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OD trips in urban area are described by an ergodic Markov chain for each 
kind of car and have a certain steady pattern for each trip. The pattern of OD 
trips is effected by the total number of cars independently of initial distribution 
of registered cars and strongly by the transition probabilities from zone to zone 
and their limiting vector. The limiting vector make a display of potentiality 
of generating trips for each kind of car. In estimating future traffic volume, 
it plays an important role in determination of the pattern of car trips, because 
the limiting vector is given by land use planning. Transition probabilities are 
introduced from maximizing entropy per unit time under the fixed limiting 
vector. Thus OD trips in the future are easily estimated, using the transition 
probabilities. It is proved that car trips estimated by maximizing entropy are 
symmetrical. 

1. Introduction 

165 

Traffic in urban area will be characterized by what most of his trip-ends 

are included in urban area. It means that urban area is approximately treated 

as a closed system. Characteristics of traffic in such a closed system are 

investigated in this paper. 

We have studied car trips through Random Walk within urban area.1
J

2
l
3
J 

It is noted that most of cars take their destinations according to certain 

probabilities as seen in operation of taxi-cabs. Such a probability is called 

transition probability. We assume that a car staying at zone i will select 

his next destination j with transition probability Pii (j = 1, 2, ·· · , r) independent 

of his previous choice of zone. 

In the case of except periodical cars, transition matrix P 0 whose entries 

are P;/s (i, j=l, 2, ···, r) is regular. Trips of cars having regular transition 

matrix are taken into considerations. 

2. Mathematical Description of Car Trips as a Markov Chain 

Our considerations will be confined to trips of cars in which all their trip· 
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ends are included in the urban area. We call it a closed region. 

Let us consider a group of cars having the same transition probabilities 

P 0 and number of trips a day. Let T be a row vector whose entry T; shows 

the number of registered cars concerned in zone i, that is 

T = (T,, T2, ···, T,.) ( 1) 

where, r is number of zone in urban area. 

We denote by P 0 the transition matrix whose entry shows the transition 

probability from zone i to j. 

We assume that all cars start from their registered zones in urban area 

for the first trips and select their destinations according to P;j. Then traffic 

flow for the first trips from zone i to j, n;; is shown by the ij-entry of OD 

matrix 

( 2) 

Denoting the number of cars which converge to zone i after the first trips 

by T;11, we can write OD matrix for the second trips in the form 

(

T'r)P11, Ti1)P12, ... , T11ip,,.) 
{nW} = ??:':::~t?2:::·:·:·:::~t?r ' 

T~llp,.,, T;PP,-2, ... , T~llp,.,. 

( 3) 

where 
(4) 

Considering the new row vector 

we may examine the following relation 

( 5) 

Similarly, number of cars concentrated to each zone after the (N-l)th 

trips is described by the entries of the row vetor 

( 6) 

Then OD matrix for the (N- l)th trips is given by 

( 7) 
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Now, we assume that each vehicle takes N trips a day that include the 

stochastic trips of (N -1) times and the final trips going back to the starting 

zone in the first trips. 

Traffic flow from zone i to j on the stochastic trips of (N -1) times after 

the first trips is expressed as 

For the final trips, we may write 

where, Pi/N-t) is the ji-entry of the matrix P 0N-1_ 

Therefore, we have traffic volume from zone i to j, 

(8) 

By use of Eq. (8), we may calculate traffic volume in the urban area. 

We consider the trips of passenger cars in Kyoto City as an example, 

though they may not select their destinations according to the common 

transition matrix. The initial distribution T of passenger cars is given in 

Table 1. 

Table 1. Number of registered passenger cars in Kyoto City (1962 year) 

_zone i .1 1 2 

T; I 1337 1945 

3 

1519 

4 

2754 

5 

1974 

6 

2459 

7 8 

1808 2947 

9 

1600 

The ratio of trips discharging to zone j to the total trips generated from 

zone i, P;j*, are conveniently taken in place of real transition probability Pij• 

Because the real transition probability is not investigated. 

The OD trips of passenger cars of Kyoto City in 1962 are shown in Table 2. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Table 2. OD table of passenger cars in Kyoto City (1962 year) 

2 

2119 2113 

1887 4708 

1334 2435 

2807 4936 

450 1257 

1724 3653 

307 294 

905 736 

118 297 

3 4 

1429 2813 

2770 4441 

6975 3967 

3935 11822 

2709 4601 

2937 10259 

310 1379 

330 1955 

222 542 

5 6 

309 1772 

1220 3931 

3051 3423 

4446 10864 

8230 4987 

5441 16480 

681 3499 

169 1391 

616 922 

7 

439 

375 

110 

1473 

809 

3224 

2930 

411 

780 

8 

810 

827 

212 

1374 

395 

1754 

227 

2173 

73 

9 

80 

207 

22 

768 

568 

945 

870 

22 

2234 
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Table 3. Transition probabilities of passenger cars 

1 

2 

3 

4 

5 

6 

7 

8 

9 

.178 

.093 

.062 

.066 

.019 

.037 

.029 

.112 

.020 

.178 

.231 

.113 

.116 

.052 

.079 

.028 

.091 

.051 

.120 

.136 

.324 

.093 

.113 

.063 

.030 

.041 

.038 

4 

.237 

.218 

.184 

.279 

.192 

.221 

.131 

.242 

.093 

5 

.026 

.060 

.142 

.105 

.343 

.117 

.065 

.021 

.106 

6 

.149 

.193 

.J59 

.256 

.208 

.355 

.333 

.172 

.159 

7 

.037 

.018 

.005 

.035 

.034 

.069 

.279 

.051 

.134 

8 

.068 

.041 

.010 

.032 

.016 

.038 

.022 

.267 

.013 

9 

.007 

.010 

.001 

.018 

.024 

.021 

.083 

.003 

.386 

Table 4. Evaluated OD trips in transient state (passenger cars) 

0-~j 1 --~_2 -- __ 3 
1 2073 2073 1401 

2 1830 4580 2693 

3 

4 

5 

6 

7 

8 

9 

1239 

2587 

441 

1628 

337 

1173 

152* 

2275 

4558 

1203 

3442 

325* 

951 

386 

6529 

3698 

2617 

2771 

354 

427 

286 

4 

2957 

4316 

3763 

10959 

4443 

9738 

1532 

2539 

696* 

5 

302 

1184 

6 

1730 

3824 

2860 3202 

4120 10054 

7975 4820 

5145 15641 

758 3889 

454* 1852 

793 1198 

7 8 9 

513* 799 82 

348 813 197 

96* 

1370 

783 

3085 

3273 

534 

1004 

198 120** 

1260 633 

369 536 

1674 927 

256 958 

2799 231** 

201** 2892 

Table 3 shows the values of P;i* obtained from Table 2. We have OD trips 

as shown in Table 4 using Eq. (8). 

Number of trips a car N is assumed 10.4 as a mean value and calculation 

of Eq. (8) is performed by interpolation of between two values of N = 10 and 

N = 11. It means that the days of N = 10 and N = 11 will occur at the percentages 

of 60 and 40 respectively. 

As is known from Table 2 and Table 4, OD trips will be nearly expressed 

by Eq. (8) except several cells (note a mark*). The values in such marked 

cells become greater than actual ones. 

It will be clear in the following discussion that difference in number of 

trips result from biasedness of initial distribution of passenger cars. 

Now, we take an assumption that the initial distribution of cars is in· 

dependent of number of registered cars in each zone, and that is 

or 
rco) = Tw, 

T/0
) = Tw;, CE T; ~ T). 

j 
( 9) 
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where, T and T/0
) are the total number of cars in urban area and an entry 

of row vector of initial distribution of cars TC0
), w; is an entry of the limiting 

vector w of transition matrix P 0 • 

The limiting vector is evaluated by 

or by the limiting matrix 

where 

w = wP0 , (E W; = 1) , 
j 

(

w,, W2, • • · , Wr ) 

W = ~.': .. u:.2.:.·.·.·.'..~~ • 
w,, W2, •·· ,Wr 

(10) 

(11) 

Then OD traffic volume is invariable for each trip and the pattern of OD 
trips is fixed in the form 

( 

w,Pu, w,P,2, · · · , w,P,,. ) 

T ':'.:!:'.:.':'::.~:~:.::::.'::~~~~ 
w,.p,.,, w,.P,.2, ·· · , w,.p,.,. ' 

where, sum of entries in the ith row is equal to w;, sum of entries in the 
ith column. Such unvariable flow for OD trips may be called steady. 

If N> 5, number of the final trips from zone i to j will be expressed as 

Tw;w;, 
because of 

or 

Table 5 shows the values of P 0
6 is nearly equal to the limiting matrix W. 

The values of w; (i = 1, 2, ··· , r) are shown in Table 6. 

Table 5. Value of P0
6 (passenger cars) 

--- ----··-

~I 1 2 3 4 5 6 7 8 9 
--- -----·-

1 .061 .107 .114 .219 .127 .248 .055 .040 .029 

2 .061 .107 .114 .219 .127 .248 .055 .040 .029 

3 .061 .107 .114 .219 .127 .248 .055 .040 .029 

4 .061 .107 .113 .219 .127 .248 .055 .041 .029 

5 .060 .106 .114 .219 .128 .249 .055 .040 .030 

6 .060 .106 .113 .218 .127 .249 .056 .041 .030 

7 .060 .106 .112 .218 .127 .249 .057 .040 .030 

8 .061 .107 .113 .219 .126 .248 .055 .041 .030 

9 .059 .105 .111 .217 .128 .249 .058 .040 .033 
~----~- ~-----------



170 Tsuna SASAKI and Kazuo KAGAWA 

Table 6. Limiting vector of passenger cars in Kyoto City 

Zone i 1 2 3 4 5 6 7 8 9 

W; .0604 .1065 .1132 .2185 .1273 .2482 .0554 .0405 .0300 

Thus we have traffic volume from zone i to j a day 

(12) 

The second term is less than the first term of Eq. (12) as N becomes larger. 

Therefore, we have a matrix of OD trips 

CPn, w,P.,, ··· ,w,p.,) 
TN ~:.~:.1.' .. ~.2-~2:.' .. ·::.'..~~~2-~ . (13) 

WrPn, WrPr2, · · · , WrPrr 

The result of computation of OD trips of the passenger cars in Kyoto 

City by Eq. (13) is shown in Table 7. Table 7 approaches more remarkably 

to Table 2 than Table 4.41 

Table 7. Evaluated OD trips in steady state (passenger cars) 

l~i 1 2 3 4 5 6 7 8 9 
I - - - --------------

1 i 2063 2063 1375 2731 306 1719 420 783 78 

2 1881 4699 2770 4431 1222 3935 363 840 210 

3 1337 2445 7001 3973 3075 3438 115 210 21 

4 2751 4833 3878 11652 4374 10677 1452 1337 745 

5 458 1261 2751 4661 8347 5062 821 382 592 

6 1757 3763 2999 10506 5558 16847 3285 1814 993 

7 306 306 325 1394 688 3515 2961 229 879 

8 890 707 325 1872 172 1337 401 2063 21 

9 105 287 210 535 611 917 780 78 2216 

It should be greatly noted that the initial distribution of registered cars 

do not effect the pattern of OD trips but the total number of cars in urban 

area and the limiting vector govern the pattern of OD trips. Such properties 

of steady flow also appears in the pattern of trips of trucks in Kyoto City. 

As another illustration of steady state, we take light passenger cars in 

Amagasaki City. OD trips in 1962 year and transition probability P;j* are 

shown in Table 8 and and Table 9. Table 8 shows a symmetric matrix owing 

to be introduced from a triangular OD table. Table 10 and Table 11 are 

calculated from Eq. (8) and Eq. (13) respectively. Table 11 comes close to 

actual trips. 

Thus the asumption of Eq. (9) will be held. Namely, the initial distribution 
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Table 8. OD trips of light passenger cars in Amagasaki City 
and number of registered cars 

>ZI 1 2 3 4 5 6 I number of 1 

cars I -·---------" 

1 195 33 300 718 100 12 106 

2 33 156 105 407 43 17 429 

3 300 105 1557 1594 591 105 1434 

4 718 407 1594 4903 703 372 2262 

5 100 43 591 703 1021 86 1615 

6 12 17 105 372 86 164 753 

Table 9. Transition probabilities in Amagasaki City 

i~I 1 2 3 4 5 6 I D ,___ -----! 
1 .143 .024 .221 .529 .074 .009 

2 .043 .205 .138 .535 .057 .022 

3 .071 .025 .366 .374 .139 .025 

4 .083 .047 .183 .563 .081 .043 

5 .039 .017 .232 .276 .402 .034 

6 .016 .022 .139 .492 .114 .217 

Table 10. Evaluated OD trips in transient state 
(Amagasaki City) 

]~I 
,, _____ -- - --

1 2 3 4 5 6 

125 22 194 462 65 8 . 1 

I 
2 40 189 127 496 53 20 

3 296 105 1520 1543 555 109 

4 733 357 1382 4284 616 326 

5 139 61 825 984 1431 122 

6 22 30 192 664 154 128 

Table 11. Evaluated OD trips in steady state 
(Amagasaki City) 

1~1 1 2 3 4 5 6 

i 1 194 33 299 718 100 12 ! 

I 2 33 155 104 409 43 23 

3 301 107 1574 1598 596 107 

4 718 409 1596 4953 705 378 

5 100 45 596 706 1034 84 

6 12 23 107 380 84 166 
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of cars should be estimated by Eq. (9) but not number of registered cars. 
Now we introduce an idea of cycle of car trips. We consider number of 

going back to his starting place without stochastic choice of his destination 
during a day. We shall call it number of cycle. Figure 1 illustrates number 
of cycle c = 1, 2 and 4. 

(al c::1 (b) C=2 (c) C::4 

Fig. 1. Illustrations of number of cycle for N=B 

Let c be number of cycle, a car. Since c is equal to number of returning 

trip, we have 

(14) 

in place of Eq. (12) as long as number of trips a cycle is not less than five. 

The values of N and c in Amagasaki City are shown in Table 12. 

Table 12. Observed values of N and c 

Kind of cars 

Passenger cars (private) 

Passenger cars (business) 

Trucks (private) 

Trucks (business) 

Light cars 

Special cars 

Average 

0.392 

0.909 

0.279 

0.306 

0.661 

0.259 

0.387 

5.4 

37.0 

7.0 

7.6 

6.7 

7.6 

7.6 

*(1) : Difference ratio between registered place and starting place 

I C 

2.0 

10.2 

1.2 

2.0 

3.1 

3.3 

2.1 

Next, we consider the false transition probability P;i*· They are calculated 
as ratio of number of trips diverging to zone j to the total trips generated 

from zone i. Hence the following relation is derived by use of Eq. (14). 

(15) 

Finally we may use Pii* in place of Pii proved that (c/N) is small. 
Thus the distribution of OD trips will be expressed by Eq. (13) or Eq. (14). 

3. Evaluation of Transition Probabilities 

In estimating car trips in the future, we need to evaluate T, N and P 0 

at the horizontal year. 
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Since total number of cars within urban area and number of trips a car 

is taking a simple trend in past years, the future values of T and N are 

easily extrapolated. In this paragraph, we discuss a method of evaluation 

of transition probabilities. 

From the fact that a number of cars converged into or diverged from 

zone i for each trip becomes Tw, in steady state, we believe that w, means 

the fraction of generated and concentrated traffic demand in zone i. Hence 

the limiting vector w have an intimate relationship to land use patterns. 

In the future planning of the urban area, however, the value of w should 

be given previously through land use plan. Hence transition matrix P 0 have 

to be determined to have the same limiting vector w. 

Our concern comes to the determination of such transition probabilities 

as to satisfy Eq. (10), that is 

(i = 1, 2, .. · , r) (16) 

There are innumerable matrices to satisfy Eq. (16) under the constraint 

vector w. 

As a simple case, we can take 

Po= W, 

or 

Pii = Wj, 

Eq. (17) is a special solution of Eq. (16). 

(17) 

We may use Eq. (17) for estimating of future OD trips in the small urban 

area. Such convenient method to evaluate the values of P,i was applied to 

estimation of future trips in Fukuchiyama City in Kyoto Prefecture. There 

is a drawback in the convenient technique that the values of diagonal entries 

or numbers of intrazonal trips are small to compare with actual trips. 

Now, we consider the case when total number of certain "kind of cars" 

T is divided into rx r cells and each cell is filled up with cars of the same OD. 

We shall call the cell filled up with trips from zone i to j the ij-cell. 

Let p,/ be the probability that any trip falls into the ij-cell. Then we 

have 

By polynomial theorem, the joint probability that nij is assigned to the ij-cell 

respectively for each trip is written as follows, 

(18) 
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where, 

If the traveling time to all the other zones j from any zone i is similar, cars 

will be attracted to zone j proportional to value of Wj, 

Since the probability taking a trip at zone i is stated as w;, then we have 

Hence Eq. (18) becomes 

P;/ = W,Wj, 

P T! II( )n•· = JI( .. !) .. W;Wj •J, n,1· ,,1 
i,j 

(19) 

(20) 

We would determine Pii so as to maximize Eq. (20) under the constraints 

~ P;j = 1, :E W;P,j = Wj. 
J i 

However, since 

_JI_ (w,w itu .. , 
becomes a constant value under the fixed w, namely, 

n- • :I.n, • :I.n- • 
II (w;w ·) " = II (w1)1 '' II (w •)i '' 
i,j J i j J 

= II(w;)Tw;IJ(wj)Twi, 
i J 

because of the property in the steady state 

~n;i= Tw1, ~nii= T~w1Pii= Tw1, 
J ' ' 

to maximize Eq. (20) is equivalent to maximize the value of 

T! 
II(Tw1P1j)!. 
i,i 

Logarithm of Eq. (22) is easily written as 

- T :E w1 log w,-T :E :E w;P;i log Pti, 
i i j 

by Stirling Formula 

log (n!) = n log n-n. 

We may maximize Eq. (23) or 

H= -~~w,P;ilogpij, 
' J 

(21) 

(22) 

(23) 

(24) 

in place of Eq. (20) under constraints of Eq. (21). Eq. (24) is described in the 

form of entropy. We shall call it entropy of OD trips. 

Hence, most probable pattern of OD trips is represented by such a set 
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of P;j as to maximize entropy Has long as selection of a destination is in

dependent of distance to the destination. 

Here, we will find a solution of maximizing entropy. Lagrange's function 

is 

where l.j and µ 1 are indeterminate coefficients. Then we have 

where, 

a; = exp (µ;/w;), 

/3 j = exp (l.j), 

from 

8F/8p1j = -w;(l+logp;j)+w;l.j+µ; = 0. 

From the relation of 

we have 

a;= e/"f;, /3j, 
J 

so that a; is independent of i. Thus Eq. (25) becomes 

P1j = /3j/"f;, /3j. 
J 

Hence, we can find 

from the relation 

Finally we have 

(25) 

It is a very interesting property that the convenient estimation method 

of Eq. (17) requires maximum entropy. 

Next, we consider entropy per unit time 

R = H/'E, ~ w;P;jl;j, (26) 
' J 

according to information theory, although we have not theoretical interpreta

tion. t11 in Eq. (26) shows the traveling time required from zone i to j. 

It is difficult to determine a set of P;j explicitly so as to maximize R 

when w; and t;j are fixed. To find the solution, let us consider Lagrange's 

function 

F = H/t+ ~ l.j(~ w;P;rwj)+ ~ µ;("f;, Arl), 
J ' ' J 

(27) 
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where 

(28) 

Differentiating Eq. (27) with respect to Pt;, J..i andµ;, we have the simultaneous 

equations 

oF -w;(l+log P1j) 

l oP;j 

oF 
oJ..i = ~w,P,j-Wj = 0, 

oF 
0 J..; = "ii' P, 1 -1 = 0 . 

From Eq. (29) we have 

Pii = a,/3jexp(-1-t1jR), 

where, 

a, = exp (µd/w,), 

/3 1 = exp (J..il). 

From Eqs. (30), (41) and (32), we obtain 

a, = e/"i;./31 exp ( -t,;R), 
J 

/3; = ew1/I::w,a,exp(-t,1R). 
j 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

To obtain the solution maximizing Eq. (26), we should repeat the following 

operations : 

( i ) to calculate a; from Eq. (33) assuming values of R and /3 1 , (j = 1, 2, .. • , r ), 

(ii) to calculate /3 1 from Eq. (34) using a, and R, 

(iii) to obtain PiJ from Eq. (32) using a; and /3 1 , 

(iv) to calculate R from Eq. (26) using Pii, 

( v) to return to (i) and repeat these operations to converge. 

We shall take some examples to illustrate determination of transition pro

babilities. 

For passenger cars of Kyoto City, the entries of the limiting vector and 

the traveling time from zone to zone are shown in Table 6 and Table 13 

respectively. A set of transition probabilities to give the maximum R is 

shown in Table 14. Comparing Table 14 with Table 3, we notice that the 

actual transition probabilities are fairly approximate to ones maximizing 

entropy per unit time. 

Table 15 and Table 16 show a variation of traveling time and the resulted 
transition probabilities. Transition probabilities are influenced through vari

ation of traveling time t; 1• 
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Similarly, Table 17 and Table 18 show the limiting vector and the trans
ition probabilities calculated by maximizing R for the trucks of Kyoto City. 
OD trips of trucks in 1962 year are shown in Table 19 and traveling time is 
assumed the same as that of passenger cars. 

It should be noted that transition probabilities change sensitively through 
variation of traveling time particularly t,,. 

1 

2 
3 

4 

5 

6 

7 

8 

9 

~I 
1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

15 
15 
25 
20 

28 

20 
35 

Table 13. Traveling time in Kyoto City (min) 

2 

11 

8 

13 

10 

22 
15 
20 
18 

32 

3 

15 

13 

8 

15 

18 

15 

25 

30 

30 

4 

15 

10 

15 

10 

15 

9 

15 

15 

25 

5 

25 
22 

18 
15 

12 

15 

18 

30 
20 

6 

20 
15 

15 
9 

15 

7 

9 

18 

20 

7 

28 

20 
25 
15 
18 

9 

5 

25 
15 

8 

20 
18 
30 

15 
30 

18 

25 
10 

40 

Table 14. Evaluated transition probabilities (passenger cars) 

1 2 

.215 

.121 

.081 

.056 

.024 

.025 

.011 

.069 

.011 

.213 

.214 

.125 

.134 

.042 

.060 

.042 

.106 

.020 

3 4 

.152 

.132 

.328 

.083 

.096 

.077 

.026 

.024 

.033 

.204 

.274 

.160 

.229 

.200 

.246 

.148 

.280 

.093 

5 6 7 

.050 

.051 

.108 

.117 

.324 

.108 

.100 

.033 

.202 

.104 

.140 

.167 

.279 

.211 

.346 

.371 

.191 

.202 

.010 

.022 

.013 

.037 

.044 

.083 

.213 

.022 

.133 

Table 15. Traveling time in variation (min) 

10 

10 

15 

15 
28 

25 

28 

20 

35 

2 3 

10 

8 

10 

10 

22 
15 

20 
18 
32 

15 

10 
8 

15 

18 

15 
25 

30 

30 

4 

15 
10 

15 

10 
15 
9 

15 

15 
25 

5 

28 

22 
18 

15 

12 
13 

18 

30 

20 

6 

25 
15 

15 

9 

13 

7 

9 

18 

20 

7 

28 

20 

25 
15 

18 
9 

5 

25 
15 

8 

.046 

.040 

.009 

.052 

.011 

.031 

.016 

.271 

.005 

8 

20 
18 
30 
15 

30 

18 
25 
10 

40 

9 

35 

32 
30 

25 
20 
20 
15 

40 

12 

9 

.006 

.006 

.009 

.013 

.048 

.024 

.073 

.004 

.300 

9 

35 

32 
30 

25 

20 

20 

15 
40 

12 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

Table 16. Evaluated transition probabilities from Table 15 . 

.240 

.137 

.082 

.060 

.015 

.012 

.012 

.072 

.011 

.242 

.186 

.173 

.126 

.037 

.055 

.038 

.098 

,018 

.153 

.183 

.306 

.080 

.088 

.072 

.024 

.022 

.031 

.217 

.259 

.154 

.236 

.194 

.247 

.150 

.285 

.093 

.032 

.044 

.099 

.113 

.302 

.137 

.096 

.031 

.194 

.051 

.127 

.158 

.281 

.267 

.340 

.371 

.188 

.199 

.011 

.020 

.012 

.038 

.042 

.083 

.219 

.022 

.137 

Table 17. Limiting vector of trucks in Kyoto City 

. 048 

.037 

.008 

.053 

.010 

.031 

.016 

.278 

.005 

.006 

.005 

.008 

.013 

.046 

.024 

.074 

.004 

.312 

Zone i 1 2 3 4 5 6 7 8~_J 

J--W-; ----t-.-05_4_7 __ .1_2_3_5--.08-52--.2-31-5--.-07_2_6 __ .2_1_7_7--.0-7-12-~.07~1 

Table 18. Evaluated transition probabilities of trucks 
·-----· 

~I 1 2 3 4 5 6 7 8 9 

1 .193 .243 .124 .217 .031 .092 .013 .077 .010 

2 .107 .241 .107 .289 .031 .123 .026 .066 .010 

3 .080 .155 .293 .186 .074 .162 .017 .015 .018 

4 .051 .154 .068 .247 .074 .250 .046 .087 .023 

5 .024 .053 .087 .235 .223 .205 .059 .019 .095 

6 .023 ,069 .064 .265 .068 .311 .103 .052 .045 

7 .010 .046 .020 .150 .060 .314 .248 .026 .126 

8 .053 .103 .017 .255 .018 .144 .023 .381 .006 

9 .009 .019 .023 .084 .107 .151 .139 .007 .461 

Table 19. Transition probabilities of trucks (1962 year) 

~I 1 2 3 4 5 6 7 8 9 

1 .227 .225 .082 .157 .025 .113 .039 .074 .012 

2 .107 .367 .082 .196 .040 .115 .021 .053 .019 

3 .039 .092 .391 .184 .087 .121 .030 .042 .014 

4 .042 .099 .061 .364 .051 .229 .040 .088 .026 

5 .025 .082 .098 .153 .296 .207 .055 .034 .049 

6 .027 .073 .045 .240 .065 .363 .073 .068 .046 

7 .042 .042 .033 .146 .052 .199 .350 .061 .076 

8 .056 .079 .041 .247 .043 .200 .056 .258 .020 

9 .014 .037 .010 .084 .059 .155 .084 .037 .520 
-~· 
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4. Symmetry of Car Trips 

OD trips are briefly represented by Eq. (13), so that symmetry in distri

bution of OD trips requires 

(35) 

Property of symmetry is held in most cases of observations. When the 

relation of Eq. (35) exists, we call the OD trips a symmetrical flow. 

The transition probabilities of Table 14 form a symmetrical flow as shown 

in Table 20. In general, we prove that such the transition probabilities as 

to maximize entropy per unit time make a symmetrical distribution of OD 

trips under the relation of t;1=t1;. 

Table 20. Illustration of symmetry of w;P;j (passenger cars) 

1 
2 

3 

4 

5 

6 

7 

8 

9 

.129 

.092 

.123 

.030 

.063 

.006 

.028 

.003 

.228 

.141 

.293 

.054 

.149 

.023 

.043 

.006 

.141 

.372 

.180 

.123 

.190 

.014 

.010 

.010 

From Eq. (32), we have 

where, 

5 6 

.292 .054 149 

.181 .123 .190 

.501 .255 .610 

.255 .414 .268 

.610 .268 .858 

.082 .056 .206 

.ll4 .013 .077 

.028 .060 .061 

K = 1/e and xii= exp(-tijR). 

7 

.023 

.014 

.082 

.056 

.206 

.ll8 

.009 

.040 

Then the symmetry of OD trips require the relation of 

8 9 

.043 .006 

.010 .009 

.113 .028 

.013 .060 

.077 .061 

.009 .040 

.110 .001 

.001 .091 

(36) 

(37) 

(38) 

If we put 

M; = W;a;//3;, 

it is sufficient to prove the symmetry that M; is a constant value independent 

of i. 
From Eq. (33) and Eq. (34), we have 
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4;3jXij = 1/Ka; 
J 

:E WjajXj; = w;/K/3; 
j 

(i = 1, 2, · · · , r) , 

(i = 1, 2, ··· , r). 

Hence, we can write 

M; ~ 4 WjajXj;/"f;. /ijXij 
J J 

Using Eq. (41) and relation Xij=Xj;, we have 

:E(w;a1-/3;M;)xu = 0. 
j 

By definition of Mi=w;a;/;31, Eq. (42) is reduced to 

:E ;3 ;(Mr M;)x;; = O. 
j 

(39) 

(40) 

(41) 

(42) 

(43) 

Let us now assume that M;'s are not always equal to each others, i.e., M1 

is dependent of i. Then, there exists a maximum value among the set of M; 

such as M;
0

• We know already that 

/3 i > 0 and x; 1 > 0 . 

Therefore, we have 

(j = 1, 2, .. · , r). (44) 

By the above assumption, we may find M;
0 

such as M;
0
<M;

0
• Then we have 

(45) 

Hence 

(46) 

This is inconsistent with Eq. (43). 

Therefore, M; is a constant value for all i. 

In most cases, OD trips are given by a triangular OD table. We have to 

make OD table from it. Then OD trips are clearly symmetrical. For example, 

such OD trips of light passenger cars in Amagasaki City are shown in Table 8. 

The limiting vector and the traveling time are shown respectively in Table 21 

and Table 22. Thus we can find transition probabilities of maximum entropy 

as shown in Table 23. 

The actual distribution of OD trips comes near the situation of maximum 

entropy per unit time. 

Table 21. Limiting vector (Amagasaki City) 

Zone i I 1 2 3 4 5 6 

W; I .0739 .0414 .2315 .4735 .1385 .0412 
-~- ---- -------~-
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Table 22. Traveling time (min) 
--------- ----- --

~I 1 2 3 4 5 6 

1 2.5 8 7 10 15 18 

2 8 3 14 6 22 15 

3 7 14 5 9 12 17 

4 10 6 9 5 16 10 

5 15 22 12 16 7 11 

6 18 15 17 10 11 6 

Table 23. Evaluated transition probabilities 
(Amagasaki City) 

~I 1 2 3 4 5 6 

1 .220 .050 .302 .332 .082 .014 

2 .090 .116 .096 .649 .026 .023 

3 .096 .017 .387 .361 .124 .015 

4 .052 .057 .177 .615 .057 .042 

5 .044 .008 .207 .193 .480 .069 

6 .025 .023 .085 .487 .232 .148 
---------

5. Conclusion 

Urban traffic flow from origin to destination forms an ergodic Markov 

chain of steady state, and number of trips from zone i to j are described by 

TNw,P,i as known from Eq. (13). Hence, OD trips will be fixed stationarily 

for each trip and be influenced by total number of cars independently of 

distribution of registered cars. 

It should be noted that the transition probabilities control the pattern 

of car trips in accompany with their limiting vector w. 

The limiting vector shows a distribution of relative potentiality of 

generating or concentrating traffic for each kind of cars and should be given 

through land use planning in estimation of future trips. 

Although there are innumerable transition matrices that converge to the 

same limiting matrix, we could select a transition matrix through maximizing 

entropy per unit time. Difference between such transition matrix and actual 

one will be caused by speciality of interzonal connection excluding traveling 

time required on a trip. 

Car trips of maximum entropy will discharge from every zone in a 

symmetrical flow when the traveling time is symmetrical. 

Acknowledgment 

The authors would like to express their sincere appreciation to Professor 



182 Tsuna SASAKI and Kazuo KAGAWA 

E. Kometani for his helpful suggestions, and many thanks are due to Mr. 

Y. Iida for his co-operation in the calculation. 

References 

1) Tsuna Sasaki and Toshia Miura; "On the Estimation of Traffic Volume by Random Walk 
Method", Preprint of the 19th Annual Conference of Japan Soc. Civil Engrs. Part IV, 
p. 5-1 (1964). 

2) Tsuna Sasaki and Kazuo Kagawa ; "On the Study of Traffic Flow as a Markov Chain", 
Preprint of the 20th Annual Conference of Japan Soc. Civil Engrs. Part IV, p. 88 (1965). 

3) Eiji Kometani; "Estimation of OD Trips by Transition Matrix", Paper presented to the 
3rd International Symposium on the Theory of Road Traffic Flow, (1965). 

4) Eiji Kometani, Tsuna Sasaki and Tatsuo Saito; "Estimation of OD Trips through Markov 
Chain", Trans. Japan Soc. Civil Engrs., No. 129, p. 15~22 (1966). 


