 + k:Ju2} 
> {2 + T(qi +q2)ui2} 2 + (q1 -q2)2w2• 

If k1 = oo and k2 = oo (6-7) yields 

4(tc1tc•-l)(l +q1Tw2)(l +q2Tw2)-(q1-qz)2(c,,Z+ T 2w•) > 0. 

When 
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(6-7) 

(6-8) 

(6-9) 

(6-8) holds for all w2:0, if we select q1 and f/2 as q1 =qz. When tc1tc4~1, there 

does not exist real positive q1 and q2 which make (6-8) to be true for all w2:0. 

Therefore, the system is absolutely stable in [ 0, ( 0 ~)], if (6-9) holds. 

If both k1 and k2 are not infinite, (6-7) is written down as follows 

(6-10) 

where 

a1 = 4tc1tc• T { ( 1 + k:tcJ( q2 + k:J + ( 1 + k;tc.) ( q, + k~J 

-4T(q1 +q2)-(q1 -qz)2, 

a2 = 4tc1tc4(1+ k~J(1+ k;tc.)-4. 

Thus, when 

tc1tc4 ( 1 + k:tcJ ( 1 + k;tc.) > 1 , (6-11) 

the inequality (6-10) holds for all w 2:0, if we select q1 and q2 small. 

That is, the system is absolutely stable in [ 0, (~1 ~J ], if the tc1 and tc4 satisfy 

(5-12). 

Now, let us replace the nonlinear elements in Fig. 4 by the linear elements 

as follows 

The characteristic equation for this linearized system is 
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Therefore, in order that the system is asymptotically stable for all h1 and h
2 

such O:s;,h1 and O:s;,h2, it is necessary and sufficient that 

(6-12) 

This coincides with (6-9) exactly. 

If the system should be assymptotically stable for all h1 and h2 such that 

0 ::;;, h1 ::;;, k1 < 00 and O ::;;, h2 ::;;, k2 < oo , 

it is necessary and sufficient that 

1 + k11r:1 + k21r:. + k1ki1r:11r:, -1) > 0. 

Again, this coincides with (6-11) exactly. 

7. Conclusions 

In the previous paragraphs the problem of the absolute stability of the 

control system with many nonilinear characteristics have been discussed. 

In the paragraph 3 by means of the Lyapunov's direct method a system 

of the quadratic equations was obtained, which is the extension of the case 

where the control system contains only one nonlinear characteristic, and it 

was shown that if the system of quadratic equations has real solutions, then 

the system (2-1) is absolutely stable. In the paper14
) the same system of 

quadratic equations was obtained and the real numbers /i1, ... ,fim were all 

positive. But as shown in the paragraph 3 of this paper, it is not necessary 

that all the /i1,·· ,fim be positive. 

In the paragraph 4 analogously to the Popov's criteria of the absolute 

stability of the control system with one nonlinear characteristic, a sufficient 

condition for the sbsolute stability of the control system (2-1) with m nonlinear 

characteristics in terms of the frequency characteristic was obtained. 

For the system with one nonlinear characteristic, in the case where the 

scalar quantity corresponding to lim 
2
1 {N(iw)+ N(iw)*) is non-negative, the 

w➔~ 

system is absolutely stable if the Popov's condition (4-49) is satisfied. But 

for the system with many nonlinear characteristics in Theorem 3 we assumed 

that them xm symmetric matrix lim 
2
1 {N(iw)+N(iw)*) was positive definite. 

w➔~ 

In the paragraph 5 relations between the problem of existence of Lyapunov 

functions and the sufficient condition for the absolute stability in terms of 

the frequency characteristic are discussed. For the control system with 

one nonlinear characteristic existence of the Lyapunov function of the type" a 

quadratic form plus integral of nonlinear function", under the restriction of 

the S-process is equivalent to the Popov's sufficient condition for the absolute 
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stability. Buf for the system with m nonlinear characteristics it is shown 

only that the former is a sufficient condition of the later. 

From begining to end the constant matrix A has been assumed to be 

asymptotically stable. It seems interesting to discuss the case where some 

of characteristic roots of the matrix A are on the imaginary axis of complex 

plane and the other are laid in the left half plane. 

Appendix I (Lyapunov's theorem) 

Let us consider the differential equation 

dx = Ax 
dt 

(I-1) 

and the quadratic form V(x)=x'Lx. The derivative dV along the trajectories 
dt 

of the equation is 

~r = x1(A1 L + LA)x . 

Setting 

A'L+LA = -G (l-2) 

we see that 
G' = -(A'L+LA)' = -(LA+A'L) = G, 

so that G is tha matrix of a quadratic form. 

If the real matrix A is asymptotically stable, then for positive definite 

matrix G the unique solution L of (l-2) exists and is positive definite. 

Conversely, if for every positive definite matrix G there exists a positive 

definite matrix L, then the real matrix A is asymptotically stable. 

This theorem is proved in the reference15
). 

Appendix II 

Let the real vector functions 

satisfy the conditions 

11/(t)II :-=:;; a1exp(-,81t), 

llg(t)II :-=:;; a2 exp (-,Bzt), 

llk(t)II :-=:;; a3 exp (-,Bat), 

where ai, ,B; (j = 1, 2, 3) are positive constants. 

The Fourier transforms of these functions exist 

(II-1) 

(Il-2) 
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(
Fi(iw) ) (Gi(iw) ) (Ki(iw) ) F(iw) = : , G(iw) = : , K( iw) = : , 
Fm(iw) Gm(iw) Km(iw) 

(JI-3) 

where 

Fj(iw) = r l;(t)e-Mdt, G;(iw) = [ g;(t)e-i"'fdt, Kj(iw) = [ k;(t)e-i"'fdt. 

Let us assume the existence of N(iw) satisfying the relation 

F(iw) = N(iw)K(iw)+G(iw) (Il-4) 

and also assume that for the Hermitian matrix L(iw)= ~ {N(iw)+N(iw)*} the 

inequality 

L(iw) 2 oE 

holds for all w?:0, where o is a positive constant independent of w. 

Then the inequality 

-r f (t)' • k(t)dt :::;; C 

takes place, where C is a constant such that 

C = s!o r"" G(iw)*G(iw)dw. 

Proof of this proposition. 

By the Parseval formula the following equality takes place 

r f(t)'k(t)dt = 
2
~ [

00 

F(iw)*F(iw)dw 

Substituting (Il-4) into (Il-8) we obtain 

r f(t)'k(t)dt = 2~ r"" {N(iw)K(iw) + G(iw)} *K(iw)dw. 

(Il-5) 

(Il-6) 

(Il-7) 

(Il-8) 

Since the left-hand side of this equality takes real value, so does the right

hand side. Thus, 

r /'(t)k(t)dt = 
2
~ [

00 

K(iw)*L(iw)dw+ 
4
~ [

00 

{G(iw)*K(iw)+K(iw)*G(iw)}dw 

= /11: [J(K(iw)*L(iw)112 )(L(iw)112K(iw))+ ~ {G(iw)*K(iw)+K(iw)*G(iw)}dw] 

= l_ f"" {L(iw )112 K(iw) + 1__ L(iw )-112*G (iw )}*{L(iw )112 K(iw) + 1__ L(iw )-112*G(iw )}dw 
211:J-00 2 2 

-
8
~ [

00 

G(iw)*L(iw)-1G(iw)dw 

;;;; -
8
1 r= G(iw)*L(iw)-1G(iw)dw. 
Jr J_Od 

From the inequality (Il-5) we obtain 
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-s17r ~:, G(iCu )* L(iCu )-1c (iCu )dCu :::: -ln: r= G(iCu )* ! G(iCu )dCu • 

Consequently 

[ f(t)'k(t)dt :::: -
8

;
0 
[= G(iCu )*G(iCu )dCu • 

Appendix III 

379 

If 1) a continuous function f(t) and its derivative d~r) are bounded for t::::O, 

2) a continuous function G(x)::::O for any x=l=O, G(o)=O and 3) [ G[f(t)]dt< 00 , 

then limf(t)=O. 
t➔'"> 

This proposition is proved in the reference13l. 
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