On an Optimum Allocation of Workplace and Residence

By

Eiji Kometani* and Shogo Kawakami*

(Received June 30, 1965)

Abstract

In this paper, we describe a process for obtaining an optimum allocation of workplace and residence to minimize the total commuting hours of workers. We do not consider the people whose workplaces and residences have already been determined, but try to minimize the total commuting hours for work journeys for people who will find a work place or a residence, in the future, by means of the optimum allocation of workplace and residence. Let us suppose that people who want to find work and whose residences have been determined will get a job in the area to which they can commute from their residences, in proportion to the amount of demand for workers. And also let us suppose that people whose residences have not been determined as yet will reside in the area from which they can commute to their workplaces, in proportion to the number of houses. Then, the problem of obtaining the optimum allocation of workplace and residence is amenable to a technique of linear programming. An optimum allocation of workplace and residence in Kyoto City obtained through the above procedure is presented.

1. Introduction

The big cities of today in Japan have developed rapidly since the end of the 2nd World War. The concentration of the population and economic activities in urban areas causes many traffic problems. One of them arises from the great amount of commuting transportation from residential areas to workplaces. In the big cities, the journeys to work are very distant and besides, the traffic facilities are much crowded. Therefore, not only the waste of time and money but the loss of energy is considerable.

Then, too, the concentration of the population and economic activities in urban areas is predicted to continue in the future, and so it is necessary to reform and expand facilities for transportation providing for the future. Therefore, the demand for commuting transportation must be estimated precisely and the most efficient transportation facilities, fitting the demand, must be constructed. At the same time, desirable figure for commuting transporta-

[^0]tion must be given by the rational planning of land use in urban areas (especially an optimum allocation of workplaces and residential areas).

In this paper, from this point of view, we study the process of getting the allocation of workplaces and residential areas to minimize the total commuting hours in urban areas, considering the present land use.

2. Relationship between Workplace and Residence of Commuters

In order to plan facilities for future transportation, as well as the development of employment facilities and residences, we must study how the relationship between workplace and residential place is determined. In this section we take up this problem.

We consider the city and its dependent hinterland, to be the study area. Then the greater parts of the residents and employed persons in the study area must have there their workplaces and residential places. The others we do not study. The reason is that the former is the more important theme of the problem of commuting transportation in urban areas and the latter is generally out of the question.

Now, we divide commuters, finding work in the study area, into two groups as follows: one is W_{1}, the people whose residences have been determined and the other is $W_{2} . W_{1}$ consists of the people who must live in their own residences in the study area and the professional girls who live with their parents. These people will find their workplaces where they can commute. W_{2} consists of the people who move into urban areas to find work and the people who begin their own lives separated from their parents in the study area, and so they will seek their workplaces before determining their residential places. Commuters belonging to W_{1} will certainly determine the workplaces, considering the conditions of the journeys to work, (commuting hours, the state of congestion in transportation facilities, times of changing) and the actual working conditions (pay, the contents of work, environment etc.). Commuters belonging to W_{2} will surely find the residential places in the zone from which they can commute to their workplaces, considering the conditions of journeys to work, the expenses for residence, environment, etc.

When we investigate the commuters in the future time in the study area by means of dividing them into the present commuters and the others, the commuters may be classified as follows:
(1) Commuters who will remain in the future time as they are commuters in the study areas in the present time, are expressed as L_{0}. Certainly they are reduced by reasons of retirement, death and moving out until the future
time.
(2) Commuters who will find work in the study area anew. There are two groups as follows:
i) One, expressed as L_{1}, is the people whose residential places will have been determined before finding work, belonging to W_{1}.
ii) The other, expressed as L_{2}, is the people who will have determined the workplaces in the study area first and then will seek their residential places which are suitable for their workplaces, belonging to W_{2}.

Next, we divide the study area into some zones and investigate the process for estimating inter-zonal movements of commuters in the future time. Now, denoting each zone in the study area as $1,2, \cdots, i,(j), \cdots, n$, the number of commuters (to zone j) in the year t, E_{f}^{t}, is as follows:

$$
\begin{equation*}
E_{J}^{t}=E_{0 j}^{t}+E_{1 j}^{I_{j}}+E_{2}^{t} \tag{1}
\end{equation*}
$$

where
$E_{0 j}^{t}:$ commuters to zone j, belonging to L_{0}
$E_{1,}^{t}:$ commuters to zone j, belonging to L_{1}
$E_{2 j}^{t}:$ commuters to zone j, belonging to L_{2}
$t:$ the year t, showing the value in the year t.

Denoting the number of people who commute from zone i in the year t by R_{i}^{t}, it consists of $R_{0 i}^{t}, R_{1 i}^{t}$ and $R_{2 i}^{t}$, which belong to commuters L_{0}, L_{1} and L_{2} in zone i in the year t respectively. Thus

$$
\left.\begin{array}{l}
R_{i}^{t}=R_{0 i}^{t}+R_{1 i}^{t}+R_{2 i}^{t} \tag{2}\\
\sum_{i=1}^{n} R_{0 i}^{t}=\sum_{j=1}^{n} E_{0 j}^{t}, \quad \sum_{i=1}^{n} R_{1 k}^{t}=\sum_{j=1}^{n} E_{1 j}^{t}, \quad \sum_{i=1}^{n} R_{2 i}^{t}=\sum_{j=1}^{n} E_{2 j}^{t}
\end{array}\right\}
$$

In this paper, we forecast the number of future inter-zonal journeys to work of commuters L_{0}, L_{1} and L_{2} individually.

In the first place, we consider commuters L_{0}. As we have the data about the present inter-zonal journeys to work, the proportion of zone i workers commuting to zone $j, p_{i j}$, is given by

$$
\begin{equation*}
p_{i j}=\frac{R_{0 j}^{t_{0}},}{R_{0 i}^{t_{0}}}, \quad \sum_{j=1}^{n} p_{i j}=1 \tag{3}
\end{equation*}
$$

where $R_{0 i j}^{t_{0}}$ is the number of workers who commute from zone i to zone j at the present time t_{0}. Then the number of inter-zonal journeys $R_{0 i j}^{t_{0}}$ is given by

Now, if we assume that $p_{i j}$ of commuters L_{0} is unchanged from this time forth, the number of inter-zonal journeys $R_{0 i}^{t_{i}}$ in the future time t_{l} is given by Eq. (5), when the number of commuters L_{0} residing in zone i in the future time $t_{l}, R_{0 i}^{t}$, can be forecasted.

The process for forecating $R_{0,}^{t}$ by age groups is as under. We denote the annual death-rate by $d_{i}^{t-1}(x-1)$, the annual efflux-rate from the study area by $e_{i}^{t-1}(x-1)$ and the annual retirement-rate by $f_{i}^{t-1}(x-1)$, of age ($x-1$) in zone i in the year $(t-1)$ respectively. Then commuters L_{0} of age x who reside in zone i in the year $t, R_{0 i}^{t}(x)$, is given by Eq. (6).

$$
\begin{equation*}
R_{0_{t}}^{t}(x)=\left\{1-d_{i}^{t-1}(x-1)-e_{i}^{t-1}(x-1)-f_{i}^{t-1}(x-1)\right\} R_{0 i}^{t-1}(x-1) . \tag{6}
\end{equation*}
$$

Therefore, if $d_{i}^{t}(x), e_{i}^{t}(x)$ and $f_{i}^{t}(x)$ are forecasted, we can obtain $R_{0 i}^{t}(x)$ by Eq. (6). And

$$
\begin{equation*}
R_{0 i}^{t}=\sum_{x} R_{0 i}^{t}(x) . \tag{7}
\end{equation*}
$$

In the next place, we consider commuters L_{1}^{t}, who will find work in the year t in the zone to which they can commute from their residential places which will have been determined. We denote the number of commuters L_{1}^{t} who commute from zone i to zone j by $R_{1 i j}^{t}$. Then

$$
\begin{equation*}
E_{1 j}^{t}=\sum_{i=1}^{n} R_{1 i j}^{t}, \quad R_{1 i}^{t}=\sum_{j=1}^{n} R_{1 i j}^{t} . \tag{8}
\end{equation*}
$$

The commuters L_{1}^{t} may take into account both the working conditions and the conditions of the journeys to work, when they find work, as has been stated. But they result in determining their employed zones not so much considering both the working conditions and the conditions of the journeys to work as in proportion to the opportunities for employment which take place there, because their employed zones are generally where the opportunity for employment happens to be in finding work, as the generation of demand for workers cannot be communicated to all job-seekers at the same time. Consequently, it is thinkable that $R_{18 j}^{t}$ is in proportion to the opportunities for employment in zone j in the year $t, \Delta E_{j}^{t}$. Hence,

$$
\begin{equation*}
R_{1 i j}^{t}=\frac{\Delta E_{j}^{t}}{\sum_{j=1}^{n} \Delta E_{j}^{t}} \times R_{1 i}^{t}=q_{j}^{t} R_{1 i}^{t} . \tag{9}
\end{equation*}
$$

If we assume that q_{y}^{t} of commuters L_{1}^{t} is unchanged and that $R_{1 i}^{t_{i t}(t)}$ is the number of people who will continue to commute in the year t_{l}, of commuters who will have found work in the year t, the number of inter-zonal journeys of commuters L_{1}^{t} in the year $t_{i}, R_{1 i j}^{t(t)}$, is given by Eq. (10).

$$
\begin{equation*}
R_{1 \xi}^{t_{i}^{\prime}(t)}=q_{\mathrm{J}}^{t} R_{1 \xi}^{t_{i}^{\prime}(t)} . \tag{10}
\end{equation*}
$$

Consequently, the number of inter-zonal journeys to work of commuters $L_{1}^{t_{0}}, L_{1}^{t_{1}}, \cdots, L_{1}^{t_{1}}$, in the year $t_{l}, R_{1 i j}^{t_{j}} \tau_{0}$, is as follows:

$$
\begin{equation*}
R_{1 i j}^{t_{j}-t_{0}}=\sum_{t=t_{0}}^{t_{l}^{l}} q_{3}^{t} R_{1 i}^{t^{\prime}(t)} \tag{11}
\end{equation*}
$$

We introduce the assumption that people whose residential places in the study area have been determined decide their workplaces in preference to the people whose residential places have not been determined and the rest of the demands for employees is filled up by the latter. Then ΔE_{j}^{t} is obtained by Eq. (12), if E_{f}^{t} is estimated.

$$
\begin{equation*}
\Delta E_{j}^{t}=E_{j}^{t}-E_{b_{j}}^{t} \tag{12}
\end{equation*}
$$

Now, $R_{1 i}^{t}$ is estimated as under. $R_{1 i}^{t}$ is the residents in zone i who will have found work in the year t and will not change their residential places after doing it. When we denote the ratio of the job-seekers to the population of age x in zone i by $a_{i}^{t}(x)$ and the ratio of the people who will not change their residential places after finding work to the job-seekers by $\beta_{t}^{t}(x)$, $R_{1 i}^{t}$ is obtained by Eq. (13).

$$
\begin{equation*}
R_{1 i}^{t}=\sum_{x} \alpha_{i}^{t}(x) \beta_{i}^{t}(x) P_{i}^{t}(x) \tag{13}
\end{equation*}
$$

where $P_{t}^{t}(x)$ is the zone i population of age x in the year $t . R_{1 i}^{t_{1}(t)}$ is estimated as under. Using $d_{i}^{t}(x), e_{t}^{t}(x)$ and $f_{t}^{t}(x)$, we get

$$
\begin{gather*}
R_{1 i}^{t+k+1(t)}(x)=\left\{1-d_{i}^{t+k}(x-1)-e_{i}^{t+k}(x-1)-f_{i}^{t+k}(x-1)\right\} R_{i t}^{t+k(t)}(x-1), \tag{14}\\
\left(k=0,1, \cdots, t_{l}-t-1\right)
\end{gather*}
$$

where $R_{1 i}^{t+k(t)}(x-1)$ is the number of commuters $R_{1 i}^{t+k(t)}$ of age ($x-1$). From this we get $R_{1 i}^{t(t)}(x)$ and obtain $R_{1 i}^{t(t)}$ by the following equation.

$$
\begin{equation*}
R_{1 i}^{t(s)}=\sum_{x} R_{1 i}^{t_{i}^{\prime}(t)}(x) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{1 i}^{t l \sim t_{0}}=\sum_{t=t_{0}}^{t_{t}} R_{1 i}^{t_{i}(t)} \tag{16}
\end{equation*}
$$

Lastly we consider commuters L_{2}^{t}, who will find their residential places
after finding work in the study area in the year t. We denote the number of commuters L_{2}^{t} who commute from zone i to zone j by $R_{2 i j}^{t}$. Then we have

$$
\begin{equation*}
E_{2 j}^{t}=\sum_{i=1}^{n} R_{2 i j}^{t}, \quad R_{2 i}^{t}=\sum_{j=1}^{n} R_{2 i j}^{t} \tag{17}
\end{equation*}
$$

$E_{2 j}^{t}$ is forecasted as under. The sum of commuters L_{1}^{t} and L_{2}^{t} employed in zone $j, \Delta E_{j}^{t}$, is given by

$$
\begin{equation*}
\Delta E_{J}^{t}=q_{j}^{t} \Delta E^{t} \tag{18}
\end{equation*}
$$

where

$$
\Delta E^{t}=\sum_{j=1}^{n} \Delta E_{j}^{t}=\sum_{i=1}^{n} R_{1 t}^{t}+\sum_{j=1}^{n} E_{2 j}^{t} .
$$

As the total number of commuters in the study area, E^{t}, is given by the economic plan, ΔE^{t} is obtained by the following equation.

$$
\Delta E^{t}=E^{t}-\sum_{j=1}^{n} E_{0 j}^{t} .
$$

Thus

$$
\begin{equation*}
E_{2 j}^{t}=q_{J}^{t} \Delta E^{t}-q_{J}^{t} R_{1}^{t}=q_{J}^{t} E_{2}^{t} \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{1}^{t}=\sum_{i=1}^{n} R_{1 i}^{t}, \quad E_{2}^{t}=\sum_{j=1}^{n} E_{2 j}^{t} \tag{20}
\end{equation*}
$$

It seems that commuters L_{2} determine their residential places considering the conditions of journeys to work, the expenses for residence and the lifeenvironment. The expenses for residence are high, where the conditions of journey to work are favourable. Therefore it seems that the differences among the conditions of residence in each zone are small, putting these conditions together. When the number increased of employed persons who will be able to reside in each zone in the year $t, R_{2 i}^{t}$, which is based on vacant houses and new houses, is given, we may suppose that the residential places of employees $E_{2 j}^{t}$ in zone j distribute in proportion to $R_{2 i}^{t}$. Thus

$$
\begin{equation*}
R_{2 i j}^{t}=\frac{R_{2 i}^{t}}{\sum_{i=1}^{n} R_{2 i}^{t}} \times E_{2 j}^{t}=u_{i}^{t} E_{2 j}^{t}=u_{i q}^{t} q_{j}^{t} E_{2}^{t} \tag{21}
\end{equation*}
$$

Suppose that u_{i}^{t} of commuters L_{2}^{t} do not change. Then denoting the people who will have found work in the study area in the year t and will continue to commute in the year t_{l} by $E_{2 j}^{t_{l}(t)}$, the number of inter-zonal journeys to work of commuters L_{2}^{t} in the year $t_{l}, R_{2 t j}^{t(t)}$, is as follows.

$$
\begin{equation*}
R_{2 i j}^{t_{\tau}(t)}=u_{i}^{t} E_{2 j}^{t_{2}^{(t)}} . \tag{22}
\end{equation*}
$$

Consequently the number of inter-zonal journeys to work of commuters $L_{2}^{t_{0}}$, $L_{2}^{t_{1}}, \cdots, L_{2}^{t_{i}}$ in the year $t_{l}, R_{2 i j}^{t_{i}} \tau_{0}^{t_{0}}$, is given by

$$
\begin{equation*}
R_{2 i}^{t_{i} \tilde{t}^{t_{0}}}=\sum_{t=t_{0}}^{t_{l}} u_{t}^{t} E_{2 \jmath}^{t_{2}(t)} \tag{23}
\end{equation*}
$$

Now, $E_{2}^{t_{(}^{\prime}(t)}$ is estimated as follows. Let

$$
E_{2}^{t_{t}(t)}=\sum_{j=1}^{n} E_{2 j}^{t_{j}(t)}
$$

Then denoting the annual death-rate by $d^{t}(x)$, the annual efflux-rate from the study area by $e^{t}(x)$ and the annual retirement-rate by $f^{t}(x)$ of employees of age x in the year t respectively, the relationship between the employees $E_{2}^{t+k+1(t)}(x)$ of age x in the year ($t+k+1$) and the employees $E_{2}^{t+k(t)}(x-1)$ of age $(x-1)$ in the year $(t+k)$ is as follows:

$$
\begin{gather*}
E_{2}^{t+k+1(t)}(x)=\left\{1-d^{t+k}(x-1)-e^{t+k}(x-1)-f^{t+k}(x-1)\right\} E_{2}^{t+k t)}(x-1), \tag{24}\\
\left(k=0,1, \cdots, t_{l}-t-1\right)
\end{gather*}
$$

And

$$
\begin{equation*}
E_{2}^{t_{t}(t)}=\sum_{x} E_{2}^{t^{(L t)}}(x) \tag{25}
\end{equation*}
$$

Thus we get

$$
\begin{equation*}
E_{2 j}^{t_{L}(t)}=q_{3}^{t} E_{2}^{t_{2}(t)} . \tag{26}
\end{equation*}
$$

And the number of commuters $E_{2}^{t_{l}-t_{0}}$ in the year t_{l} of commuters $L_{2}^{t_{0}}, L_{2}^{t_{1}}, \cdots, L_{2}^{t_{t}}$ is given by

$$
\begin{equation*}
E_{2}^{t_{i} \sim t_{0}}=\sum_{t=t_{0}}^{t_{l}} E_{2}^{t_{l}^{\prime(t)}} \tag{27}
\end{equation*}
$$

3. An Optimum Allocation of Workplace and Residence

In this section, we make the study of the allocation of workplaces and residential areas to minimize the total commuting hours in the study area. Now, as the residential areas of commuters L_{0}, L_{1} and the workplaces of commuters L_{0} are determined previously, these cannot be altered in principle. But the workplaces of commuter L_{1}, and the workplaces and the residential areas of commuters L_{2} can be determined suitably, therefore these should be determined so that the total commuting hours is minimum.

Here, the allocation planning of the workplaces and residential areas which minimizes the total commuting hours from the present time t_{0} to the future time t_{m}, is studied. The average commuting hours from zone i to
zone j is denoted by $\tau_{i j}$, and then the total commuting hours of commuters L_{0}, L_{1} and L_{2} in the study area are presented as follows:
i) The total commuting hours T_{0} of commuters L_{0}

$$
\begin{equation*}
T_{0}=\sum_{t=t_{0}}^{t_{m}} \sum_{i, j} R_{0 t j}^{t} \tau_{i j}=\sum_{t=t_{0}}^{t_{m}} \sum_{i, j} R_{0 i}^{t} p_{i j} \tau_{i j} . \tag{28}
\end{equation*}
$$

ii) The total commuting hours T_{1} of commuters L_{1}

$$
\begin{equation*}
T_{1}=\sum_{t_{l}=t_{0}}^{t_{m}} \sum_{i=t_{0}}^{t_{l}} \sum_{i, j} R_{1 i j}^{t_{i}^{\prime}(t)} \tau_{i j}=\sum_{t_{l} \sum_{0}}^{t_{m}} \sum_{t=t_{0}}^{t_{l}} \sum_{i, j} q_{j}^{t} R_{1 i}^{t_{l}(t)} \tau_{i j} . \tag{29}
\end{equation*}
$$

iii) The total commuting hours T_{2} of commuters L_{2}

$$
\begin{equation*}
T_{2}=\sum_{t_{l}=t_{0}}^{t_{m}} \sum_{t=t_{0}}^{t_{l}} \sum_{i, j} R_{2 i j}^{t_{j}(t)} \tau_{i j}=\sum_{t_{l}=t_{0}}^{t_{m}} \sum_{t=t_{0}}^{t_{l}} \sum_{i, j} u_{i}^{t} E_{2 j}^{t_{l}(t)} \tau_{i j} \tag{30}
\end{equation*}
$$

Therefore the total commuting hours is denoted by $T_{0}+T_{1}+T_{2} . T_{0}$ is a constant value which must not be altered artificially, but T_{1} and T_{2} are dependent upon q_{j}^{t} and u_{i}^{t} respectively. Varying the value q_{j}^{t} means varying the proportion of employment capacity in zone j to that in the other zone, changing the allocation of employment facilities. And varying the value u_{i}^{t} means changing the allocation of houses. After all, in order to determine the allocation of employment facilities and residential areas minimizing the total commuting hours, q_{j}^{t} and u_{i}^{t} should be calculated to minimize $T_{1}+T_{2}$. The following is the study of this problem. We consider the case that R_{i}, the number of commuters who can reside in zone i and E_{j}, the number of employees who can be employed in zone j are given from the zone area and the past trend. It is not desirable that the present allocation of employment facilities and houses will be changed. Then the employees and the residents in each zone should be more than the present. But, if the population and/or employees decrease in all, the above said is not suitable. And the numbers of the commuting residents and of the employees in each zone are not more than R_{i} and E_{j} respectively.

In this paper, it is assumed that the numbers of the commuting residents and of the employees do not decrease. Then the conditions of q_{j}^{t} and of u_{i}^{t} are as follows:

$$
\begin{array}{ll}
\sum_{j=1}^{n} q_{j}^{t}=1, \quad q_{j}^{t} \geqq 0, & \left(t=t_{0}+1, \cdots, t_{m}, j=1,2, \cdots, n\right) \\
E_{j}^{t_{l}-1} \leqq \sum_{i=1}^{n} R_{0 i t}^{t_{t}} i_{i j}+\sum_{t=t_{0}}^{t_{l}} q_{j}^{t} R_{1}^{t_{1}(t)}+\sum_{t=t_{0}}^{t_{l}} E_{2 j}^{t_{l}(t)} \leqq E_{j}, \tag{32}\\
& \left(t_{l}=t_{0}+1, \cdots, t_{m}, j=1,2, \cdots, n\right)
\end{array}
$$

where

$$
\begin{align*}
& R_{1}^{t_{l}(t)}=\sum_{i=1}^{n} R_{1 i}^{t_{l}(t)}, E_{2 j}^{t_{l}(t)}=q_{j}^{t} E_{2}^{t_{i}(t)}, E_{j}^{t_{l}-1}= \sum_{i=1}^{n} R_{0 i}^{t_{i}-1} p_{i j}+\sum_{i=t_{0}}^{t_{l}-1} q_{j}^{t_{1}} R_{1}^{t_{l}-1(t)}+\sum_{t=t_{0}}^{t_{l}-1} E_{2 j}^{t_{j}-1(t)} \\
&\left(t=t_{0}+1, \cdots, t_{m}, i=1,2, \cdots, n\right) . \tag{33}\\
& \sum_{j=1}^{n} u_{i}^{t}=1, \quad u_{i}^{t} \geqq 0, \tag{34}\\
& R_{i}^{t_{l}-1} \leqq R_{0 i}^{t_{i}}+\sum_{t=t_{0}}^{t_{l}} R_{1 i}^{t_{l}(t)}+\sum_{i=t_{0}}^{t_{i}} \sum_{j=1}^{n} R_{2 i j}^{t_{i j}(t)} \leqq R_{i}, \quad\left(t_{t}=t_{0}+1, \cdots, t_{m}, i=1,2, \cdots, n\right)
\end{align*}
$$

where

$$
R_{2 i j}^{t_{l}(t)}=u_{i} E_{2 j}^{t_{l}(t)}=u_{i}^{t} q_{j}^{t} E_{2}^{t_{l}(t)}, \quad R_{i}^{t_{l}-1}=R_{0 i}^{t_{l}-1}+\sum_{t=t_{0}}^{t_{l}-1} R_{1 i}^{t_{l}-1(t)}+\sum_{t=t_{0}}^{t_{j}-1} \sum_{j=1}^{n} R_{2 i j}^{t_{l}-1(t)} .
$$

As aforesaid, after q_{j}^{t} is calculated, u_{i}^{t} is determined. Then, first of all, subject to Eqs. (31) and (32), q_{j}^{t} is calculated to minimize the value T_{1}. Next, using these q 's, u_{i}^{t} is calculated to minimize the value T_{2} subject to Eqs. (33) and (34). Therefore this problem is Linear Programming and can be solved easily using the Simplex Method.

After the optimum solutions q_{j}^{t} and u_{i}^{t} are obtained, ΔE_{j}^{t} and $R_{2 i}^{t}$ are presented as follows.

$$
\begin{align*}
\Delta E_{J}^{t} & =q_{y}^{t} \Delta E^{t}=q_{j}^{t}\left(R_{1}^{t}+E_{2}^{t}\right) \tag{35}\\
R_{2 i}^{t} & =u_{i}^{t} E_{2}^{t} . \tag{36}
\end{align*}
$$

Therefore, the increase of demands for employees which should be prepared in zone j in the year t is $\left(E_{0 j}^{t}+\Delta E_{j}^{t}-E_{j}^{t-1}\right)$. And the increse of the commuting residents which should reside in zone i in the year t is $\left(R_{0 i}^{t}+R_{1 i}^{t}+R_{2 i}^{t}-R_{i}^{t-1}\right)$.

Now, even if the decreases of population and employees are seen, the optimum solution can be obtained by altering the lower limit value of conditions, Eqs. (32) and (34).

4. Application to Kyoto City

Now, we tried to make the allocation planning of employment facilities and residential areas for Kyoto City in 1975, on the basis of the data in 1960. In this case, the plan to minimize the total commuting hours in 1975 was studied. We divided the study area into 10 zones, 9 administrative districts and the hinter land adjoining Kyoto City.
(1) Forecasting the number of commuters who can be employed and can reside in each zone.
The former was forecasted from the past trend value, and the forecasted results are shown in Table 1.
(2) $p_{i j}$ and $R_{0 i}^{75}$

The value $p_{l j}$ calculated from $R_{0, j}^{60}$ is shown in Table 2. We forecasted

Table 1.

Table 2. The value $p_{i j}$ in 1960 .

Destination Origin	1	2	3	4	5	6	7	8	9	10	Total
1	0.2602	0.1703	0.0579	0.1837	0.0250	0.1127	0.0296	0.0604	0.0107	0.0895	1.0000
2	0.0470	0.3954	0.0475	0.2030	0.0239	0.1102	0.0287	0.0546	0.0101	0.0796	1.0000
3	0.0289	0.0976	0.3678	0.1804	0.0437	0.1062	0.0292	0.0406	0.0122	0.0935	1.0000
4	0.0186	0.0852	0.0322	0.4517	0.0270	0.1494	0.0383	0.0897	0.0086	0.0993	1.0000
5	0.0115	0.0411	0.0493	0.1653	0.3372	0.1502	0.0577	0.0322	0.0274	0.1281	1.0000
6	0.0106	0.0420	0.0214	0.1648	0.0403	0.4516	0.0775	0.0600	0.0165	0.1152	1.0000
7	0.0067	0.0319	0.0170	0.1016	0.0326	0.1789	0.4340	0.0466	0.0263	0.1246	1.0000
8	0.0223	0.0660	0.0359	0.1868	0.0189	0.1119	0.0385	0.3983	0.0073	0.1142	1.0000
9	0.0074	0.0331	0.0234	0.1055	0.0497	0.1105	0.0708	0.0204	0.3892	0.1899	1.0000
10	0.0148	0.0784	0.0562	0.2149	0.0755	0.2793	0.1037	0.0713	0.1057	0	1.0000

Table 3. The number of resident commuters.

Zone	1	2	3	4	5	6	7	8	9	10	Total
$R_{0 i}^{60}$ (persons)	33,869	35,462	52,760	39,559	39,750	36,950	33,140	43,676	41,232	42,259	398,657
$R_{0 i}^{75}$ (persons)	25,385	24,529	38,181	26,603	32,990	25,944	23,205	34,638	31,645	34,300	297,420
$R_{1 i}^{75 \sim 60}$ (persons)	5,456	10,933	7,552	12,956	3,635	11,006	6,980	4,609	8,554	16,900	88,581

Table 4. The number of journeys to work, $R_{0 i j}^{75}$.

Destination	1	2	3	4	5	6	7	8	9	10	$R_{1 i}$
1	6,605	4,323	1,470	4,663	635	2,861	751	1,533	272	2,272	25,385
2	1,153	9,699	1,165	4,979	586	2,703	704	1,339	248	1,953	24,529
3	1,103	3,726	14,043	6,888	1,669	4,055	1,115	1,550	466	3,570	38,181
4	495	2,267	857	12,017	718	3,974	1,019	2,386	229	2,642	26,603
5	379	1,356	1,626	5,453	11,124	4,955	1,904	1,062	904	4,226	32,990
6	275	1,090	555	4,276	1,046	11,716	2,011	1,557	428	2,989	25,944
7	155	740	394	2,358	756	4,151	10,071	1,081	610	2,891	23,205
8	772	2,286	1,244	6,470	655	3,876	1,334	13,796	253	3,956	34,638
9	234	1,047	740	3,339	1,573	3,497	2,240	646	12,316	6,009	31,645
10	508	2,689	1,928	7,371	2,530	9,580	3,557	2,446	3,626	-	34,300
$E_{0 j}^{75}$	11,679	29,223	24,022	57,814	21,352	51,368	24,706	27,396	19,352	30,508	297,420

the value $R_{0 i}^{75}$, dividing the commuters into 5 -year age groups, and $R_{0 i}^{75}$ is shown in Table 3. And from the value $R_{0 i}^{75}$ we calculated the value $R_{0 i j}^{75}$, shown in Table 4.
(3) $R_{1 i}^{75-60}$ and E_{2}^{75}

On the basis of the population data in 1960, we forecasted value $R_{1 i}^{75 \sim 60}$, dividing the commuters into 5 -year age groups, and the results are shown in Table 3. And forecasting the value E^{75} from the total number of employees in the study area in 1975, we obtained the value $E_{2}^{75 \sim 60}$ by the following equation,

$$
E_{2}^{75 \sim 60}=E^{75}-E_{0}^{75}-R_{1}^{75 \sim 60}, \quad E_{2}^{75 \sim 60}=97,612 .
$$

Here we supposed the distribution rates of employment facility and of residence q_{j} and u_{i} as follows.

$$
, \quad q_{j}=\frac{\Delta E_{5}^{75 \sim 60}}{\Delta E^{75 \sim 60}}=\frac{\sum_{i=1}^{10} R_{1 j}^{75 \sim 60}+E_{2 j}^{75 \sim 60}}{R_{1}^{75 \sim 60}+E_{2}^{75 \sim 60}}, \quad u_{i}=\frac{R_{2 i}^{7 i \sim 60}}{R_{2}^{75 \sim 60}}, \quad(i, j=1,2, \cdots, 10) .
$$

(4) Total commuting hours

Supposing the average inter-zonal commuting hours as in Table 5, we got following equations expressing the total commuting hours in 1975.

$$
\begin{aligned}
& T_{0}=\sum_{i, j} R_{0 i j j}^{75} \tau_{i j} \\
& T_{1}=\sum_{i, j} R_{i 1 j}^{75-60} \tau_{i j}=\sum_{i, j} q_{j} R_{1 i}^{75 \sim 60} \tau_{i j} \\
& T_{2}=\sum_{i, j} R_{2 i j}^{75}{ }^{750} \tau_{i j}=\sum_{i, j} u_{i} q_{j} E_{2}^{75 \sim 60} \tau_{i j} .
\end{aligned}
$$

Table 5. The inter-zonal commuting hours $\tau_{i j}$ (min).

Destination	1	2	3	4	5	6	7	8	9	10
Origin	10	15	25	30	45	40	40	30	70	120
1	15	10	15	15	35	25	35	20	55	110
2	25	15	10	15	25	30	40	40	55	110
3	30	15	15	10	20	15	25	30	40	100
4	45	30	20	15	10	15	20	45	40	100
5	40	25	30	15	25	10	15	40	30	95
6	40	35	40	25	25	15	10	40	20	90
7	30	20	40	30	45	40	40	10	70	115
8	70	55	55	40	40	30	20	70	10	85
9	120	110	110	100	100	95	90	115	85	-
10										

(5) Linear Programming

Solving the following two linear-programming problems, we could obtain
the amounts of employment facilities and of residences which must be developed in each zone to minimize the total commuting hours.
i) Minimize $T_{1}=\sum_{i, j} q_{j} R_{1 i}^{75 \sim 60}{ }_{\tau_{i j}}$
subject to

$$
\begin{array}{ll}
\sum_{j=1}^{10} q_{j}=1, \quad q_{j} \geqq 0, & (j=1,2, \cdots, 10) \\
E_{j}^{60} \leqq E_{j}^{75}+q_{j}\left(R_{1}^{75 \sim 60}+E_{2}^{75 \sim 60}\right) \leqq E_{j}, & (j=1,2, \cdots, 10)
\end{array}
$$

ii) Minimize $T_{2}=\sum_{i, j} u_{i} q_{j} E_{2}^{75 \sim 60} \tau_{i j}$
subject to

$$
\begin{array}{ll}
\sum_{i=1}^{10} u_{i}=1, \quad u_{i} \geqq 0, & (i=1,2, \cdots, 10) \\
R_{i}^{60} \leqq R_{0 i}^{75}+R_{1 i}^{75 \sim 60}+u_{i} E_{2}^{75 \sim 60} \leqq R_{i}, & (i=1,2, \cdots, 10) .
\end{array}
$$

The results are shown in Table 6, where the amounts of employment facilities and of residences which must be developed from 1960 to 1975, are expressed as the number of commuters to be admitted. And the number of inter-zonal journeys to work in the study area in $1975, R_{i j}^{75}\left(=R_{0 i j}^{75}+R_{1 i j}^{75} \sigma^{60}+R_{2 i j}^{75 \sigma 0}\right)$, is shown in Table 7.

Table 6.

Zone	1	2	3	4	5	6	7	8	9	10	Total
q_{j}	0.0217	0.0585	0.0458	0.2955	0.0309	0.3583	0.0560	0.0460	0.0309	0.0564	1.0000
u_{i}	0.0310	0	0.4204	0	0.4095	0	0.0831	0.0454	0.0106	0	1.0000
Demand for employees (persons)	0	0		34,408	0	49,011	1,531	0	0	0	84,950
$\begin{aligned} & \text { Demand for } \\ & \text { houses (persons) } \end{aligned}$	0	0	34,009	0	36,847		5,157	0	0	0	76,013

Table 7. The number of journeys to work $R_{i j}^{75}=R_{0 i j}^{75}+R_{1 i j}^{7560}+R_{2 i j}^{25560}$.

Destination	1	2	3	4	5	$\boldsymbol{6}$	7	8	9	10	Total
Origin											
1	6,789	4,819	1,859	7,169	897	5,900	1,226	1,923	534	2,751	33,867
2	1,390	10,339	1,666	8,210	924	6,620	1,316	1,842	586	2,570	35,463
3	2,157	6,568	16,269	21,246	3,170	21,464	3,836	3,785	1,967	6,311	86,773
4	776	3,025	1,450	15,845	1,118	8,616	1,745	2,982	629	3,373	39,559
5	1,325	3,907	3,623	18,339	12,471	20,579	4,346	3,068	2,251	6,686	76,595
6	514	1,734	1,059	7,528	1,386	15,659	2,627	2,063	768	3,610	36,948
7	482	1,623	1,086	6,818	1,223	9,558	10,916	1,775	1,077	3,743	38,301
8	968	2,815	1,658	9,142	934	7,116	1,840	14,212	532	4,466	43,683
9	442	1,608	1,179	6,173	1,869	6,933	2,777	1,087	12,612	6,549	41,229
10	875	3,678	2,702	12,365	3,112	15,635	4,503	3,223	4,148	953	51,194
Total	15,718	40,116	32,551	112,835	27,104	118,080	35,132	35,960	25,104	41,012	483,612

References

1) Kyoto City Municipal Statistical Yearbook, 1961, Kyoto City Government, (1962).
2) L. S. Goddard; "Mathematical Techniques of Operational Research", Pergamon Press, London, (1963).
3) John F. Kain; The Journey-to-work as a Determinant of Residential Location, Papers and Proceedings of The Regional Science Association Vol. 9, pp. 137-160 (1962).

[^0]: * Department of Transportation Engineering

