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In this paper, the authors deal with an application of dynamic programming 
technique to an optimum sampled-data control system design. 

Since the optimum sampled-data control problem may be treated as an 
n-stage decision process, the determination of the optimum control law is carried 
out by means of the dynamic programming technique. Optimum control policies 
are derived to fulfill the minimum integral squared error for the deterministic 
case and the minimum expected value of integral squared error for the sto
chastic case. It is shown that the control signal of the optimum system 
consists of a linear combination of system variables. The over-all optimum 
control system is a time-varying system. However, the quasi-optimum control 
can be achieved by feeding back all the state variables through appropriate 
constant multipliers and the quasi-optimum control system can be considered 
as a good approximation of the optimum system. 

1. Introduction 

13 

In recent years, modern control technology has made very rapid progress. 

The core of modern approaches to the control system design rests upon the 

determination of a control law so as to minimize or maximize a set of per

formance criteria. In contrast with these approaches, the essence of classical 

approaches to the design of control systems lies in the determination of a 

compensator to fulfill a set of arbitrary requirements; and the configuration 

of the system is more or less fixed ahead of the system design. However, 

modern app\-oaches will yield an optimum configuration as well as an optimum 

controller for the system. 

The optimum system design problem is essentially formulated as a 

variational problem and these methods which have been used successfully 

in many applications are the classical calculus of variation, the Maximum 

Principle of Pontriyagin'l and Dynamic Programming of Bellman2l. Recently 
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a number of papers applying the techniques of dynamic programming to the 

treatment of control problems have appeared in literature. In these papers, 

some authors have achieved essential results in the optimum design of 

sampled-data control systems3
),4)_ 

However, these investigations are restricted to the case optimizing the 

criterion functions which are expressed by the function of state variables only 

at sampling instants and does not include the behaivors over the sampling 

intervals. Forthermore, the discussions for the realization of the optimum 

control system and the quasi-optimum control system which has nearly the 

same performance as the optimum one are few. This paper deals with the 

optimum design of linear sampled-data control systems with a deterministic 

input and a stochastic input, respectively. 

2. Dynamic Programming Approach 

Consider the control system shown in Fig. 2. 1. The reference input r, 

the state variable c (characterizing the controlled element at any time) and 

the control signal y are vector quantities and T is a sampling period. The 

design problem is to make the control signal by the computer so as to 

optimize the performance criteria or criterion functions (integral squared error, 

for example). Let x be the value of the state variable at any sampling 

instant; x is called a initial 

value of a state variable for 

any sampling period. If we 

consider a control signal as a 

decision and a initial value of 

a state variable as a state, this 

control process can be viewed 

as a discrete multi-stage de

cision process. 

In this section, we deal 

only with the optimum design 

for the deterministic input. 

Fig. 2. 2 shows the relation be

tween time and system vari

ables. The criterion function 

over the interval (n-k)T:;;; t 

:s;;(n-k+l)T may be expressed 

~s ~ function of the control 

Initial 

Computer 
Controlled 

element 

Fig. 2. 1. Sampled-data control system. 
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signal Yk, the reference input rk and the inital value xk. Then, it is written as 

(2.1) 

If we consider such a control process that the criterion function over the 

total interval OstsnT is a sum of criterion functions for each interval, the 

criterion function over the total interval, Gn is given by 

G,. = g(y,., x,., rn)+ g(Yn-1, Xn-1, Tn-1)+ ··· + g(Y1, X1, r1) (2. 2) 

Criterion functions of this type arise naturally in the study of control pro

cesses. 

The dynamic behaivor of a controlled element is usually described by a 

set of differential equations. Under such process, the initial value Xk is 

given by 

(k = n-1, ···, 1) (2. 3) 

From Eqs. (2. 2) and (2. 3), the criterion function G,, may be written as 

(2. 4) 

For a deterministic control process, the optimum design problem can be 

regarded as the minimization problem of a function of n-variables. The 

sequence of control signals, (y,,, Yn- 1 , ···, y 1) which yields the minimum value 

of criterion function is referred to as an optimum policy. The usual approach 

to the solution of the n-dimentional minimization problem yields a solution 

in the n-dimentional form. Then we cannot apply the routine technique of 

setting partial derivative equal to zero, unless Gn is a function of particularly 

simple form. As will be shown, the dynamic programming approach will 

yield a sequence of solutions; first, the choice of y 1 , then the choice of Y2, 

and so on. 

First consider a single-stage decision process. The criterion function over 

the interval (n-l)TstsnT is given by 

(2.5) 

It is easy to obtain the control signal y 1 in order to minimize Eq. (2. 5). 

Since the minimum value of the criterion function is a function of the initial 

value x 1 and the reference input r 1 , it may be written as 

fi(x,, r,) = min[Gi(y1 , x 1 , r 1)] 

Yt 

= min[g(Yi, Xi, ri)J 
Yi 

(2. 6) 

Next, consider a two-stage decision process. From Eq. (2. 2) the criterion 

fup.ctiol}. oyer the iQterv~l (n-2)Tst-;;,nT is given by 



16 Shigenori HAYASHI and Takao OKADA 

(2. 7) 

The optimum design problem is to choose a sequence of allowable control 

signals y, and y 2 in order to minimize Eq. (2. 7). From Eq. (2. 3), x, is expressed 

by a function of the control signal y 2 and the initial value X2. Then, the 

minimum value of Eq. (2. 7) can be written as 

Yz,Y1 

(2. 8) 

Using Eqs. (2. 6) and (2. 3), the above equation yields 

= min [g(Y2, X2, r2)+ /, {h(Y2, X2), r,)] (2. 9) 
Y2 

In the same manner, the minimum value of the criterion function over 

the interval OstsnT may be written as 

where 

fn(Xn, rn,···, r 1) = min [g(Yn, Xn, rn)+ fn-/Xn-1, Tn-1, ···, r,)] 
Yn 

for n=2, 3, .... 

(2.10) 

(2. 11) 

The term, g(Yn, Xn, rn), on the right-hand side of Eq. (2.10) is the criterion 

function over the interval Osts T and the term, fn-lXn-,, rn-,, ···, r 1) repre

sents the minimum value of the criterion function for the final (n~ 1) stages. 

And Eq. (2. 10) represnts the concept of the principle of optimality2i. Eq. (2. 10) 

shows that the n-stage decision process is reduced to a sequence of n-single

stage decision processes. 
Hence, it is shown that the optimization problem can be solved in an 

iterative manner. From the recurrence relations of Eqs. (2. 10), (2.11) and 

(2. 6), we can inductively obtain the sequence of minimum criterion functions 

(2.12) 

and the sequence of optimum control signals, i.e., the optimum policy for 

the n-stage decision process. 

(2. 13) 

Using Eq. (2.3),Yn,Yn-,,···,y 1 are functions of the initial value xn att=O 

and the sampled values rk's of the reference input. Then, if the reference 

input is known, the sequence of optimum control signals is determined from 

Eqs. (2. 3) and (2. 13). 
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3. Optimum Design for the Deterministic Case7
) 

In this section, for simplicity a design procedure is discussed for a single

variable control system. The reference input is assumed to be a step function 

with the magnitude r. It is assumed that th.e controlled element is preceded 

by a sampler and a zero-order hold circuit shown in Fig. 3.1 so that the 

Control 
Input Sampler signal Output 
~ zero-order Controlled w hold circui element 

feed back 

Fig. 3. 1. Sampled-data control system with hold 
circuit. 

input into the controlled element over one sampling perod is constant and 

equal to the magnitude of the control signal at a sampling instant. Therefore, 

the criterion functions over the interval OstsnT and the interval (n-k)Tst 

s(n-k+l)T, respectively, may be written as 

(3. 1) 

and 

g(yk, Xk, r) = r {r-d,0l(r)}2dr 

= r{eh)} 2dr (k = n, n-1,···, 1) (3.2) 

where eir) and cl,0l(r), respectively, are the error and the output over the 

interval (n-k)Tsrs(n-k+l)T and r is measured from the beginning of every 

sampling period. The controlled element is assumed to be described by an 

mth order differential equation with constant coefficients, i.e., the controlled 

element is assumed to be of mth order. Usually, the output of the controlled 

element, cC0)(r), the first derivative of the output, cc1l(r), ··- and the (m-l)th 

derivative of the output, ccm-1l(r), are selected as the m components of the 

state variable c(r), and the corresponding initial values can be expressed by 

xeil's. Then, the system output cj,0l(r) can be written as 

(3. 3) 

where r is measured from the beginning of the sampling instant. Substituting 

Eq.. (3. 3) into Eq. (3. 2), the criterion function g(yk, xk, r) yields 

(3.3) 
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where Ai(xk, r) is a quadratic form of r and xC,,1''s, B 1(xk, r) is expressed by 

a linear combination of r and xC,,"'s, and C1 is a positive constant. The initial 

values xC,,'''s are given by 

(i = 0, 1,···,n-1) (3. 5) 

and by differenciating Eq. (3. 3) successively, cC,,0 (-r)'s can be obtained, then 

cc,,''(-r) is also expressed by the linear combination of Yk and xC,,"'s. 

Now, consider a single-stage decision process, that is, the interval 

(n-l)T5:.t5:.nT. The criterion function is given by 

(3. 6) 

which is a quadratic equation of y1 and C1 is a positive constant, then the 

control signal ji1 minimizing Eq. (3. 6) and the minimum value of Eq. (3. 6) 

become, respectively, 

(3. 7) 

and 

f,(x1, r) = g(.Y1, X1, r) 

= Ai(x1, r)- {B(x1, r)}2/C1 (3.8) 

Next, consider the criterion function over the interval (n-2)T5:.t5:.nT. From 

Eqs. (2. 9), (3. 4) and (3. 8), the minimum value of the criterion function can 

be written as 

fix 2 , r) = min [g(y2, X2, r)+ /i(x1, r)] 
:Y2 

= min [Ai(x2, r)-2Bi(x2, r)y2+C 1y~+A1(X1, r)-{Bi(x1, r)}2/C1] (3. 9) 
:Y2 

In Eq. (3. 9), the components of the initial value x 1 are expressed by a linear 

combination of y2 and x~0 's from Eqs. (3. 3) and (3. 5), then Eq. (3. 9) can be 

written as 

(3. 10) 

where Az(x2, r) is a quadratic form of r and x~0•s, Bz(x2, r) is expressed by a 

linear combination of rand x~0 's and C2 is a positive constant. From Eq. (3.10), 

we can obtain the optimum control signal ji2 and the minimum criterion 

function fz(x2, r) as follows. 

(3. 11) 

and 
(3.12) 

In the same manner, the recurrence fQrmµl~ for the n-sta~e deci~io:q 

process may be written ~!'J 
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f,.(x,., r) = min [g(Yn, x,., r)+ fn-,(Xn-1, r)] 
Yn 

= min [A,(x,., r)-2B,(x,., r)y,.+C1 y;; 
Yn 

+ A,.-,(Xn-1, r)- {Bn-iXn-,, r)} 2/C,.-,] 

= min [A,.(x,., r)-2Bn(Xn, r)yn+Cny;;] 
Yn 

(3.13) 

where An(x, r), Bn(x, r) and Cn are expressed by the same forms as A,(x, r), 

B,(x, r) and C,, respectively. Then, the optimum control signal Yn becomes 

(3.14) 

From Eq. (3. 14), the optimum control signal Yn is given by the linear com

bination of the reference input r and the components of a initial value, x~0 •s. 

From the above discussion, we can obtain the sequence of optimum con

trol signals 

Yn , Yn-1, 0 

"

0 

, Y2, Y, (3.15) 

where 

Yn = B,.(x,., r)/Cn l 
Yn-, = Bn-,(Xn-1, r)/Cn-1 = Bn-1 {h(y,., x,.), r} /Cn-1 
.................................... 
y, = B,(x,, r)/C, = B, {h(y2 , x 2), r} /C, 

(3. 16) 

It is shown that optimum control signals given by Eq. (3.15) can be expressed 

by a linear combination of the magnitude of the reference input r and the 

components of the initial value at t=O, x~0 •s (see Appendix). But as seen 

above, for example, in Eq. (3.11) or Eq. (3. 14), the optimum control signal at 

any sampling instant consists of a linear combination of system variables 

at that instant and the reference input. These facts suggest the configuration 

of the optimum controller. Therefore, it is more important to determine 

Bk(x, r)/Ck, (k=l, 2, ···, n) given by Eq. (3.14) than to get the control signals 

Yk's expressed by the function of the reference input r and the initial value 

at t=O, x,.. The optimum controller can be designed as shown in Fig. 3. 2, 

fig. 3. 2. Block diagram of the optimum srstem, 
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in which the coefficients ak and /3 are constant over every sampling interval 
and vary at every sampling instant. Then, the optimum control system is 

a time-varying system and this result is the same as derived by some other 
au thors5),G). 

4. Optimum Design for the Stochastic Case8) 

In the previous section, the input signal has been considered as a de

terministic, or a known function of the time. In many cases of practical 

interest, this is not the case and the input signal must be considered to be 

a random function of the time. In this section, assume that the distribution 

function for the sampled values, rk's of 

the reference input signal is known, and 

for simplicity, consider the staircase 

random input r(t) as a reference input 

for the design in place of the continuous 

random input R (t). As shown in Fig. 4. 1 

Continuous Staircase 
romdon Sampler...----.--, random 
input / zero-order input 

R( t) T hold circui r( t) 

Fig. 4. 1. Generation of the staircase 
random input. 

the staircase random input r(t) is taken as the output of zero-order hold 

circuit, when the continuous random input R(t) applies to the sample-hold 

circuit. Fig. 4. 2 shows the relation between these random inputs. In order 

~o-~~ 
-t T 

Fig. 4. 2. Continuous random input R(t) and staircase 
random input r(t). 

to make the analogy with the previous discussion of the deterministic control 

process, let us parallel the route followed in the previous section. 

Now, for simplicity of descriptions, by defining 

(4. 1) 

as the state variable, the criterion function over the interval (n-l)TstsnT 

given by Eq. (3. 6) can be written as 

(4. 2) 

where µ is the mean value of sampled values of the random reference input, 

"'" expresses the symbol representing the transposed matrix and A,, B, and 

C1 are an (m+2)x(m+2) matrix, an m+2 dimensional column vector and a 

real number, respectively. 



Optimum Sampled-Data Control System Design by Dynamic Programming Technique 21 

Consider the single decision process. Since we can assume that the 

sampled value of the input at t=(n-l)T, r1 is known, the control signal y1 

minimizing Eq. (4. 2) and the minimum value of Eq. (4. 2), respectively, can 

written as 

(4. 3) 

and 

/r(X1) = g(y,, X1) = Xi'[A 1-(Bi'B1)/Ci]X, 

= [r1 xi'][a', b1J[r1] 
b, d 1 x 1 

= rra,+2r,b,x,+xi'd1X1 (4. 4) 

where a1 , b1 and d 1 are a real number, an m+l dimensional column vector 

and an (m+l)x(m+l) matrix, respectively. Let <p(r1) be the probability distri

bution function for sampled values of the reference input r1 and if the mean 

value and the variance of the input r1 are given by µ and a2, the expected 

value of Eq. (4. 4) becomes 

Fi(x 1) = [=fr(X,)<p(r1)dr1 = fl/,(X,)] 
I 

= (µ 2 +a2)a1 +2µb1x 1 +x/d,x, 

= a2a1 +xi'H1x 1 (4. 5) 

where E[] expresses the symbol representing the expected value and H, is 

an (m+l)x(m+l) matrix and is given by 

(4. 6) 

From Eqs. (3. 3) and (3. 5), the initial value at t=(n-l)T, x, can be written as 

(4. 7) 

where h is called the state transition matrix and depends only upon the 

dynamic behaivor of the controlled element. By using Eq. (4. 7), the second 

term of the right-hand side of Eq. (4. 5) becomes 

(4. 8) 
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where h, H 1p, H 1q and H 1,. are an (m+l)x(m+2) matrix, an (m+2) x (m+2) 

matrix, an m+2 dimensional column vector and a real number, respectively. 

Using Eqs. (4. 5) and (4. 8), we shall obtain the minimum expected value of 

integral squared error over the interval (n-2)TstsnT as 

FiX2) = E[min {g(y2, X2) + Fi(x 1)}] 
,.2 Y2 

= E[min {a2a1 +XfA2X2-2B2X2Y2+C2yi}] 
,.2 Y2 

(4. 9) 

where 

(4.10) 

If we assume that the reference input at t=(n-2)T, r 2 is known, the optimum 

control signal y2 can be otained as 

(4.11) 

In the same manner, consider then-stage control process. The recurrence 

formula may be written as 

(4.12) 

Therefore, by the same method as mentioned above, the minimum expected 

value of integral squared error over the total interval can be obtained as 

n-1 
Fn(Xn) = E[min {a2 I:: ak+X~nXn-2BnXnYn+Cny;}] 

,.n Yn k=l 

n-1 
= E[a2 I:: ak+ r~an +2rnbnXn +x~dnxn] 

,-n k=l 

n-1 

= a2I:: ak+x:.HnXn 
k=I 

(4.13) 

where An, Bn, Cn etc. are given by the recurrence formula in Eq. (4. 17). And 

the optimum control signal Yn can also obtained as 

(4.14) 

From the above discussion, the sequence of optimum control signals, i.e., the 

optimum policy for the n-stage control process can be written as 

(4.15) 

where 

(k = n, n-1, ... , 1) (4. 16) 
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In Eq. (4.16), Bk and Ck can be obtained from the following recurrence 

formulas: 

[

Hk-1,p H~-1,(J] = [ ~····;······· ... O l 
; hHk-1h 

Hk-1,q Hk-1,r 0 

(4.17) 

Ak = A1 + Hk-1,p 

Bk = B1 - Hk-1,(J 

ck= C1 + Hk-1,r 

(k = n, n-1,···,l) 

where A1, B1, C1 and h depend only upon the dynamics of the controlled 

element. 

From Eq. (4.17), B 1 , C1 ; B 2 , C2 ; ••• can be successively evaluated. It is 

observed that the optimum control signal Yk given by Eq. (4.16) can be 

expressed by a linear combination of rk, µ and xl,tl•s. Therefore, the controller 

can be realized by the similar configuration as shown in Fig. 3. 2. The 

difference in Eq. (4.16) from Eq. (3.14) is to add the term for the mean value 

of a random input, µ. If the mean values of random inputs are equal to each 

other, the optimum controllers are same regardless of the type of a probability 

distribution function of the input. Forthermore, it is shown that the function 

BkXk!Ck converges to any function having the form, BX/C, as k approaches 

infinity. If the control system operate for a long time, the optimum control 

signal can be approximately represented by 

(k = n, n-1, ···, 1) (4.18) 

In this case, the control system is called a quasi-optimum control system 

and time-invariant. As will be shown in the following section, it can be 

considered as a good approximation of the optimum system. 

5. Examples and Discussions 

(a) Design for a first order controlled element 

Consider the control system shown in Fig. 5. 1. First, we assume that 
the reference input is a step function. The dynamic characterization of the 

controlled element over any sampling interval is described by the first order 

differential equation 
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Computer 
I-EST 
s 

Fig. 5. 1. Sampled-data control system with a first 
order controlled element. 

ic(r)+ac(r) = ay 
dr 

(5.1) 

where a and y are constants. The solution of Eq. (5. 1) can be obtained as 

(5. 2) 

where x is a initial value at r=O. By using Eq. (5. 2), the integral squared 

error over the interval Os rs T is obtained as 

where 

g(y, x, r) = Ai(x, r)-2B,(x, r)y+C,y2 

Ai(x, r) = {aTr2-2(1-c-aT)xr+(1-cwT)x2/2} /a } 
B,(x, r) = {(aT+c-aT -1)r-(1-caT)2x/2}/a 

C, = {(aT+caT -l)-(l-c-aT)2/2}/a 

(5. 3) 

(5. 4) 

Now, consider a single-stage decis~on process. From Eqs. (5. 3) and (5. 4), 

the optimum control signal j\ minimizing the integral squard error over the 

interval (n-l)TstsnT and the minimum integral squared error may be 

written as 

and 

where 

y, = (p,r+q,x,)/l, 

f,(x,, r) = a,(r-x,)2/a 

P, = 2(aT+c-aT -1) l 
q, = -(l-c-aT)2 

l, =P,+q, 

a,= aT-py/2!, 

(5. 5) 

(5. 6) 

(3. 7) 

Using Eqs. (5. 2), (5. 3) and (5. 6), the terms, Az(x2 , r), Bz(x2 , r) and C2 in Eq. (3.10) 

are determined as follows : 

Ah2, r) = [aTr2-2(1-caT)x2r +(1-£-aT)xV2 l 
+a,(r2-2CaT X2r+ €-aT X~)]/ a 

B2(X2, r) = [(p,r+q,x2)/2-a, {2c-aT(1-c-aT)x2-2(1-caT)r) /2]/a 

C, = [l,/2+(1-c-aT)2a,]/a 

(5. 8) 

Hence, in the same manner as described in Section 3, we may determine 
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Yz, Ys, .. · and fz(xz, r), fixs, r), · · ·, succesively. Therefore, the optimum control 

signal Yn and the minimum value of the criterion function over the total 

interval can be obtained as 

and 

where 

Pn = P1 +2(1-caT)an-1 } 

qn = qi -2€-aT(l-c-aT)an-1 

ln = Pn+qn 

an= aT+an-1-P;./2ln 

(5. 9) 

(5.10) 

(5. 11) 

We can successively determine the sequence of optimum control signals, 

( Yn, Yn- 1 , • • ·, ji1), by the recurrence formulas of Eqs, (5. 9), (5. 11) and (5. 7). 

a 
S+o 

Fig. 5. 2. Realization of optimum control system. 

20----------------, 

10 

C 5 
~ 

3 

2 

0.5l__ _ _J___J__j_...L...J.--L.L.J....1._ _ __.___J'---l----'----'-'--'-'-' 

0.1 0.2 Q3 Q5 I 2 3 5 10 
oT 

Fig. 5. 3. Condition for an optimum response of 
the control system shown in Fig. 5. 1. 
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The block diagram of the optimum control system can be shown in Fig. 5. 2, 

in which switches S1 and S2 shift synchronously with the sampler S to the 

direction of arrows. Figs. 5. 3 and 5. 4 indicate p,./1,. and a,. given by Eq. (5.11), 

respectively. The terms, p,./l,. and a,., converge to the costant values, p/l 
and a, as n increase infinity, then the quasi-optimum controller can be con

structed by simple circuits shown in Fig. 5. 5 and the quasi-optimum system 

is time-invariant. 

C 

'tS 

0.3 

0.2 

0.1 

0.05 

0.03 

0.02 

0.01 ~-~~~__,___.__._._..._.__ _ __.__..__.__._ .......... ...L.U 

0.1 Q2 0.3 0.5 I 2 3 5 10 
aT 

Fig. 5. 4. ak given by Eq. (5. 11). 

Fig. 5. 5. Quasi-optimum control system. 

Next, consider obtaining the optimum control law for the stochastic input. 

We assume that the probability distribution function for the sampled values 

of the reference input is the normal distribution, N(µ, a2
). In this example, 

the terms, X, Ai, B1 , C1 and h may be written as follows: 

-(1-c"T) 

(1-c-2"T)/2 

0 
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B1 = [(aT+c 0 T-1) -(l-c-0 T)2/2 0]/a (5.12) 

= [pf qf sf]/a 
Cn = {aT+c-aT _1-(l-c0 T)2/2}/a 

= lUa = (pf +qf)/a 

h = [c;T ~ 1-~-aT] 
As mentioned in Section 4, the optimum contol signal over the interval 

(n-k)Ts;,ts;,(n-k+l)T may be written as 

(5.13) 

By making use of Eq. (4. 17), PL qL s~ and n can be determined by the 

recurrence formulas : 

where 

p~ = pf 
q~ = qf -(1-E-aT )c-aT T k-1 

s~ = sf-(l-c-0 T)(8k-1 + 7/k-1) 

l~ = I{ +(l-c-0 T)2n-1 

ak= aT-p?m 
8k = -(1-E-aT)-p,qUl, 

Tk = (1--E20T)/2+c-20TTk-1 +q,2/n 
<:k= -PMm 
7/k = c 0 T(8k-1+7Jk-1)-qM/l~ 

f k = ak-1 + 'k-1 +2( k-1 -s,2/l~ 

(5.14) 

Fig. 5. 6 shows p,m, q,m and s£/l' as a function of aT. These values con
verge to the constant values as k approaches infinity, then the quasi-optimum 

control system can be realized with a simple configuration. In Eq. (5.13), 

the coefficient of initial value, qUl£ is the same as qk!lk in Eq. (5. 9) obtained 

for the deterministic case and (p,+sD/l' is equal to ftkllk in Eq. (5. 9). There
fore, if µ is taken equal to rk in Eq. (5.13), Eq. (5.13) coincides with Eq. (5. 9). 

From Eq. (4.13), the expected value of the integral squared error, Fn(Xn) is 

given by 

(5.15) 

where 
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Fig. 5. 6. Conditions for an optimum response of 
the control system shown in Fig. 5. 1. 

H (nl] _ [H<nl 12 - 11 

H';.'d Hfi 
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H (n) 

11 

(5.16) 

when the control system operates for a long time, the expected value of the 

integral squared error over one sampling period is equal to ana2 and it is 

1.0 

0.8 

0.6 

$ 
0.4 

0.2 

00.1 

k=I 

0.2 0.3 0.5 
aT 

Fig. 5. 7. ak given by Eq. (5. 14). 

proportional to a variance 

of the reference input, a2• 

Fig. 5. 7 shows the relation 

between aT and ak. For the 

comparison of performances 

between the optimum sys

tem and the quasi-optimum 

system, the expected values 

of the integral squared error 

of both systems are shown 

in Fig. 5. 8. It is clear that 

the quasi-optimum system is 

a good approximation of the 

optimum system. 
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10.---------------------, 
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aT 
Fig. 5. 8. Expected values of integral squared 

error of optimum and quasi-optimum 
control systems. 

r 
Computer 

1-E-aT 
s 

(b) Design for a second order 

controlled element 

Consider the control sys

tem with a second order 

controlled element shown in 

Fig. 5. 9 and assume that the 

reference input is a step 

function. The optimum con

trol signal over the interval 

(n-k)Tsts(n-k+l)T can be 

obtained as 

Fig. 5. 9. Sampled-data control system with a 
second order controlled element. 

where xk and :fk are the 

intial values of a system 

output and its derivative, at 

t = (n-k) T. The terms, Pr 
and q~' are also given by the 

similar recurrence formulas 

and, as shown in Fig. 5. 10, 

these terms converge to 

constant valve when k ap

proaches infinity. If we as

30.-----.n--......------------, 

20 

2 

' ' ' ~' ', 
~~ ' '~~, ', 

"' '\~ 
" 

k= 

kM---~'""''' 

r:f: -
k 

q;: ----

Fig. 5. 10 Conditions for an optimum response of 
the control system shown in Fig. 5. 9. 

imme that a derivative of the output, i:(t) is measureable1 the optimum and 
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quasi-optimum controls can be achieved by the similar configurations as the 

previous example. 

(c) Design for a ramp input 

Consider the optimum design for a ramp input. In this case, the optimum 

control signals for the system shown in Fig. 5. 1 can be obtained as 

Yk = (hrk+qkxk+hkr'T)/lk (k = n, n-1, ···, 1) (5. 18) 

where rk and xk are respectively the reference input and the output at 

t=(n-k)T and r' is a slop of a reference input. In Eq. (5.18), Pk, q,. and t,. 
is given by Eq. (5. 11) and hk is obtained as 

(5. 19) 

where 

(5. 20) 

The responses for a ramp input are illustrated in Fig. 5.11, where these 

responses A and B are corresponding to the optimum systems for a step 

input and· for a ramp input, 

respectively. In the case of the 

optimum system for a ramp 

input, the system has a zero 

steady state error, but the error is 

not zero in the optimium system 

for a step input. 

6. Conclusion 

A method for designing an 

optimum sampled-data control 

system has been introduced. The 

controller designed in this paper 

3 

(.) 2 

Fig. 5. 11. Responses of the control system 
shown in Fig. 5. 1 for a ramp input. 

is optimum in the sense of the minimum integral squared error for a de-

terministic case or the minimum expected value of integral squared error 

for a stochastic case. By use of dynamic programming technique, it is shown 

that the optimum control law is a function of the state variables of the 

system and the over-all optimum system is a time-varying system. However, 

when the control system operates for a long time, the quasi-optimum control 
system having a simple configuration can be con$idered as a good approxi

plati<;>t;i of the optimum system, 
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Appendix 

From Eq. (3. 16), ji., and Yn- 1 can be written as 

ji., = [d~
01

d~n ... d~m--lld.,][xt ] 

xt-1) 

r 

Y- - [d(O) am ... a<m--lld ][x(O) ] n-1 - n-1 n-1 n-1 n-1 n--1 

X
'(m-1) 
n--1 

r 

where d~01, d~n, ... , d.,; d~1 , d~1 , ... , d.,_ 1 are constants. 

x~1's in Eq. (A. 2) yields 

where 

b&0>(T) 

b&ll(T) 

b&.,.:..ll(T) 

Substituting Eq. (A. 3) into Eq. (A. 2), Yn- 1 becomes 

(A.1) 

(A.2) 

By using Eq. (3. 3), 

(A. 3) 

(A. 4) 

m-1 m-1 m-1 

Yn-1 = ji.,f.jd~1a<1l(T)+[~
0
di\b&0 (T) ··· ~

0
d~.:..1b~1(T)][~~Ol ]+dn-1Y 

. x~m--ll -

(A. 5) 

J3y- use of Eq. (A. 1), Eq. (A. 5) y-ield§ 
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m-1 m-1 

+ ~o d!;l.1b':.2-1(T)+dn ;~ d~1:21ac 1
)(T)+dn-,][~~o) ] 

x~m-1) 

r 

(A. 4) 

In the same manner, we can derive .Yn-,, Yn- 2 ,···,ji1 expressed by a linear 

combination of r and x~0 's. 


