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In this paper, a near-optimal control strategy is studied for high-order 
multi-variable non-linear dynamic plants under a quadratic performance index. 

The principal line of attack is to introduce the concept of instantaneous 
linearization and to apply the dynamic optimization technique originated by 
R Bellman. The resulting configuration of the near-optimal control system 
presented here becomes a feedback one containing an on-line digital computer 
as a main control device. The general procedure proposed here is illustrated 
by the example of establishing the near-optimal control strategy for a dynamic 
plant with a non-linear characteristic. The control performance of the system 
is also discussed by comparing it with that of the system with the precisely 
optimal control strategy. 

List of Principal Symbols 

x(t) : vector representation of state variables of a plant 
m(t): vector representation of control signals 
A(t) : coefficient matrix of a plant 
B(t) : driving matrix of a plant 
<f,(t, t0): transition matrix of a plant 
G(k): driving matrix of a plant in discrete form 
<f,(k) : transition matrix of a plant in discrete form 
t0 and t.: initial and final control instants of time respectively 
tk : k-th sampling instant 
T : sampling period 
Q(t) and R(t) : performance weights 
x(k) and m(k): abbreviated symbols for x(tk) and m(tk) respectively 
/N-k[x(k)]: minimum value of the performance index 
r and g: non-linear functions of state variables 
a, b and c : plant parameters 
p adjoint variable 
t time variable 
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1. Introduction 
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Up to the present, in spite of the important fact that actual plants, which 

are to be controlled, are inevitably endowed with non-linear characteristics 

in their dynamic relation between inputs and outputs, methods of the dynamic 

optimization have been accepted relying upon mathematically linearized models 

for actual non-linear plants which are established by focussing our attention 

to the small domain around the equilibrium point. 

As we often observe in such practical cases as industrial plants subjected 

to disturbances with considerably large magnitude and chemical reaction 

plants at the starting-up period, since fluctuations of all physical variables 

of actual plants are not always small, then the use of linearized models 

mentioned above can not play an important role in the aspect of effective 

dynamic optimization with high degree of accuracy. This fact reveals that 

non-linear characteristics of actual plants must be taken into account from 

the analytical viewpoint in the large. 

On the other hand, new approaches to the design problem of control 

systems have been developed based on such mathematical concepts as 

R. Bellman's Dynamic Programming1
), L. S. Pontryagin's Maximum Principle2

) 

and others3
), which are widely called optimization techniques. Using these 

newly developed optimization techniques, it is, in general, easy to formulate 

the design problems, provided that the inputs and outputs characteristics of a 

plant are described by a set of differential equations, and that the performance 

index is mathematically specified. Although some limited classes of problems 

have been solved in closed form, it is very difficult to solve analytically these 

formulated design problems. It is, hence, desirable to develop a synthesis 

technique for non-linear plants based on an extended concept by which even 

if not optimal but near-optimal control systems will be easily obtained. 

2. Fundamental State Description of High-Order 

Multi-Variable Linear System 

First, we consider a linear dynamical system as a controlled element as 

x(t) = A(t)x(t) + B(t)m(t), (2.1) 

where x(t) is a state vector with n components and m(t) is a control signal 

vector with r components. A(t) is an nxn matrix referred to as the coefficient 

matrix of the plant; B(t) is an n x r matrix called the driving matrix, which 

may, in general, be time-varying. 

The solution of Eq. (2.1) is given by 
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(2. 2) 

where ,f>(t, t0) is the transition matrix of the linear system described by 
Eq. (2.1), and this is the matrix solution of the homogeneous equation; 

x(t) = A(t)x(t), x(to) =I, (2. 3) 

where I is the unit vector. 

If the coefficient matrix A(t) is not time-varying, the transition matrix 
</>(t, to) depends only on the time-difference l-10 and can easily be described by 

,f>(t, lo) = exp A•(t-to). (2. 4) 

For the covenience of present discussion, we describe the control signal 
vector as 

(2. 5) 

where tk is a sampling instant. 

From Eqs. (2. 2) and (2. 5), the state-transition equation between the state 

vectors x(k+ 1) at t=tk+, and x(k) at t=lk is given by 

to T te i I I . C ::::::-,, I 't .. t 
0 ti t2 ... tj tj+J" .. tN-1 N 

x(O) x( I) x(2) · · · x{j)x(j+I) ••. x(N-l)x(N) 

--◄-I 
m(O) m( I) · .. m(j} • • • m(N-1) 

Fig. 1. Illustration of mutual relation between 
the state vector ~(k) and the control vector 
m(k). 

in Fig. 1. Then Eq. (2. 7) becomes 

x(k + 1) = ,f>(k)x(k)+ G(k)m(k), (2. 6) 

where 

<f,(k)=<f,(tk+r,tk) I 
~

tk+I 
G(k) = <f,(tk+,, J..)B().)dJ.. 

lk • 

(2. 7) 

We divide the given control 

time interval [t0 , te] into N equal 

sub-intervals and denote the 

sampling period by T as shown 

¢,(k) = ,f>(k+lT, kT) } 

G(k)= fk+IT </>(k+lT, J.)B(J..)d). . hr 
(2. 8) 

It must be noted here that if both the coefficient matrix A(t) and the 
driving matrix B(t) are not time-varying, then both ¢,(k) and G(k) depend only 
on T, because the transition matrix ,f>(l, 10) is the function of the time-difference 

t-10 as described by Eq. (2. 4). 

3. Determination of Near-Optimal Control Signal Vector 

Although a non-linear plant is, in general, described by 

;i;(t) = F[x(t), m(t), l], (3.1) 
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we restrict our attention, in this paper, to a particular form 

±(t) = f[x(t), t] + g[x(t), t]m(t). 

where both f and g are non-linear functions of the state vector x(t). 
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(3. 2) 

The performance index chosen to be minimized is of the quadratic form 

integrated over the given control interval [t0 , t.]; 

[ = f 
1

" [xT(t)Q(t)x(t) + mT(t)R(t)m(t)]dt. Jto (3. 3) 

where xT(t) denotes the transpose of x(t). In Eq. (3. 3), it is assumed, for 

simplicity, that the target is always the origin of the state space. Q(t) and 

R(t) are, in general, time-varying and positive definite symmetric matrices, 

called the performance weights, of which values must be suitably determined 

from engineerig viewpoints. 

The optimal design problem is, thus, stated as follows; determine the 

control signal vector m(t), t 0 -_::;,t-_::;,t., which minimizes the performance index 

specified by Eq. (3. 3) subjected to the relation of Eq. (3. 2), for any arbitrary 

initial state x(t0 ). Although many optimization techniques are applicable for 

the optimal design problem stated as above, they must inevitably rely on 

very difficult methods by reason of the non-linearity of the plant equation 

(3. 2), which are not so available in practice. 

Hoping to invoke a digital computer, the performance index (3. 3) is ap

proximated as 
N 

IN=~ [xT(k)Q(k)x(k)+mT(k-l)R(k-l)m(k-1)]. 
k=l 

(3. 4) 

We consider that we are now at the time t=tj and that the state vector 

x(j) is sampled from the actual non-linear plant described by Eq. (3. 2). At 

this situation, we establish a linear model based on this observed state vector 

x(j) as the following form 4
), 

x(t) = A{x(j), t)x(t)+B{x(j), t}m(t), (3. 5) 

where from Eq. (3. 2) 

A{x(j),t) = f[:~1) t], B{x(j), t) = g[x(j), t]. (3.6) 

We also assume that the furture dynamics of the plant is governed by 

this model of Eq. (3. 5) from the present time t=t1 until the final control 

instant t=t11. The control signal vector m(j), which is to be applied at the 

present time t=tj, is easily calculated by the use of the discrete Dynamic 

Programming technique5J as follows. 
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First, from Eqs. (2. 1), (2. 6) and (2. 7), the state-transition equation is de

scribed by 

x(k + 1) = (J(k, x(j))x(k) + G(k, x(j))m(k), [k = j, j + 1, · .. , N -1] . (3. 7) 

It should be noticed here that both </J and Gare dependent on the state vector 

x(j) observed at t=t1 , because in Eq. (3. 5), A and Bare functions of x(j). 

We consider an arbitrary time t=t,. where t 1 :::;; t,.:::;; te and te expresses 

the final instant of time, and denote the minimum value of the performance 

index (3. 4) between the time t=t,. and the final control instant t=te as 

N 
fN-1,[x(k)] = Min { ~ [xT(i)Q(i)x(i)+mT(i-l)R(i-l)m(i-1)]), (3.8) 

m\kl i~k+l 

mcN-lJ 

and fr om Eq. (3. 3), apparently 

fo[x(N)] = 0 . (3. 9) 

Invoking Bellman's Principle of Optimality, Eq. (3. 8) becomes 

/N-1,[x(k)] = Min {xT(k+l)Q(k+l)x(k+l)+mT(k)Q(k)m(k) 
· mckJ 

+ /N-k+i[x(k+l)]}. (3.10) 

Since the functional f has the quadratic form with respect to the state 

vector x, then it can be assumed that 

/N-1,[x(k)] = xT(k)P(N-k, x(j))x(k) } .· 

/N-k+1[x(k+l)] = xT(k+l)P(N-k+l, x(j))x(k+l) (
3.U) 

where P's are positive definite symmetric nxn matrices. 

Using Eqs. (3. 11), Eq. (3. 8) becomes 

xT(k)P(N-k, x(j))x(k) = Min [xT(k+l)S(N-k+l, x(j))x(k+l) 
mckJ 

+ mT(k)R(k)m(k)], (3.12) 

where 

S(N-k+l, x(j)) = Q(k+l)+P(N--k+l, x(j)). (3.13) 

By substituting Eq. (3. 7) into Eq. (3. 12), we obtain 

xT(k)P(N-k, x(j))x(k) = Min {[(J(k, x(j))x(k)+G(k, x(j))m(k)]T 
mckJ 

x S(N-k + 1, x(j))[</J(k, x(j))x(k) + G(k, x(j))m(k)] + mT(k)R(k)m(k)} . (3.14) 

Letting 

L~(N-k+l, x(j)) = ,j>T(k, x(j))S(N-k+l, x(j))(J(k, x(j)) l 
L+G(N-k+l, x(j)) = <j,T(k, x(j))S(N-k+l, x(j))G(k, x(j)) 

LG+(N-k + 1, x(j)) = GT(k, x(j))S(N-k + 1, x(j))(J(k, x(j)) 

Laa(N-k+l, x(j)) = GT(k, x(j))S(N-k+l, x(j))G(k, x(j)) 

' 
(3.15) 
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Then Eq. (3.12) becomes 

xT(k)P(N-k, x(j))x(k) = Min {xT(k)L+.(N-k+1, x(j))x(k) 
mck) 

+xT(k)L,bG(N-k+1, x(j))m(k)+mT(k)LG<b(N-k+l, x(j))x(k) 

+mT(k)[LGG(N-k+l, x(j))+R(k)]m(k)}. 
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(3.16) 

The minimization procedure may easily be carried out by differentiating the 

right hand side of Eq. (3.16) with respect to m(k) and equating it equal to 

zero: 

LG+(N-k+l, x(j))x(k)+[LGG(N-k+l, x(j))+R(k)]m*(k) = 0. (3.17) 

Eq. (3.17) can be expressed as 

m*(k) = D(N-k, x(j))•x(k), (3.18) 

where 

D(N-k, x(j)) = -[LGG(N-k+l, x(j))+R(k)]-1LG+(N-k+l, x(j)). (3.19) 

Substituting Eq. (3.18) for m(k) in Eq. (3.16), we have 

xT(k)P(N-k, x(j))x(k) = xT(k)L♦,p(N-k+l, x(j))x(k) 

+ x T(k )L+G(N - k + 1, x(j) )D(N - k, x(j) )x(k) 

+xT(k)DT(N-k, x(j))LG,p(N-k+l, x(j))x(k) 

+xT(k)DT(N--k, x(j))[LGG(N-k+l, x(j))+R(k)]D(N-k, x(j))x(k). (3. 20) 

Using Eq. (3.19), Eq. (3. 20) yields 

xT(k)P(N-k, x(j))x(k) 

= xT(k)[L++(N-k+l, x(j))+L,pG(N-k+l, x(j))D(N-k, x(j))]x(k). (3. 21) 

Comparison of both sides of Eq. (3. 21) gives 

P(N-k, x(j)) 

= L,b<b(N-k+l, x(j))+L+G(N-k+l, x(j))D(N-k, x(j)). (3. 22) 

Near-optimal control signal vector m*(j) can, therefore, be calculated from 

Eq. (3.18) as 

m*(j) = D(N- j, x(j))•x(j), (3. 23) 

where the feedback matrix D(N-j, x(j)) is determined by recurrence relations, 

Eqs. (3.13), (3.15), (3.19) and (3. 22), by starting with the following equation 

obtained from Eqs. (3. 9) and (3. 11) as 

P(O, x(j)) = 0. (3. 24) 

Detailed procedures are summerized as follows ; 
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(1) Preliminary procedures 

i) Compute </>(k, x(j)), [k = j, j +, .. •, N-1] by solving the differential 

equation: 

</>(t, t j) = A {x(j), t} rj,(t, t j), </>(t ;, ti) = I. 

ii) Compute G(k,x(j)), [k=j,j+l, .. •,N-1] by 

~

k+IT -
G(k, x(j)) = </>(k+lT, J..)B{x(j), J..)dJ... 

kT 

(2) Routine procedures 

i) Given P(N-k+l, x(j)), compute S(N-k+l, x(j)) by 

S(N-k+l, x(j)) = Q(k+l)+P(N-k+l, x(j)). 

ii) Compute L++(N-k+l, x(j)), L+G(N-k+l, x(j)), 

LG+(N-k+l, x(j)) and LGG(N-k+l, x(j)) by 

L++(N-k+l, x(j)) = ¢,T(k, x(j))S(N-k+l, x(j))¢,(k, x(j)) ! 
L+G(N-k+l, x(j)) = ¢,T(k, x(j))S(N-k+l, x(j))G(k, x(j)) 

LG+(N-k-1, x(j)) = GT(k, x(j))S(N-k+l, x(j))rj,(k, x(j)) 

LGG(N-k+l, x(j)) = GT(k, x(j))S(N-k+l, x(j))G(k, x(j)) 

iii) Compute D(N-k, x(j)) by 

' 

D(N-k, x(j)) = -[LGG(N-k+l, x(j))+R(k)]-1LG+(N-k+l, x(j)). 

iv) Compute P(N-k, x(j)) by 

P(N-k, x(j)) = L++(N-k+l, x(j))+L++(N-k+l, x(j))D(N-k, x(j)). 

The feedback matrix D(N- j, x(j)) in Eq. (3. 23) can be evaluated, after 

N-j times repetitions of the routine procedures i)~iv) listed above, starting 

with P(O, x(j))=O. The near-optimal control signal vector m'-i<(j) which should 

be applied to the plant at the present time t=ti is, thus, calculated on the 

basis of the state vector x(j) observed at t=ti. The plant is translated from 

x(j) to x(j+l) by the control signal vector m'-i<(j) obtained by the above pro

cedures. When t = t j+i, the new state vector x(j + 1) is obtained by the observa

tion of the plant, and then procedures (1) and (2) are again repeated, that is, 

the new linearized model is constructed by using the newly observed state 

vector x(j + 1) as 

x(t) = A{x(j+l), t)x(t)+B{x(j+l), t}m(t), 

x(tj+1) = x(j+l), lj+,~t'!{,t •. (3. 25) 

This procedure means up-dating of the linearized model. Naturally, the pro

cedures mentioned here are successively extended to the final control instant 

of time. In Fig. 2, the flow chart to calculate the near-optimal control signal 

vector m'-1<( j) [j = 0, 1, .. · , N -1] is shown. 
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m*( t) x( t) 
Non - Linear Plant 

D(N-k,x (j ))= -(LGG(N-k+I, x(j)) 
+ RC k )T1LG9CN-k-1, x(J )) 
P( N-k,x(j))=L,, (N-k+i, x(J)) 
+L;G(N-k+l,x(j))D(N-k,x(j)). 

no 

m(j) = D(N-j,x(j))x(j) S(N-k-1,x(j ))=Q(k+l)+P(N-k+l,x (j )) 
L;; (N-k+l,x(j))=-tlf S(N-k+l ,x(j ))4> 
L♦0 (N-k+l,x(j))=4>TS(N-k+l,x(J))G 
LG♦ ( N-k+l ,x(j))=G T S(N-k•l ,x(j ))4> 
LGG(N-k+i ,x(j))=GT S(N-k+i ,x (j ))G 

Fig. 2. Flow chart to calculate the near-optimal control vector m*(j). 
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It is well known that if the plant is linear, the corresponding optimal 

control signal vector m>l<(j) becomes linear with respect to the state vector 

x(j). This can be observed from the fact that the feedback matrix D in 

Eq. (3. 23) becomes independent of x(j). However, the near-optimal control 

signal vector m>l<(j) obtained here becomes non-linear, namely, the feedback 

matrix D becomes dependent on the state vector x(j), reflecting the non-linear 

characteristics of the plant. This is due to the procedure that the renewed 

linear model is successively constructed at each sampling instant. 

4. Simulation Studies 

The principal line of numerical studies in this section is to compare the 

response of the near-optimal control system with that of the optimal control 

system. 

We consider a first-order non-linear plant as shown in Fig. 3, which is 

described by 

(4. 1) 

where a, b and c are constants, and c, is an arbitrary given initial state. 

As the performance index to be minimized, we consider 

(4. 2) 

To obtain the true optimal response, we will resort to the well-known 
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+ X f 
+ 

+ 
+ a 

y:cx3 

Fig. 3. Block diagram of a non-linear plant. 

Hamiltonian treatment. Introducing an adjoint variable p, the Hamiltonian 

type of function H is defined by 

H= ~ (x2 +m2)+p(ax+cx3 +bm). (4. 3) 

The true optimal control signal m0 is, therefore, obtained by Min Has 
m 

(4. 4) 

Defining the minimum value of H by H 0, we have 

(4. 5) 

The true optimal response is, therefore, determined by 

• fJHO 
x=-

fJp ' 
(4. 6) 

In this case, from Eq. (4. 6), we have 

:i = ax+ cx3 -b2p } 
p = -x-(a+3cx2)p 

(4. 7) 

Apparently, the boundary conditions for x and p are 

p(te) = 0, (4. 8) 

This is the well-known two-point boundary-value problem of non-linear differ

ential equations, which can only be solved by iterative numerical methods, 

and which also require lengthy and difficult computations. Therefore, in spite 

of giving initial condition for x(t0)=c,, assuming a suitable terminal condition 

for x(te), and solving the non-linear differential equation (4. 7) backwards by 

tbe Runge-Kutt&'s method, then we have x(t9)=ci'1 which is regarded &s the 
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initially given boundary condition for x(t0). We call the response obtained 

by the above-mentioned method as "optimal response." 

On the other hand, if a designer decides that the region of the fluctuation 

of x is only limited in the neighbourhood of x=O, he may neglect the second 

term cx3 of the right hand side of Eq. (4.1). If it is also assumed that the 

control time interval [t0 , te] is sufficiently large, the design problem turns 

out to be a very easy way. It is interesting to consider how the control 

system which is designed on the basis of such two assumptions behaves, when 

the considerably large initial value x(t0 )=c, is pre-assigned to the plant. When 

the controller is designed based on the two assumptions mentioned above 

we have 

+ a+✓a2+b2 m = - __ b ___ x (4. 9) 

as the optimal control signal. This means a time-invariant linear feedback 

control. The response for this control signal is given by 

2.0r-.------------------~ 

I 

Near Optimal 

Optimal 

Linear Optimal 

---t 

Fig. 4. Comparison of optimal, near-optimal and 
linear optimal responses. 

-x 
Fig. 5. Successive construction of 

linear models. 
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i = ax+cx3 -(a+✓ a2 +b2)x 

= cx3 -✓ az + bz x ' (4.10) 

which is named "linear optimal response." In this control system, it should 

be noticed that if the initial value x(t0 )=c1 satisfies the inequality 

i.e., cc/-✓ az+bz;::::: 0' (4.11) 

the system becomes unstable. 

Simulations are performed with numerical data as [t0 , te]=[0, 4.0], T=0.05, 

N=80 and a=b=c=l.0. 

In Fig. 4, optimal, linear optimal and near-optimal response curves are 

shown for two initial values. It is shown in Fig. 5 how the non-linear plant 

is linearized at successive sampling instants in the case where c1 = 1.068. In 

Fig. 5, initial linearization is shown by the straight line Q) combining the 

initial state (1.068, 2.287) with the origin. Then the near-optimal control signal 

is calculated as m:t<(t)= -4.540, 0:::;;t:::;;0.05. When the plant is driven by this 

control signal, the state variable x becomes x(t)=0.9426 at t=0.05. A new 

linearization shown by the straight line @ is performed at t=0.05, which 

gives m'i<{t), 0.05:,::;t:,::;0.1. 

5. Conclusions 

A method of obtaining a near-optimal control strategy for an integrated 

quadratic performance index is developed based on the instantaneous line

arization method, when the plant is described by non-linear differential 

equations. Since present results have been obtained in the discrete form, 

then the design technique proposed here may play an important role in 

realizing a computer control system, in particular, a system with non-linear 

high-order characteristics. 

The near-optimal control signal obtained is, of course, non-linear in state 

variables, reflecting the non-linearity of the plant. 

It has also been checked that the near-optimal controller is effective, as 

the simulation studies revealed previously. 

An application is also possible in such a case as industrial plants whose 

non-linear functions f and g in Eq. (3. 2) are given by numerical data. 
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