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This paper presents a method for the approximate solution of the differen
tial equations of the Mathieu-Hill type. 

This method is based on the analytical method of the Periodically Inter
rupted Electric Circuits. 

The second-order differential equations with periodic coefficients, considered 
in this paper, are represented by the general form: d2y/dz2 + f(z)y=O, where 
f(z) is a single-valued periodic function of fundamental period Zp, when 
f(z) =a+ 16q cos 2z, it is known as Mathieu's differential equation. 

Based on the procedure in this paper, the periodic function f(z) is subdivided 
into m functions, / 1(z), ... ,f,(z), ... Jm(z), each of which has a different interval 
z,, (r=l, 2, ... , m) for one period Zp of f(z). Namely the function f,(z) repre
sents the linear approximation of f(z) in each interval, that is, f,(z) =2cz+d, 
O~z~z,, (r=l, 2, ... ,m) where the values of c and d are constant. 

From this practical linear approximation, the present method is adequate 
for the determination of the approximate solution of the differential equations 
of the Mathieu-Hill type and this method has certain advantages, especially 
for the stability of the solution and also the transient solution. 

The stability chart for Mathieu's differential equation is obtained and 
plotted for the ranges of -3~a~34 and O~q~2. This result is very well 
coincident with Ince's numerical one computed for the range of q=O to 5.0. 

The obtained solutions and their numerical results may be extensively 
accurate. And the procedure considered in this paper is useful for the mathema
tical analysis of a large class of physical problems. 

1. Introduction 

33 

The mathematical analysis of various physical problems in many cases 

leads to linear differential equations with constant coefficients. However we 

often encounter types of physical problems whose mathematical procedures 

have to solve the linear differential equations with periodic functions or the 

nonlinear differential equations, for example, a boundary-value problem and 

an initial-value problem in which several important problems are involved: 

the propagation of wave, the parametric excitation of electric circuits, the 

* pepartment of Electrical En?ineerin~, II, 
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theory of the stability of the solutions of certain nonlinear differential 

equations and so on. In these cases the linear second-order differential equa

tions with periodic coefficients of the Mathieu-Hill type may represent a 

mathematical model of physical problems from a mathematical analysis point 

of view. 

The Mathieu's differential equation takes the form 

d2y 
dz 2 +(a+l6qcos2z)y = 0, 

where the parameters a and q are limited to real numbers. 

The stability investigation of this equation has been extensively discussed 

in the mathematical literature1
) and many efforts have been especially made 

to contribute to a solution with period TC or 2TC which is said to be neutral, 

but may be regarded as a special cases of a stable solution. 

These periodic solutions with period TC or 2TC are, by definition, called the 

Mathieu functions. In order that such solutions may exist, the coefficient a 

must be the definite value for a given q for each Mathieu function. 

The characteristic curves showing the relation between a and q satisfy

ing the Mathieu functions are called the stability chart for Mathieu's dif

ferential equation. 

To obtain Mathieu functions, in general we must be required to solve 

an eigen-value problem of a homogeneous integral equation with symmetrical 

kernel, but it is generally difficult to find its solution. Therefore in practice 

the Mathieu functions may be given only in the special case where the eigen 

value and the eigen function of this integral equation could be the infinite 

power series of q when I q I is sufficiently small. 

As a consequense, the Mathieu functions are developed as the Fourier 

series (see Appendix 1) and also for a given q the difinite value of a is given 

by the power series of q for each Mathieu function. 

It is therefore evident that the obtained Mathieu functions by those pro

cedure may be not so accurate and that these approximate solution could be 

available only for a sufficiently small value of q. 

The method of finding the unstable solutions of Mathieu's differential 

equation which is introduced by Whittaker is expedient only for small values 

of lql. 
It has been difficult to find the adequate method for the solution of 

Hill's differential equation and if the values of a and q are much larger 

ones, the method to solve Mathieu's differential equation is not founq 

presently. 
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This paper presents a method for the approximate solution of the dif

ferential equations of the Mathieu-Hill type. 

This method is based on the analytical method of Periodically Interrupt

ed Electric Circuits.2
) Based on this new procedure, the transient and the 

' 
steady-state solutions of the differential equations of the Mathieu-Hill type 

I 

in general are easily derived and relatively is valuable and accurate as: will 

be indicated in the following sections. 

It is especially noteworthy that the stability criterion for Mathieu's! dif

ferential equation is uniquely determined and that the relation between a 

and q of Mathieu's differential equation corresponding to the Mathieu fltmc-
' tions, that is, the stability chart for Mathieu's differential equation is illustrat-

ed for the ranges of -3;;;;a;;;;34 and O;;;;q;;;;2. 

2. The Use of the Analytical Method of Periodically Interrupted Electric 

Circuits 

The second-order differential equations with periodic coefficients, consider

ed in this paper, are represented by the general form : 

d2y 
dz2 + f(z)y = 0 ( 1) 

where f(z) is a single-valued periodic function of fundamental period Zr as 

shown in Fig. 1. 

If f(z) is represented by a general series of the form 

f(z) = ao+2a1cos2z+2a2 cos4z+···, 

then Eq. (1) is known as Hill's differential equation. 

If f(z) reduces to the simple form 

f(z) = a+16qcos2z, 

then Eq. (1) is known as Mathieu's differential equation. 

Now Eq. (1) can be written of the matrix form 

'[ D f(z)][ y(z)] = [ 0] 
-1 D y(z) 0 

where D=d/dz and y(z)=dy(z)/dz. 

( 2) 

( 3) 

(4) 

Based on the procedure in this paper, the periodic function f(z) is subdi

vided into m functions, fi(z), ···, fr(z), ···, f m(z), each of which has a different 
interval z,., (r=l, 2, ···) for one period Zr of f(z) as shown in Fig. 1, where 

one period Zr of f(z) is called as one stage and a duration of z,. as an r-th 
mode according to the circµit theories used in this pape~, 
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~-------------Zr ____________ .., 

2 ·I· m I:- Mode 

n - I n n + I - Stage 

Fig. 1. Periodic coefficient /(z) and its linear approximation /,(z). 

The linear approximation of f(z) in the r-th mode is expressed in the 

form 

r r--1 
/( I:; Z;) - /( I:; Z;) r-1 

f ,(z) = l=l •=l ·z + f( I:: Z;) 
Zr i=l 

= 2cz+d (5) 

where 

1 { r r-1 } 
C = 2Zr f( i~ Z;)- f( ~ Z;) , 

r--1 
d = f( I:: Z;) 

i=l 

and the ongm of z in Eq. (5) is placed on the initial instant of the r-the 

mode as illustrated in Fig. 2. 

Consequently, the differential equations of the Mathieu-Hill type can be 

~et up as follows1 for th(;! r-t}J mQq~ ii). the n-th stage 
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f(z) 

-----'--------~---z 
0 Zr 

Fig. 2. Linear approximation f,(z) in r-th mode. 

[ D Jr(z)][Ynh)] = [OJ 
-1 D Ynh) 0 ' 

( 6) 

where Yn,.(z) may be an approximate solution at the r-th mode in the n-th 

stage and the origin of z is also placed on the initial instant of the r-th mode 

and /,.(z) is given by Eq. (5). 

Eq. (6) is rewritten in the another form 

!!_[yn,.(z)]+[ 0 f,.(z)][yn,.(z)] = [o]. 
dt Yn,.(z) -1 0 y,.,.(z) 0 ( 7) 

Hence Eq. (7) is the linear first-order differential equation with variable 

coefficients, the solution of Eq. (7) may be expressed in the matrix notation 

[ Ynr(Z)] = exp {- fz[~ f,.(z)]dz}[y~] 
Yn,.(z) Jo 1 0 Ynr 

- CA(Z)) [ y;J] -e . -o' Ynr 
O~z~z,., (r=l, 2, ···, m, n = 1, 2, ···) ( 8) 

where [Y~]=[Yn,,--i((z,.-i))] are the initial values at the r-th mode in then-th 
Ynr Yn,r-1 Zr-1 

stage and as a consequense of Eq. (5) we have 

( 9) 
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Now the matrix exponential function of exp {[A(z)]} in Eq. (8) will reduce 
to the available matrix form as follows. 

The characteristic function of the matrix [A(z)] is give by 

o(a)= la[U]-[A(z)]I = 0 (10) 

where [U] is a unit matrix, then substituting Eq. (9) into Eq. (10), we have 
I 

I 
a (cz

2

+dz) I = 0 . (ll) 
,Z a 
i 

Obtaining a from Eq. (11}, the latent roots ;ai(z) and aJz) of the matrix 
I 

[A(z)] have the following valtjes: 

if cz+d~
1

0, 

then 

where 

and if 

then 

( = (3i) } 

aJz) = -z✓cz +di (= - (3i) 

i = -1, 

cz+d<O,! 

ai(z) = z✓ -(cz+d) (= r) } 

aJz) = -z✓ -(cz+d) (= -r). 

(12) 

(13) 

Now by the use of the Sylvester expansion theorem (see Appendix 2), 

the matrix exponential function of exp {[A(z)]} =[X,.(z)] within the r-th mode 

in Eq. (8) is given by the following:! 

if 

then 

and if 

then 

cz+d~O, 

_ [cos /3 -(✓ cz +d) sin /3] [X ,.(z)] - __ , 
(✓ cz +d)-1 sin /3 cos /3 

(14) 

cz+d<O, 

[
cosh r ✓ -(cz + d) sinh r] 

~hD= --- . 
(✓-(cz+d)-1 sinh r cosh r 

(14') 

Hence as a consequence of Eq. (14) and Eq. (14'), Eq. (8) is rewritten in 

the form 

[ Ynr(Z)] = [X,.(z)J[Y:], 
Ynr(Z) Ynr 

(15) 

The matrix of the initial values of Eq. (15) is evaluated by the following 

recurrence formulae in matrix notation, under the condition of being con
tinious with respect to the initial values at the transition instant of each mode, 
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[ .Y~] = [X r-1 (Zr--1)][ .Y~;-1 
] 

Ynr Yn,r-0 

= [X r-1 (Z,-1)] [X r-2 (Z,-2)] .. · [x(z1)] [ .Y~~l. 1 
] . 

Yn----1,l 
(16) 

In addition, the following relation is satisfied 

(17) 

where [B] = [X m(Zm)][x m-iCZm-1)] .. {X i(z1)]. (18) 

Consequently, with above relations in mind, the general solution can be 

written as 

[ .Ynr((z))] = [X ,(z)][X ,-iCZ,-1)][X r-lZr-2)] · · · [X iCz1)][BJ"-1[ j~~], 
Ynr Z Yn 

O~z~zr, (r=l, 2, ... , m, n=l, 2, ···) (19) 

where j 1f and y1f are the given initial values. 

Thus we get finally the transient and the steady-state solutions subject 

to arbitrary initial conditions from Eq. (19). 

We shall now discuss the stability of the solution under consideration. 

The criterion is established under the presumption that the solution 

should be supposed to be stable so long as the factors containing the initial 

values of the system variables vanish away gradually from the solution as 

time goes. 

Accordingly, in our case, the stability criterion may be achieved by 

examining the initial matrices of Eqs. (16) or (17), whose values must be 

limited ones for the stable solution. 

As was well-defined in References 3, it is evident that the necessary 

and sufficient condition that the solution should be stable is that the absolute 

values of all the latent roots of [B] should be less than unity, or in other 

words, that all the latent roots should lie inside the unit circle on the com

plex domain with its center at the origin. 

Let ;(1 and ,l.2 be the latent roots of 2 x 2 matrix [B], the stability of the 

solution can be examined and summarized by the following procedures in 

the present case : 

1). When I ..:l1 I > I A2 I. 
The powers of the matrix [B] as following [BJ"-1 can be represented by 

the use of the Sylvester expansion theorem of the form 

(20) 
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Therefore upon inspection of Eq. (20), the following three cases are deri

ved for the stability criterion when I tl, I > I ,l2 I. 
(a). If ltl,I <1, 

then 

and the solution is stable. 

(b). If ltl,I >l, 

then 

and the solution is unstable. 

(c). If ltl,I =l, 

then 

lim [B]n-, = [O] , (21) 
H➔oo 

(22) 

(23) 

and the solution represents the equilibrium state between the stable and 

the unstable ones, or it is said to be neutral and regarded as a special case 

of a stable solution. 

2). When I tl, I = I tl2 I and tl, =i= tl2. 
Accordingly in a similar way, in this case we have 

then the stability criterion is given by the following three cases. 

(a). If ltl,l=ltl2l<l, 
then the solution is stable. 

(b). If IJ,I = IJ2I >l, 
then the solution is unstable. 

(c). If ltl,I = ltl2l =1, 
then the solution is neutral. 

3). When IJ,I = ltl2l and tl,=tl2. 

(24) 

By the use of the generalized Sylvester expansion theorem,4J the matrix 

[B]"-1 in this case is written of the form 

lim [B]n-, = -(n-l)x1- 2 {,l1[U] -[B]). (25) 
H➔oo 

Similarly, by inspecting Eq. (25), we can easily find the same stability 

criterion in this case as the conditions of (a), (b) and (c) in the former case 2). 

3. The Stability of Mathieu's Differential Equation and Numerical 

Results of its Transient Solutions 

In this section in order to illustrate the method given in the previous 
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section, the stability of Mathieu's differential equation is examined and the 

numerical results of the stability chart and the transient solutions of 

Mathieu's differential equation are calculated by a digital computer. 

3. 1. The stability and the stability chart 

The periodic coefficient f(z) with period n: of Mathieu's differential equa

tion is written of the form 

f(z) = a+l6qcos2z. (26) 

Now in the case of the linear approximation of /(z) as Eq. (5), we let 

(27) 

then the matrix [B] is expressed by 

[B] = [Xm(Zo)][Xm-lZo)] ··· [X1(Zo)] (28) 

where the values of [xr(z0)], (r=l, 2, ···,m), are obtained from Eqs. (5), (14) 

and (14'). 

Solving the characteristic function of the matrix [B] 

o(A)= l11[U]-[B]l = 0, (29) 

the latent roots 2=111 and 22 are derived and then the stability of the solution 

in the present case is easily determined by means of Eqs. (20) through (25) 

as the preceding procedures. 

Here we can determine the stability of the solutions by the use of the 

Digital Computers (KOC-I) and (NEAC-2101) according to the flow chart as 

shown in Fig. 3. 

It is important to determine how to choose the value m. In general its 

value should be much larger in proportion to the value q. And also on the 

narrow regions of the stable or the unstable state of the solutions and on the 

the close regions of the neutral state of the solutions, m must become a 

larger value because of obtaining highly accurate results of the stability of 

the solutions. 

In our case in order to determine the characteristic curves showing the 

relation between a and q, that is, the stability chart for Mathieu's differential 

equation, we first calculate the latent roots 2 as the value m=20 to plot the 

outline of the characteristic curves and then let m be 40, the stability chart 

is obtained more precisely as illustrated in Fig. 4. 

Here it should be remarked that the accumulate error of each component 

of the matrix [B] is generally considered to be increased in proportion to 

the value m, but in our case this error hardly appears in computation of the 

digital computers. 
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Change 
values a, q 

<I 

Start 

Read in data a, q a set m 

Comput Zr, fr (Z), 8c (A) 

<O 
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cosh r, sinh -Y 
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COS/3' sin,s 
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Compute [XrJ 

Be store 

Compute (Bl and 

latent roots A, 

>I 

Neutral Unstable 

Print out stability 
results 8c values a, q 

Count data numbers 

End 

Fig. 3. Flow chart for stability of Mathieu's differential equation. 
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Though Fig. 4 shows the stability chart only for the range of a= -3 to 

34 and q=O to 2.0, it could be obtainable for other range of a and q by the 

same procedure presented in this paper. 

In view of Fig. 4 it is noteworthy that the relation between a and q, that 

is, the thick-line curves, illustrates the each Mathieu function (see Appendix 1). 

These characteristic curves divide the plane into regions of stability and 

instability, that is, when a point (a, q) lies on the unstable region, shaded in 

part, interposed between curves, Mathieu's differential equation has an 

unstable solution, and when a point (a, q) lies on the remaining region, a stable 

solution results. 
Now the stability chart computed by Ince5J only for the range of q=O to 

1.25 is illustrated for the sake of comparison with the results in this paper 

as shown in Fig. 5 where the thick-line curves are plotted from Ince's numeri

cal results6J and the fine-line ones, that is, ac1 , a,,1 , ···, a,,3 , ... , are calculated by 

Eq. (A. 4) in Appendix 1. 

As is well-seen from the comparison of our results in Fig. 4 with Ince's 

ones in Fig. 5, one closely coincides with another. 

In addition as showing the variation of the characteristic (or latent) roots 

..l. for the range of a=3 to 6 when q=0.2 as shown in Fig. 6, it could be 

obviously mentioned from inspection of Fig. 6 that the stability of the solu

tions may be easily determined by the method in this paper because of the 

0.8 

0.7 

0.6 

0.5 

io.4 
O' 

0.3 

0.2 

0.1 

2 3 4 5 6 7 II 12 13 
a--

Fig. 5. Ince's stability chart for Mathieus differential equation. 
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0.5 

1?--1<1 : S,table 

0 '--:3~D=--~~=5~~4~.o--47 .~5-~5~.o=--~~=5-~~o 
--a 

Fig. 6. Variation of characteristic root J.=a±v'B vs. a when q=0.2. 
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remarkable and different changes of the characteristic roots ,l at the vicinity 

of the neutral solutions. 

3. 2. The transient solutions 

In this section it is mainly investigated that the transient solutions of 

Mathieu's differential equation are calculated for several values of a and q 

and that these numerical results coincide with ones of the stability chart in 

the preceding section. 

Let one period or one stage of /(z) be subdivided into m narrow equal 

intervals, that is, z0 = n/m, the transient solutions of Mathieu's differential 

equation at the r-th mode in the n-th stage are expressed of the· following 

form, from Eq. (20) 

[ Ynr((z))] = [X r(z)][X r- 1(Z0)] ... [X ,(zo)][B]n-,[ ~!], 
Ynr Z Yn 

o;;;;.:-;;;;zo, (r = 1,2, ... , m, n = 1,2, .. ,) (30) 

where 

Thus if the values [X r(z0)], (r= 1, 2, • • •, m) could be calculable, the transient 

solutions can be easily computed by the use of Eq. (30) for any given initial 

conditions of :P1f and Y1f, 
Some numerical examples of the transient solutions of Mathieu's dif

ferential equation are shown in Fig. 7 where the given data a, q, m and initial 

Nlues J1f. and ,Yif, and also the stability results are given by Table 1, but 
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20 (4) 
y 

t 1.0 

0 

-1.0 

-2.0 
Fig. 7. Transient solutions of Mathieu's differential equation. 

Table 1. Coefficients a and q, initial values and m 

Fig. number in Fig. 7 I a I q ·-0 

I 
y-0 I m Stability IAI Y11 11 

(1) 9.5 0.4 0 1 40 unstable 1.24 

(2) 16.6 0.55 0 1 40 unstable 1.05 

(3) -1.5 1.145 0 1 40 stable 0.907 

(4) 27.8 1.9 0 1 40 stable 0.907 

the absolute values I .-1 I in Table 1 indicate the largest roots of .-1 obtained by 

solving the characteristic function of [B]. Those results in a good coincidence 

with the criterion of the stability chart illustrated in Fig. 4. 

4. Simulation Results by an Analog Computor 

Simulating Mathieu's differential equation by an analog computer in order 

to get its solutions or its stability, it may be said not to be adequate from 

a precise point of view, but it has several advantages to find directly various 

solutions in short time. 

Mathieu's differential equation of the form 

d2y 
dz2 +(a+ 16q cos 2z)y = 0 (31) 

can be rewritten in the form of the machine equation 

(32) 

where assumed the scale facter a for y and the time-scale facter /3 for z have 

been chosen so that, respectively 

tt~re putting 

Y = ay and T = /3z . 

X = cos (2//3)T, 

(33) 
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another machine equation is given by 

(34) 

As a consequence of Eqs. (32) and (34), the block diagram of simulating 

Mathieu's differential equation is shown in Fig. 8. 

Fig. 8. Block diagram of simulating Mathieu's 
differential equation. 

Fig. 9 shows the transient solutions simulated by the Analog Computer 

(MELCOM EA-7304) where the figuer numbers (1), (2) and (4) of Fig. 9 cor

respond respectively to each one of Fig. 7. 

Comparing the theoretical results with the simulated ones, the results 

named by figure mumbers (1) and (2) in Fig. 9 indicate a close coincidence 

with the corresponding ones in Fig. 7. However the analogue simulation 

named (4) in Fig. 9 shows a similar oscillation mode to the theoretical result 

in Fig. 7, but its amplitude is different from each other. 

These phenomena are supposed as follows : 

Since the solutions in the former, that is, figure numbers (1) and (2) in 

Fig. 9, exist in an extent region of the stable state, the variations of the 

solutions are insensitive to the changes of a or q. On the other hand, in the 

latter of (4) the simulated result varies sensitively due to a slight amount of 

the changes a and q because of the narrow stable region and yet the simula

tion accuracy is not so precise from a machine precision point of view. 

The simulated result named (3) in Fig. 9 shows such a case where the 

solution largely varies with only the variation of q=27.8 to 28.0 as compared 

to (4) in Fig. 9. 

For other values of a and q, the stability and the transient solution in 

the preceding section are examined by the simulation ones by means of tqe 
. . . . . 
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analog computer and both results are made sure to indicate a good coincidence 
to each other. 

5. Conclusion 

Based on the analytical method of the Periodically Interrupted Electric 
Circuits, the general method presented in this paper has demonstrated the 
study of stability and obtaining the approximate solutions of the differential 
equations of the Mathieu-Hill type. 

The stability chart for Mathieu's differential equation, calculated by the 
use of the digital computer, is closely coincident with Ince's numerical result6

) 

computed for the range of q= 0 to 5.0, and in addition the stability chart 
shown in the section 3 of this paper is extensively obtained for the larger 
values of a and q. 

When the values of a and q become much larger, it is necessary for the 
value m to choose the larger one, and to use the higher-speed and precise 
digital computer is also important to rapidly get accurate results. 

Comparing the method presented in this article with Mathieu's or Whit
taker's one, it is noteworthy that the trasient and the steady-state solutions 
considered in this paper could be obtained for any values of a and q, and 
these become much accurate by putting m to be larger on the procedure given 
in this paper. 

The accumulated error in digital computation for our objects has been 
scarcely appreciated, but how to introduce the error on assuming the linear 
approximation of /(z) shall have to be clarified. 

Though the investigation in this article is mainly on the Mathieu's dif
ferential equation, it is evident that the Hill's differential equation or the 
higher-order linear differential equations with variable coefficients would be 
studied by the method presented in this paper.7) 
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Appendix 1. Mathieu functions 

The periodic solutions of the Mathieu's differential equation with period 

1r or 21r are, by definition, called the Mathieu functions. 

In order that such solutions may exist, a must have one of an infinite 

sequence of functions of q. When q is zero, the solutions required are 

1, cos z, cos 2z, ···, } 
sin z, sin 2z, ·· · 

for the corresponding values of a=n2
, (n=O, 1, 2, •··). 

For other values of q, the Mathieu functions are denoted by 

ceo(z, q), ce1(z, q), cei(z, q), ···, } 

sei(z, q), sei(z, q), ···, 

(A.1) 

(A.2) 

and those Mathieu functions reduce respectively to cos nx and sin nx when 
q--"O. 

The Fourier series for the Mathieu functions are written of the forms 

= 
ce2n(z, q) = I:; A 2r(q) cos 2rz 

Y=O 

ce2n-1-lz, q) = I:; A2r-1-M) cos (2r+ l)z 
Y=l 

= 
se2n(z, q) = I:; B2r(q) sin 2rz 

(A. 3) 
Y=l 

= 
se211-1-,(z, q) = I:; B2r-1-M) sin (2r+ l)z 

Y=l 

In these series A and B are functions q. If I q I is sufficiently small, these 

coefficients and accordingly the Mathieu functions are developed as the power 

series of q, but very little is known on the convergence of series for the 

Mathieu functions. 

For a given q, the value of a is definite for each Mathieu function, and 

is called the "characteristic number" of the corresponding Mathieu function. 

Following Mathieu and whittaker, the characteristic number denoted by 

acn and asn corresponding to cen(z, q) and se,.(z, q) respectively are given by 

the following expansions. 
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210
- 29 aco = - 32q2 +224q4 - -
9
-q6 + ... , 

ac, = l-8q-8q2+8q3
- : q4 + ... , 

as,= l+8q-8q2-8q3
-: q•+ .. ·, 

ac2 = 4 + si q2- 6;~4 q• + ... , 

16 40 
as2 = 4 - 3q2+ 27q• + ... , 

13 
acs = 9+4q2-8q3 + 5 q•+ ... , 

9 4q2 8q3 13 4 asa = + + + sq + .. ·, 

(A. 4) 

The Ince's numerical result showing the relation between a and q in 
Section 3 are obtained by the use of the recurrence-relations between the 
coefficients of Eq. (A. 3). 

The solutions of the Mathieu's differential equation in the unstable region 
were investigated by Whittaker and the reader will consult References 1 
about these problems. 

Appendix 2. Sylvester Expansion Theorem 

This theorem states that, if the m latent roots of [A], viz. a,, a2, ... , am 

are all distinct and complex in general, and if F([A]) is a function of [A], 
then we have 

m 
F([A]) = I:; F(a,.)[K(a,.)] (A. 5) 

Y=l 

where 

and [ U] is a unit matrix. 
The generalized Sylvester expansion theorem states that, if a,. is an s,.

ple latent root of a square matrix [A] of order m, and provided that the 
corresponding characteristic matrix has full degeneracy for that root, and 

then 

F([A]) = f F(a,.)[K(a,.)Jc5
r) (A. 6) 

1"=1 

where 


