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This paper is concerned with establishing the mathematical basis of the 
Critical Path Method-a new tool for planning and scheduling projects. 

The mathematical model upon which the Critical Path Method is based is 
a parametric linear program that has the objective of computing the utility 
of a project as a function of its duration. 

In order to solve the parametric linear program, primal dual algorithm 
may effectively be used and be solved efficiently by network flow method. 

This paper contains also the application of this algorithm to the scheduling 
of quaywall construction at Pier No. 8E, Port of Kobe. 

1. Introduction 
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Until just a few years ago, there was no generally accepted formal 

procedure to aid in the management of projects. Each manager had his own 

scheme, which often involved the limited use of the bar chart-a useful tool 

in production management but inadequate one for the complex interrelation­

ship associated with project management. 

During the past few years growing interest has developed in the problems 

of managing large projects. 

While it is generally realized that the fundamental characteristic of all 

projects is that all the activities involved must be performed in some well 

defined order, it appears that little has been done to make explicit use of 

this fact. Recently, however, two parallel efforts, which take their origins 

in the series-parallel relations among project activities, have been underway. 

One of these efforts is called the PERT system, and the other effort is called 

the Critical Path Method. 

In this paper, we deal with a mathematical basis of the Critical Path 
Method. The mathematical model upon which the Critical Path Method is 

based is a parametric linear program that has the objective of computing 
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the utility of a project as a function of its duration. For each feasible pro­

ject duration, a feasible project schedule is obtained that has a maximum 

utility among all feasible schedules of the same project duration. 

In order to solve the parametric linear program, primal dual algorithm 

may effectively be used and solved efficiently by network flow method. 

Our objective in this paper will be to review a primal dual algorithm and 

a network flow algorithm for finding a feasible project schedule to the 

Critical Path Method. 

Applying this algorithm to the scheduling of quaywall construction at 

Port of Kobe, it was made clear that this algorithm is a general procedure 

which works well along with the analysis of Critical Path Method for the 

scheduling of public works. 

2. Formulation of the Problem 

Let E be a finite partially ordered set of n + 1 elements called events. 

There are two distinguished event in E, source and sink, respectively, with 

the property that source precedes and sink follows every event in E. 

Each event is denoted by a nonnegative integer, its label. Since E is 

partially ordered, we may assume that the events are labeled such that if 

event i precedes event j then i <j. In particular, source is given the label 

0 and sink is given the label n. 

Also associated with event i is a nonnegative number, t1 , which repre­

sents the time at which the event occurs. Thus, if event i precedes event 

j then !;~ti. We will always let t 0 =0. 

An activity is an element, (i, j), of Ex E, such that i <j. Associated with 

each activity is a nonnegative number, Yii, its duration. It is assumed that 

activity (i, j) must be performed sometime between the occurrences of event 

i and event j. Thus we must have 

(1) 

A project, P, is a set of events and activities with the property that if 

event k is in P then k is either source or sink, or else there exist events i 

and j in P such that activities (i, k) and (k, j) are both in P. 

An assignment of durations, Yii, to activities and occurrence times, t;, 
to events in P is called a schedule. A schedule will be denoted by {y, t}, 

where y and t are vectors whose coordinates are the y;j and t;, respectively, 

which define the schedule. If there are m activities in P, {y, t} may be 

interpreted as a vector in an (m + n + 1) dimensional Euclidean space. 
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Sometimes the duration of an activity is a matter of management deci­

sion subject to certain restrictions. The simplest restrictions, and the only 

ones with which we will deal, are that y;j be bounded above and below for 

each activity in P. That is, there are numbers d;j and Dii such that 

( 2) 

for all (i, j) in P. We will call Dii the normal duration of activity (i, j): d1j 

will be called the crash duration. 

The value of d;i is an approximation to the fastest time in which an 

activity can be performed and is determined by the nature of the activity 

and the environment in which it must be performed. On the other hand, 

D;i must usually be established by fiat. It represent a reasonable per­

formance time under "normal" circumstances. 

A schedule satisfying equations (1) and (2) with t0 =0 is called a feasible 

schedule. 

The duration actually selected for each activity when forming a feasible 

schedule is made to depend upon its utility. For the moment we will assume 

that the utility of an activity is a linear function of its duration on the 

closed interval defined by equation (2) and has the form: c1iYii, where 

O:::;;c1i< oo. 

The utilities of the individual activities in P, 

( 3) 

The duration of a schedule is J.=tn. 

It is clear that among all feasible schedules having a given duration, J, 

there is at least one which has maximum utility, i.e., maximizes equation 

(3). Such a feasible schedule will be called optimal. We denote this values 

of equation (3) for this schedule by U(A). 

Considered as a function of J., U(J.) will be called the project utility 

function. 

3. The Primal Dual Algorithm 

We may view the problem of maximizing equation (3) subject to equations 

(1) and (2) with t0 =0 and tn=A as a parametric linear program with parameter 

J. We propose to use the primal dual algorithm to solve it and proceed as 

follows: 

Let {y, t} be an optimal feasible schedule of duration ;i and define the 

following sets of activities: 
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Ql = {(i, j)lyif+t;-t1 = 0, (i, j)EP}, 

Q2 = {(i, j)IYiJ = Dij > d;1, (i, j)EP}, 

Q3 = {(i, j)IY;J = D;1 = d;1, (i, j)EP}, 

Q4 = {(i, j)IYiJ = dij < D;,, (i, j(EP} • l ( 4) 

The salient features of the primal dual algorithm, when specialized to 

the present case may be summarized in the following. 

Let {y, t} be an optimal feasible schedule of duration ,t It remains to 

develop a method for solving equations (1), (2) and (3). To do consider the 

restricted dual of equations (1), (2) and (3) called the restricted dual program: 

Find a;;, (i, j)EP and o;, Osisn, that minimize the linear form 

subject to 

1. A,= a;1+ O;-o j 2 0' (i, j)EQ1 

2. a1 1 2 O, (i, j) = Qin Q2 

3. a;1 = 0, (i, j) = P-(Q1-Q3) 

5. 00 = 0 and On = 1 , 

then the solution {u*, t*} defined by 

Yt1 = Yii-8a;1, (i, j)EP 

tt =t;-80;, Osisn } 
is an optimal feasible schedule of duration l.*=l.-8, where Os8s80 and 

where 

{
min [(Y;1+t;-t1)/P;j], 

8, = P;J<O 
+ co, if Pij 2 0 for all (i, j)EP, 

{ 
min [(Y;r D1;)/a;j] , 

82 = ,;ij<O 

+ co, if a;1 2 0 for all (i, j)EP, 

{ 
min [(y;rd;1)/a;1], 

Ba= <I;J>o 
+ co, if a; 1 s O for all (i, j)EP. 

(5) 

( 6) 

( 7) 

( 8) 

( 9) 

However, if equation (6) is inconsistent then there are no feasible schedules 

of duration less than ,l. 

The primal dual algorithm now consists in finding an optimal feasible 

schedule {u, t} of duration ,l and then solving equations (5) and (6) to deter­

mine {y*, t*} of duration l.=80 • {y*, t*} is called a characteristic schedule. 
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Using this new optimal feasible schedule the process is repeated until no 

feasible schedules of shorter duration can be found. At this point the 

algorithm terminates. 

4. A Network Flow Algorithm 

It remains to develop a method for solving equations (5) and (6). To do 

this consider the dual of equations (5) and (6), called the restricted primal 

problem. 

In order to formulate the restricted primal problem, we may consider 

the following dual linear programs : 

DI-Z): 1. Y;1+t,-t1s0, 

2. Y,J s D,1, 

3. -yii s -d,j, (10) 
4. -t0 +tn SA, 

U(,Z) = max I:: c,1Y,1. 
Ci,j)EP 

I:: f,j= I:: f 1k, (lsjsn-1), 
(i,j)EP (j,k)EP 

2. 

3. I:: foJ = I:: f,n = V , 
(O,j)EP (i,n)EP (11) 

4. f,j+ g;j-hij = C;j, 

P(,Z) = min (Av+ I:: D,1g,;- I:: diihij. 
(i,j)EP Ci,j)EP 

From the above equations of primal problem, the equations of restricted 

primal problem are obtained as follows : 

RPI-Z): 1. /,;, g;;, h,j, V,j 2 0, 

2. I:: Iii = I:: f 1, .. 
(i,j)EP (j,k)EP 

(1 s j s n-1), 

3. I:: /o; = I:: f;n = V, 
(O,j)EP (i,n)EP 

4. fu+g,j-h, 1 = c,;, 

5. I:: Urt,-y;j)fiJ+ I:: (D,r f,1)g,; 

+ I:: (y,j-d,;)h,;+(-Z-tn +to)v = 0, 

max I:: foj. 
(O,j)EP 

(12) 

On the other hand, in the optimal feasible schedule of duration -Z, we 

can assume that 

f 0 = 0, tn =A, 

YiJ = min (Dij, tj-t,). } (13) 
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Then, it is not necessary to consider the term (A-tn+t0)v in equation (12)-5. 
We may use the following expressions insted of equations (12) through 

the above assumption. 

RP[A): 1. f;i, g;j, h;i 2 0, 

2. ~ /;j = ~ /jk, 
(i,j)EP (j,k)EP 

(1 s j s n-1), 

3. /;j+g;J-hij = C;j, 

1. ( i) Y;i+t;-ti < 0 ⇒ fii = 0, 

(ii) Yii < D11 ⇒ g;; = 0, 

(iii) Y;i > d;1 ⇒ hiJ = 0, 

max ~ foJ 
(O,j)EP 

(14) 

In these equations, if g;1=0, then we have f112c11 and if hii=0, then we 

have f11SCiJ, 

Finally, we can obtain the following equations of restricted primal 
problem as an equivalent expression of equations (14): 

Find /ii, (i, j)EP, that maximize the linear form 

~ /01, 
(O,j)EP 

subject to 1. ~ fu- ~ fJk = 0, (1 sj s n-1), 
(i,j)EP (j,k)EP 

and 2. 0 s Iii s cu, (i, j)EQ, n Qz, 

(e(i, j, 1) = 0, e(i, j, 2) > 0), 

3. 0 S fti = Ctj, (i, j)EQ,-(QzUQ3 UQ4), 

(e(i, j, 1) < 0, e(i, j, 2) > 0) , 

4. /;j 2 C;j, (i, j)EQ,nQ4, 

(e(i, j, 1) < 0, e(i, j, 2) = 0), 

5. ftj = 0, (i, j)EP-Q,, 

(e(i, j, 1) > 0) . 

Where, e(i, j, 1) and e(i, j, 2) defined by 

e(i,j, 1) = trU1+D11) 

e(i, j, 2) = t1-U1+d11) 

are called the floater. 

} 

(15) 

(16) 

(17) 

(18) 

We may interpret /; 1 to be the amount of a homogeneous commodity 

being transported through a network whose nodes correspond to the events 
of P and whose branches correspond to the activities of P. Equations (16) 

are flow conservation equations. Capacity restrictions on the allowable flow 

in a branch are stated in constraints (17). 
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The problem is to maximize the fl.ow into node n subject to the capacity 

restrictions. The following labeling method is used to solve the maximal 

fl.ow problems. 

The algorithm may be started with the zero fl.ow. The computation then 

progresses by a sequence of "labelings" (Routine I below), each of which 

either results in a fl.ow of higher value (Routine II below) or terminates 

with the conclusion that the present flow is maximal. 

Given an integral fl.ow /;j, we proceed to assign labels to nodes of the 

network, a label having one of the forms 

L(j) = [i ±c(j) I LS], (19) 

where i indicates the node from which one came to label node j and c(j) 

indicates the minimum, but positive, excess branch fl.ow along the path to 

node j. 

During Routine I, a node is considered to be in one of three stages : 

unlabeled, labeled and scanned or labeled and unscanned. In equation (19), 

L indicates the labeled and S indicates the scanned. 

Initially all nodes are unlabeled. 

Routine I (labeling process). 

1) First the source O receives the label 

L(O) = [6600 IL6J, (20) 

where, 6 denotes the blank. The source is now labeled and unscanned: 

all other nodes are unlabeled. 

2) Consider any labeled node i, not yet scanned. 

( i) If (i,j)EQ1 nQ2 for some unlabeled node j and f;i<cij, assign the 

label 

L(j) = [i+c(j)IL6] 

to node j, where 

c(j) = min [c(i), c;r f;j]. 

(ii) If (i, j)EQ 1 n (Q8 U Q4 ) for some unlabeled node j, assign the label 

L(j) = [i +c(i) I L6] 

to node j. 

(21) 

(22) 

(23) 

(iii) If (i,j)EQ1 -(Q2 UQ3 UQ4) for some unlabeled node j, leave node j 

unlabeled. 

3) Consider any unlabeled node i, not yet scanned. 
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L(i) = [j-c(i)ILL">J 

to node i, where 

c(i) = min [c(j), Iii]• 

(ii) If (i,j)EQ 1 nQ, and fiJ>ciJ, assign the label 

L(i) = [j-c(i)ILL">J 

to node i, where 

(24) 

(25) 

(26) 

(27) 

(iii) If (i, j)EQ1-(Q2 U Q3 U QJ, leave node i unlabeled. 

Use labeling rules 2) and 3) alternately where applicable until it is no 

longer possible to label an unlabeled node. When applying these rules, if a 

node is a candidate for a label in several ways, use any applicable label. 

When the labeling process terminates through the above procedure, source 

and other nodes i, j are scanned, then we replace 6 by S in scanned part of 

all labels. 

In this way, when the labeling process terminates, if sink n is labeled, 

process to Routine II. If sink n is not labeled, the algorithm terminates, 

the maximum flow having been obtained. 

Routine II (flow change). 

4) The sink n has been labeled 

L(n) = [k + c(n) I LL,], 

replace !kn by fkn+c(n). 

5) Now consider event k, in general, if node k is labeled 

L(k) = [j+c(k)ILS], 

replace fik by fik+c(n), if it is labeled 

L(k) = [j-c(k)ILS], 

replace lik by /ik-c(n). 

(28) 

(29) 

(30) 

6) Now process in the same manner to consider node j. Eventually source 

will be reached. At that time Routine II terminates. Using the new values 

of /;i and erasing all labels, Routine I is repeated. 

This completes the rules for the network flow algorithm. 
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5. Determination of Optimal Feasible Schedule and Project Cost 

If f;h (i,j)EP is an optimal flow for the restricted primal problem as­

sociated with the optimal feasible schedule {y, t} of duration J, then it is 

also a feasible flow for the restricted primal problem associated with the 

optimal feasible schedule { y*, t*} of duration J - 80 • 

Let I be the set of labeled and unscanned nodes and J the set of 

unlabeled nodes obtained at the termination of the flow algorithm. 

Further, let 

Then we obtain 

Q5 ={(~,~)\~El, ~E] and (~, ~)EQ,}, } 

Qs = {(i, ;)liE], JE/ and (i, ;)EQ1}. 

1. if iE[, jE], then 

f;j=Cij, if (i,j)EQ,-(QsUQ,), 

2. if iE], jEl, then 

fij = C;j, if (i, j)EQ,-(Q2UQ3), 

fij = 0, if (i,j)EQ,n(Q2UQa), 

3. if iE[ and (i,j)EQ1 n(Q3 UQ,), 

then jEl. 

a;j and a; defined by 

O;j = 1, if (i,j)EQ,-(Q3UQ,), 

(e(i, j, 1) :c;; 0, e(i, j, 2) > 0), 

and iE[, jE], 

a;j = -1, if (i,j)EQ,-(Q2UQ3), 

(e(i, j, 1) < 0, e(i, j, 2) ::2:: 0) , 

and iE]' jE[' 

otherwise 

and o; = 0, iEl, 

O; = 1, iE], 

(31) 

(32) 

(33) 

constitute of feasible solution to equations (6) through the maximum flow 

minimum cut theorem. 

Then, in order to obtain the optimal feasible schedule {y*, t*} of duration 

-1*=-1-80, we can use the following equations insted of equations (7): 
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1) 

2) 

where 

and 
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1. YfJ = Y,rf, if iEl, jE], 

e(i, j, 1) :S:: 0 and 

e(i, j, 2) > 0, 

2. YfJ=J,j+f, if iE], jE[, 

e(i, j, 1) < 0 and 

e(i, j, 2) 2 0 , 

3. Yi~= Yii, 

1. tt = t;, 
2. tf =t;-f, 

f = min (,;i, f2), 

otherwise, 

if iE[, 

if iE], 

f 1 = min [e(i, j, k)], 
Os 

f2 = min [ -e(i, j, 2)] , 
Os 

(34) 

(35) 

Finally, increasing project cost LIP of duration A*=A-00 is obtained as follows: 

LIP= f[ :E f;r :E /,i] 
Os Os 

= f :E foj • 
(0,jJEP l 

6. Application to the Scheduling of Quaywall Construction 

at Port of Kobe 

(36) 

Port of Kobe has been developed into an international port which has a 

large hinterland called "Hanshin Industrial Area". It is visit by many 

liners from all over the world. 

The economic development of the world including Japan has increased 

the amount of foreign trade among many countries. Consequently, the 

number of liners or other ships coming in and out of Port of Kobe has 

increased much more and the size of the ships has also increased. 

In order to accelerate the progress of economic development of Japan 

through foreign trade, we must increase and rationalize port facilities. 

After the World War II, Pier No. 7, No. 8 W and Maya Wharves were 

constructed, but Port of Kobe met with a severe shortage of wharves due 

to the rapid growth of Japanese economy, and a new plan for Pier No. 8 E 

was developed to cope with imminent needs. 

The structure adopted for quaywall of Pier No. 8 E is shown in Fig. 1 

using a circular cell made of steel plate insted of sheet piles. If the steel plate 

cellular bulkhead type is possible to be adopted for quaywall, the construc­

tion cost will be cheaper, the process of work will be easier and execution 

will be more rapid than other types of quaywall. 
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m 

Steel plate cell 1515C)i(l9,d8111fm 

Sand fill 

sand -1e,som 

-27.00m 

Fig. 1. Standard cross section of quaywall. (steel plate cellular quaywall). 

This type of structure was already constructed for the quaywalls of Maya 

Wharves. As a matter of fact, it was the first test in the world, so the 

method of the design calculation might not be precise. 

After the construction of this type of quaywall, Port of Kobe was 

attacked several times by strong storms, and this structure of quaywall 

withstood these storms. From these experiences, it is certain that there 

are no problems in the making of a steel plate cellular bulkhead. 

It may be thought that the diameter of the cellular bulkhead for quay­

wall of Pier No. 8 E should become the same diameter of 15.5 m. 

To resist the vertical load and horizontal force, the steel pipe piles of 

diameter 40 cm will be driven vertically in front of the cellular bulkhead 

and ones of diameter 50 cm will be driven vertically inside the cellular 

bulkhead, then they will be connected by steel forms. 

The following is the summary of execution of this work. 

Owing to the soft foundation, the sea bed will be replaced by river sand 

of good quality with grab type dreadger for 4 m3 capacity. The steel plate 

cell will be carried and set in place by a floating crane, then filled with soil. 

The cell will be of 9 mm thick steel plate and the stiffening steel plates 

of 30~35 cm in width, 9 mm thickness will be fixed at three points in radial 

direction and eight parts in the cylindrical direction. Total weight become 

63 tons each. These will be constructed in the shipyards in Kobe. 
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As soil of good quality can not be obtained from the seabed, mountain 

soil that has less clay will be brought for the filling. We can fill 3,000 m• of 

soil in celles in 3~4 days. 

The driving of steel pipe piles shown in Fig. 1 will be done by the 

piling barge. 

The sequencing relations among the activities of the quaywall construc­

tion project at Pier No. 8 E are shown in an arrow diagram of Fig. 2. 

Note that in Fig. 2 there are certain activities represented by brokenline 

Note: 
A Dredging Sea Bed 
B Replacing Sand 
C Steel Plate Cell Construction 
D Carrying and Setting of Steel Plate Cell 
E Filling Soil in Cell 
F Driving Sheet Pile of Arc Part 
G Filling Soil in Arc Part 
H Placing Sand for Protection of Cell 
I Driving Sand Piles by Vibrocomposer 
J Driving Battered Pile 

K Connecting Battered Piles by Steel Forms 
L Concreat-placing of Retaining Block 
N Precast Beams Construction 
O Setting of Precast Beams on Piles 
P Connecting Battered Piles and Precast Beams 
Q Retaining-wall Construction between Precast 

Beams 
S Setting of Stopper 
T Pavement 

Fig. 2. Sequencing relations among the activities of the quaywall construction project. 
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arrows. These are "dummy" activities that only signify the sequencing of 

certain other activities. 

Let us assume that the utility of an activity is measured in terms of its 

cost. Maximizing utility then means minimizing cost. The result of the 

project utility function computation is a project cost curve that is piecewise 

linear, nonincreasing, and convex where it is defined. However, this cost 

curve generally only reflects the direct costs involved in performing project 

activities. These costs include such things as labor, equipment and materials 

--- the direct costs of the project. 

Table 1 is a summary of the information supplied to supervision for the 

quaywall construction problem of Fig. 2. 

301.0 

300.5 

300.0 

C: 
~2405 
~ 

1n 
0 
(_) 

61.0 

600 -

59.0170 180 

Total Project Cost/ 

190 200 210 
Completion lime 

220 
(Days) 

Fig. 3. Project cost curve. 

230 240 
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Table 1. Summary of the information for the quaywall construction problem. 

Activity Sequence Duration 
Cost 1 Activity Sequence Duration Cost 

code i I 
j D;; I d,; slope code i I j D;; I d,; slope 

L.T. 0 1 10 10 00 Dummy 26 43 0 0 0 
Co 1 2 21 13 414.2 Dummy 27 28 0 0 0 
A1 2 3 11 8 51.5 Da 27 29 1 1 00 

C1 2 7 21 13 414.2 E11 28 30 4 3 1.3 
N 2 82 66 48 6.8 Dummy 29 30 0 0 0 
B1 3 4 3 2 1.7 D12 29 32 1 1 00 

A2 3 5 11 8 51.5 Ea 30 31 4 3 1.3 
Dummy 4 5 0 0 0 Dummy 31 33 0 0 0 
Dummy 4 8 0 0 0 Dummy 31 48 0 0 0 

B2 5 6 3 2 1.7 Dummy 32 33 0 0 0 
Dummy 6 32 0 0 0 D10 32 34 1 1 00 

Dummy 7 8 0 0 0 E12 33 34 4 3 1.3 
D1 8 9 1 1 00 E10 34 53 4 3 1.3 
Ds 9 10 1 1 00 F2 35 36 1 1 00 

E1 9 11 4 3 1.3 G1 35 37 1 1 00 

Dummy 10 11 0 0 0 Dummy 36 37 0 0 0 

Ds 10 12 1 1 00 Dummy 36 38 0 0 0 
E3 11 13 4 3 1.3 G2 37 40 1 1 00 

Dummy 12 13 0 0 0 F3 38 39 1 1 00 

D2 12 14 1 1 00 Dummy 39 40 0 0 0 

Es 13 15 4 3 1.3 F4 39 41 1 1 00 

Dummy 14 15 0 0 0 G3 40 42 1 1 00 

D1 14 17 1 1 00 Dummy 41 42 0 0 0 

E2 15 16 4 3 1.3 Dummy 41 43 0 0 0 
Dummy 16 18 0 0 0 G4 42 45 1 1 00 

F1 16 35 1 1 00 Fs 43 44 1 1 00 

Dummy 17 18 0 0 0 Dummy 44 45 0 0 0 

D4 17 19 1 1 00 F5 44 46 1 1 00 

E1 18 20 4 3 1.3 Gs 45 47 1 1 00 

Dummy 19 20 0 0 0 Dummy 46 47 0 0 0 
Dg 19 22 1 1 00 Dummy 46 48 0 0 0 

E4 20 21 4 3 1.3 G5 47 50 1 1 00 

Dummy 21 23 0 0 0 F1 48 49 1 1 00 

Dummy 21 38 0 0 0 Dummy 49 50 0 0 0 
Dummy 22 23 0 0 0 Fa 49 51 1 1 00 

D6 22 24 1 1 00 G1 50 52 1 1 00 

Eg 23 25 4 3 1.3 Dummy 51 52 0 0 0 
Dummy 24 25 0 0 0 Dummy 51 53 0 0 0 

D11 24 27 1 1 00 Ga 52 55 1 1 00 

E5 25 26 4 3 1.3 Fg 53 54 1 1 00 

Dummy 26 28 0 0 0 Dummy 54 55 0 0 0 
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(Table 1 continued) 

Activity Sequence Duration Cost Activity Sequence Duration Cost 

code j I j D;; I d;; slope code i I j D;; I d;; slope 

F10 54 56 1 1 00 L2 83 93 12 8 13.8 

Gg 55 57 1 1 00 02 84 85 1 1 00 

Dummy 56 57 0 0 0 P1 84 86 1 1 00 

Fu 56 58 1 1 00 Dummy 85 86 0 0 0 

G10 57 58 1 1 00 Oa 85 87 1 1 00 

Gu 58 59 1 1 00 P2 86 88 1 1 00 

H1 59 60 3 2 1.7 Dummy 87 88 0 0 0 

H2 60 61 3 2 1.7 o. 87 89 1 1 00 

l1 60 62 11 8 2.0 Pa 88 90 1 1 00 

Dummy 61 62 0 0 0 Dummy 89 90 0 0 0 

Ja1 62 63 3 2 7.7 Os 89 91 1 1 00 

l2 62 64 11 8 2.0 P, 90 92 1 1 00 

Ja2 63 64 3 2 7.7 Ql 90 106 5 3 4.2 

Ka1 63 65 2 1 2.0 Dummy 91 92 0 0 0 
Dummy 64 65 0 0 0 06 91 93 1 1 00 

Jaa 64 66 3 2 7.7 Ps 92 94 1 1 00 

Ka2 65 67 2 1 2.0 Dummy 93 94 0 0 0 
Dummy 66 67 0 0 0 o, 93 95 1 1 00 

Ja, 66 68 3 2 7.7 p6 94 96 1 1 00 

Kaa 67 69 2 1 2.0 Dummy 95 96 0 0 0 
Dummy 68 69 0 0 0 Os 95 97 1 1 00 

J21 68 70 3 2 7.7 P, 96 98 1 1 00 

Ka4 69 71 2 1 2.0 Dummy 96 106 0 0 0 
Dummy 70 71 0 0 0 Dummy 97 98 0 0 0 

J22 70 72 3 2 7.7 09 97 99 1 1 00 

K21 71 73 2 1 2.0 Pa 98 100 1 1 00 

Dummy 72 73 0 0 0 Dummy 99 100 0 0 0 

J23 72 74 3 2 7.7 010 99 101 1 1 00 

K22 73 75 2 1 2.0 Pg 100 102 1 1 00 

Dummy 74 75 0 0 0 Dummy 101 102 0 0 0 

J24 74 76 3 2 7.7 Ou 101 103 1 1 00 

K2a 75 77 2 1 2.0 P10 102 104 1 1 00 

Dummy 76 77 0 0 0 Dummy 102 107 0 0 0 
Ju 76 78 5 4 7.7 Dummy 103 104 0 0 0 
Ku 77 79 2 1 2.0 012 103 105 1 1 00 

Dummy 78 79 0 0 0 Pu 104 105 1 1 00 

J12 78 80 5 4 7.7 P,2 105 108 1 1 00 

Ku 79 80 3 2 2.0 Q2 106 107 5 3 4.2 
K12 80 81 3 2 2.0 Qa 107 108 5 3 4.2 
L1 81 82 12 8 13.8 Q, 108 109 5 3 4.2 

Dummy 82 83 0 0 0 s 109 110 9 7 1.3 
o, 82 84 1 1 00 T 110 111 36 30 7.3 
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On the basis of this information, that of Table 1 and the arrow diagram 

of Fig. 2, we may apply the algorithm of the previous sections to obtain the 

direct project cost curve approximated in Fig. 3. 

Clearly there are other costs that contribute to the total project cost 

such as overhead and distributives, and perhaps penalties for not completing 

the project or a portion of it by a certain time. These external costs must 

also be taken into account when management plans how the project should 

be implemented relative to over-all objectives. The major portion of the 

external costs usually vary only with the duration of the project. Thus, 

they form a cost curve that will be called the indirect cost curve of the 

project. 

A typical question that management might ask is "How should the pro­

ject be implemented so that the total project cost is minimal?". The answer 

to this question can be approximated by adding the direct and indirect cost 

curves together to form a total project cost curve and then selecting the 

schedule corresponding to the minimum total project cost. 

Indirect cost curve and total project cost curve are also included in 

Fig. 3. 

7. Concluding Remarks 

In this paper, we deal with the mathematical basis of the Critical Path 

Method. The mathematical model is based on a parametric linear program 

that has the objective of computing the utility of a project as a function of 

its duration. For each feasible project duration, a feasible project schedule is 

obtained that has maximum utility among all feasible schedules of the same 

project duration. 

A primal dual algorithm and a network flow algorithm have been de· 

veloped for finding a feasible project schedule to the Critical Path Method. 

In th~ application of this algorithm, calculations have been executed on 

an automatic digital computer FACOM 222. 

In these calculations, most parts of calculating time were spent to find 

the minimum cut. Therefore, it is desirable to establish an another algorithm 

to find the minimum cut more easily. In order to develop another algorithm, 

a new research project is already started by our research groups. The next 

paper to be prepared by the authors in the near future, will deal with the 

new algorithm for finding a feasible project schedule to the Critical Path 

Method. 
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