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This paper presents the result of calculations on the stress distribution 
around a screw dislocation in a thin foil-crystal calculated by use of the IBM 
digital computer. In an infinite medium, it is well known that a screw dis
location makes a stress field with one stress component ,e,, where z is the 
direction of the Burgers vector. In a thin foil-crystal, it was found that a 
screw dislocation makes a stress field with not only ,e, which vanishes at free 
surface but r,e which concentrates at the surface. 

1. Introduction 

As the result of development of various measuring methods of the motion 

of dislocations, we need more knowledge of the precise stress fields around 

the dislocations. If the cylindrical coordinate system (r, 0, z) is taken and the 

z-axis is coincided with the direction of the Rurgers vector, in the infinite 

medium a screw dislocation makes a stress field having only one stress 

component'): 

re,.= bµ 1 
2n- r ( 1) 

where b is the magnitude of the Burgers vector, µ the Lame's constant, and 

r the position. 

Many investigators have calculated the stress fields around the dislo

cations for the various situations. But most of them have been obtained 

under the assumption that the medium is infinite. As mentioned above, 

however, it is increased to use very thin foil, order of 10-4 mm or less than 

it, in order to observe the motion of dislocations. 

This paper aimed to check whether the stress fields calculated under 

such assumption is applicable or not to the thin foiled medium. The calcu-
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lation was made on a screw dislocation whose Burgers vector is perpendicular 

to the foil surface. Moreover, Mura's method 2) was used as the fundamental 

equations for this calculation. 

2. Calculations 

By using Mura's method and the tensor operation 3), the dislocation strain 

is given by 

where, 

Um(X) the displacement at the point x in the m-direction, 

( 2) 

Um,n(x): the strain at point x obtained by differentiating the displace-

ment Um(x) with respect to coordinate n, 

Enjh the permulation, 

C;jks the elastic constant of fourth rank tensor, 

Gkm(x-x'): the Green's function which equals the displacement in the 

k-direction at point x caused by unit impulse force acting in 

m-direction at the point x', 

b; the i-component of Burgers vector b, 

dL'h h-component of the line element, and 

L the dislocation loop. 

On the other hand, the displacement (u, v, w) at the point (x, y, z) caused by 

the force (X0 , Y 0 , Z0 ) acted at the point (x', y', z') is given by 4
) 

( ) _ .H 3µ ( X0 Yo Zo ) 
u, v, w -- 8irµ(t1+2µ) T' T' T 

+ ,'! + µ (~- _J__ _!_) XcX + Yo.Y + Zcz 
8irµ(;i+2µ) r ' r ' r r2 

or by using the index notation 

where, 

,'! and µ: the Lame's constants, 

y2 = (x-x')2 +(y-y')2+(z-z')2 = j2+ _y2 +z2' 

a2 = (,'! + 2µ)/ p, 

c2 = µ/p, and 

p: the density of the medium. 

( 3) 

(4) 

:Now the Green's function Gkm is given as a function of position x onlr, beCijUS~ 
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the dislocation in the consideration is stationary, so that, using Um in Eq. (4) 
or (3), Gkm becomes 

( 5) 

Eq. (5) means the displacement in the k-direction caused by a unit force in 

the m-direction: the forces X 0 , Y0 , Z0 in Eq. (3) are taken as unity. Now, 
the elastic constant C;jks is written with the Lame's constants J and µ as 

y 

X 

z 

( 6) 

In the expression (6), the medium is assumed 

to be isotropic and continuous. 
Now let the thickness of the foil-crystal 

be h as shown in Fig. 1. Suppose that the 

Burgers vector of a screw dislocation is taken 
for the positive z-axis and it lies on the z-axis. 

Then the following are specified : 

dL'h =dz', 

b; = ba, 

h=3 

r2 = ,xz+yz+zi, 
( 7) 

Fig. 1. The coordinate system. 

i = 3 l 
.x = x, ji = y, z = z-z' 

Therefore, the differential form of Eq. (2) becomes, using the relations (7), 

dUm, n = EnjhCijksGkm,s(x-x')b;dL'h 

= EnjaCajksGkm,s(x-x1 )b3 dz1 

= (EnrnCa1ks+En2aCa2ks)Gkm,sbadZ 1
• 

Using the relation (6), the each component of dUm,n becomes 

dUm,i: :Gam,2+G2m,3)b3dZ
1

, 

1 

} 

dUm,2 -- µ(G3m, 1 + G1m,3)b3dZ , 

dUm,3 = 0. 

Then the equality 

will lead the expression (9) into 

( 8) 

( 9) 
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dU,., = µ( G31, 2b3 + G2, {~-) dz1
, 

dU2,, = µ( Gn, 2b3 +G22 ~!~) dz 1
, 

dU3" = µ( G33• 2b3 + G2a ~!})dz', 
dU,,2 = -µ (ca,,,ba+Ga, ~!~ )dz1

, 

dU2,2 = -µ ( G32,,ba+G,3 ~!~ )dz1
, 

dUa, 2 = - µ ( G33,, ba + Gt3 ~!+) dz 1 
, 

dUi,a = dU2,a = dU3,a = 0. 

411 

(10) 

For the convenience of the calculations, let 

D, = .:!+3µ - az+cz 
81rµ(.:! + 2µ) -- 8n-µa 2 ' 

D2 = ;i + µ a2 + c2 
81rµ(.:! + 2µ) - 81rµa2 ' 

r2=x2+y2. l (11) 

Then Eq. (5) is rewitten as 

y 

z 

(12) 

The above equations were led for arbitrary 

screw dislocation directed positive z-axis in 

infinite medium. As we are, now, interested 

in the stress distribution in the thin foil, 

thickness h, let us assume an infinite medium 

as shown in Fig. 2, and calculate the stress 

field in one part of thickness h in this 

medium with the help of the principle of 

mirror reflection. That is, the positive and 

negative screw dislocations are put in order 

infinitely with distance h as shown in the 

Fig. 2. Distribution of dislocations. figure. In the other words, the Burgers 
vector of these dislocations is represented by 

where 

ba = Mz') = (-lfb, 

n = [z'/h]. 

The parenthesis in Eq. (14) notes the Gauss' integer notation: 

(13) 

(14) 
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Substituting Eqs. (12), and (13) into Eq. (10) and integrating it from - oo 

to + oo with respect to z' gives us the following results: 

U2.2 = -U1,1, 

Ui, 2 + U2, 1 = - 2 cot 20 Vi, 1 , 

U _ b (D + D )sin 0 ~ ( l)n[ z/h-n+l. 
3

'
1 

- µ 1 2 -r-n!:'.~ - {(r/h)2+(z/h-n+l)2} 112 

z/h-n ] 
{(r/h)2 +(z/h-n)2

} 112 

-2b D _!_ . 8 ~ ( l)n[ z/h-n+! 
µ 2 h Sm nf== - {(r/h)2+(z/h-n+l)2} 312 

z/h-n ] 
{(r/h)2 +(z/h-n)2} 3! 2 

U3, 2 = - cos 0 U3, 1 , 

(15) 

where we used the change of coordinate systems from the Cartesian one 

(x, y, z) to the cylindrical one (r, 8, z): 

r2 = z2 +y2, or 

x = r cos 0, y = r sin 8, and 

z = z. 

Now the dislocation stress a pq in the Cartesion coordinate system can be 

obtained by multiplying Eq. (2) by the elastic constants Cpqmn• The com

ponents of the strain tensor are given by Eqs. (15), so we can easily calculate 

the stress tensor in the Cartesian coordinate system. From those stress 

tensor, the stress field in the cylindrical coordinate system can be, also, easily 

transformed, and the results of these are : 

arr = a,,,, cos2 8 + ayy sin2 8 + 2,..,y cos 0 sin 0 = 0, 

aee = 0, 

a,.,.= 0, 

Tre = -4bµ2 D2]_(r/h)3 i: (-lt 
r n~-= {(r/h)2+(z/h-n)2} 312 

_ b 2(D + D) 1 i: ( l)2[ Z/h-n+l 
- µ 

1 2 r n~-= - {(r/h)2+(z/h-n+l)2} 112 

z/h-n ] 
{(r/ h)2 + (z/h-n)2} 112 

, 

(16) 
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{(r/h)2+ (z/h-n)2
} 

3
/

2 (17) 

3. Results 

For the screw dislocation in a thin foil-crystal, two components rre and 

r 6.., remain and the other components vanish. And it is clear that from Eqs. 

(16) and (17) r 6.., vanishes at the surfaces, z=O and z=h, and rre vanishes at 

the z=h/2. 

Since the medium is, as assumed before, isotropic, if we substitute D1 , 

D2 in Eq. (11) into Eqs. (16) and (17) and represent the Lame's constant ,1 with 

µ (also the Lame's constant and equals the transverse elastic constant) and 

the Poisson's ratio v, these two stress components rre and r 6,, become the 

functions of b, µ, and v, also the position. 

Figs. 3 and 4 are the examples of stress distributions calculated with the 

IBM digital computor. The Poisson's ratio v was taken as 0.3 and the thick

ness of the foil 30 times of the Burgers vector b. The stresses are shown 

in the equi-stress diagrams. Fig. 3 shows the equi-stress for rre, and Fig. 4 

for r 6..,. In both figures the absciassa is r-axis and the unit of it is the 

Burgers vector b, and the vertical axis is z-axis, unit of it the thickness of 

the foil 30b. Also, the unit of the stress is bµ/2-;r. 

Now, the stress for the infinite medium has only one component re..,, and 

its magnitude given by Eq. (1) is drawn in Fig. 4 by the broken line. For 

the thin foil the stress component rre occurs due to the free surface perpen-
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Fig. 3. The equi-stress diagrams of -r ,e. 
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Fig. 4. The equi-stress diagrams of -r:o,. 

dicular th the Burgers vector, but this stress concentrate at the surface as 

seen in Fig. 3, and vanishes rapidly to the interior of the foil. Next, the 

stress component , 9,., is, as stated previouly, zero at the surface, and at the 

center of the thickness it approaches to the value given by Eq. (1). But 

always it is smaller than the value given by Eq. (1). When the thickness h 

is 30b as in this example, the stress , 611 at the center of the thickness is 

small compared with the value shown by the broken line, but if h becomes 

about 1000 b, at the middle part of the foil the stress , 6,., is entirely nearly 

equal to the value for the infinite medium. And the thickness of the surface 

layer where the stress is very different from the value given by Eq. (1) 

becomes negligibly thin compared with the total thickness of the foil. 
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