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Stresses in Rectangular Blocks Compressed Between 
Rough Plates 

By 

Yoshiji NIWA* and Shoichi KOBAYASHI* 

(Received March 30, 1966) 

In this paper non-uniform elastic compression of rectangular blocks between 
parallel end-blocks is considered. The friction between the end-blocks and the 
end surfaces of the rectangular blocks is assumed to be sufficient to prevent 
slippage. Approximate solution through variational approach is obtained and 
numerical results are shown for height-width ratios of the test block 0.5, 1.0, 
2.0 and 4.0. 

1. Introduction 

The distribution of stress in a rectangular block subjected to compression 

is a problem of considerable importance in testing the strength of materials. 

There always exists friction between the end-blocks and the end surfaces of 

the test block. The friction prevents the uniform distribution of stresses 

in the specimen. The exact determination of the stresses requires the 

solution of a mixed boundary value problem. However, it is very difficult to 

obtain the exact solution. 

The authors solved the problem approximately through the same varia

tional approach as developed in 

references,1J,3J,4J using the self-equili

brating ortho-normal polynomials 

derived by G. Horvay.1
,21 

2. Statement of Problem 

Consider a rectangular block 

with thickness d compressed between 

parallel end-blocks as shown in 

Fig. 1. The rectangular test block 

assumed to be elastic and in the state 

* Department of Civil Engineering. 

Fig. 1. General 
boundary con
ditions. 

p 

Fig. 2. Rectangular 
block after com
pression. 
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of plane stress. The further assumption is made to simplify the problem 

that the endblocks are rigid and that there is sufficient friction between the 
end-blocks and the end faces of the specimen to prevent slippage. Thus, 
the points on the end faces of the specimen are permitted only vertical 
displacements, but no horizontal displacements. After deformation the 

specimen will appear as shown in Fig. 2. 

In the Cartesian co-ordinates, the boundary conditions of the original 

problem are 

u(x, ±h) = 0, 

ax(±l, y) = 0, 
v(x, ±h) = const., } 
-rxi±l, y) = 0, 

(2-1) 

where u and v are the displacements in the x- and y-directions respectively, 

and ax and -rn are the normal and tangential components of stresses trans

mitted through the surfaces. 

If the specimen is restrained 

in such a way that the points on 

the side faces are prevented di

splacements, then stresses in 

both directions x and y must be 

uniform (see Fig. 3a). 

No surface traction, however, 

acts on the side faces actually. 

(a) (b) 

Fig. 3. Imaginary states. 

The actual conditions will be fulfilled by superposing the state of Fig. 3a 
on the state such that the surface tractions along the side faces have the 
same magnitude as those in Fig. 3a but opposite sense (Fig. 3b). 

If we denote the stress components corresponding to the two states as 

Dax, Dax, D-rxy and *ax, *ay, *-rxy, respectively, the true stresses are 

(2·2), 

Thus, the central part of the present problem is how to determine stresses 
*ax, *ay and *-rxy• 

Suppose that the stress function is expressed in the form 

then stresses are 

(n=2, 3, .. ,) , 

*ax= (/)yy = ¢,yy + LJ fn(x)· g~'(y), I 
*ay =(/)xx= ¢ixx+;f~'(x)•gn(Y), 

*-rxy = -(/)xY = _;xy-fJ~(x)·g~(y) 

(n = 2, 3, · · ·) . 

(2·3) 

(2·4) 
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If we choose ¢ as to satisfy the following boundary conditions 

¢yy(±l, y) = *Px, } 
¢xy(±l, y) = 0, 

then the remaining part of the stress function must satisfy conditions 

~fn(±l)·g~'(y) = 0, ) 

:EJ~(±l)·g~(y) = 0 
n 

(n = 2, 3, · · ·) . 

(2-5) 

(2·6) 

The conditions (2·6) are always satified term by term, if we choose functions 

such that 

fn(±l) = /~(±1) = 0. (2·7) 

The functions which meet the above conditions are derived by G. Horvay.1
l,

2
l 

Thus, the unknown functions are gn(Y) only, which are determined by con

ditions on the end faces. The assumed stress function <l> does not always 

satisfy the biharmonic field equation, the solution must be sought in the 

mean through variational approach. 

3. Solutions 

In the equilibrium condition, the complementary energy of a elastic 

body must be minimum. The complementary energy SJ stored in the rec

tangular specimen (Fig. 3b) is 

(3·1) 

where E is Young's modulus. The first variation expressed in terms of stress 

function (2·3) is 

! oSJ = )~J::v•<t>o<l>dxdy+2(l+v)[{<l>xyo<l>}.:':.l]':,. 

+ )~h [( <l>xx- v<l>yy)o<l>x-( <l>xxx + (2 + v )<l>xyy)o<l>].:':.idy 

(3·2) 

and must be zero, i.e. oS2=0. Variation o<l> and o<l>x must be equal to zero 

on the surface x= ±1, since the surface tractions are assigned there. Thus, 

the Eq. (3·2) becomes simpler 

)~J~,17 '<l>o<l>dxdy + r: (<l>yy-V<Px_x)o<l>y-{ <l>yyy + (2+ v)<l>.uy}o<l>]':,.dx = 0. (33) 

Substituting derivatives of <l> and 
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a<t> = "E.fh)•ag,(y), 
i 

a<t>y = "E.fh)·ag{(y) 
i 

into Eq. (3-3) and considering that og,(y) and og{(y) can be chosen arbitrarily, 

we obtain 

):: {/74¢+ ~ FrfVl(X)•gn(y)+2~f~'(x)•g~'(y)+ ~ fn(X)•g';JYl(y)} 

x"E,f;(x)dx = 0 (i=2, 3, ···) (3-4) 
i 

from the first term and 

[:[{¢yy(X, y)+ ~fn(x)·g~'(y)-v(¢xx(X, y)+ ~ f~' • gn(y))}~f;(x)]y=±hdx = 0, 

[
1 

[ {(cpyyy(X, y)+ ~ fn(x)· g~"(y)+(2+ v)(¢xxy(X, y)+ ~ f~'(x)· g~(y)} (3·5) 

x"E,f;(x)]y=±hdx = 0, 
i 

(i=2, 3, ···) 

from the second term of Eq. (3·3). 

Since fnCx) are ortho-normal functions, 

(Kronecker's delta) 

and 

where 

U~' ·f,) = -U~·ID, 
(f';fV)•f,) = (f~'•fi'), 

Although the derivatives of fn(x) are not orthogonal each other, the values 

(/~·/D and(/~'·/;') are negligibly small for n=t=i as compared with those for 

n = i. Here we assume 

for n =I= i. 

With this assumption and ortho-normal conditions the eqeations (3·4) and 

(3·5) becomes simpler 

g';Jvl(y)-2(/~·f~)g~'(y)+(f~'·f~')gn(Y) = -[:V4¢•fn(x)dx (3·4)' 

(n=2, 3, ···), 

g/.'(±h)+v(f~-f~)gn(±h) = -[: {¢yy(x, ±h)-v¢xx(X, ±h)} fn(x)dx, l 
g~"(±h)-(2+v)(/~·/4)g~(±h) = -):: {cpyyy(x, ±h)+(2+v)¢xxy(X, ±h)}fn(x)dx, f (3·5)' 

(n=2, 3, ···). 
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The unknowns gn(Y) are determined by Eq. (3,4)' with boundary conditions 

(3•5)'. 

In the present problem, the geometry of the specimen and the boundary 

conditions are symmetrical with respect to x axis. Thus, gn(Y) can be con

veniently expressed as 

gn(y) = An cos /3nY cosh any+ Bn sin /3nY sinh any+ Gn(Y), (3·6) 

where an and /3n are the real and the imaginary part of the Eigenvalues of 

Eq. (3•4)' and Gn(Y) is a particular solution of Eq. (3•4)'. Considering the 

two states of Fig. 3, we have *Px= - 0 Px= -v 0 ay and 

(3·7) 

Substitution Eqs. (3·6) and (3•7) into Eq. (3-5)' furnishes a system of equations 

with unknowns An and Bn• 

[(a;-/3;) cos .Bnh cosh anh-2an/3n sin /3nh sinh anh+ v(f~·f~) cos .Bnh cosh anh]An 

+ [(a;-.B;) sin .Bnh sinh anh+2an.Bn cos .Bnh cosh anh+v(f~·f~) sin .Bnh sinh anh]Bn 

= Ln, ' (3,8a) 

where 

[.B n {(.B;- 3a;)+ (2 + v )(/ ~ • f m sin .8 nh cosh anh 

+ an{(a;-3.B;)-(2+ v)(f~· f~)} cos .Bnh sinh anh]An 

+ [an{(u;-3.B;)-(2 + v)(f~-f~)} sin .Bnh cosh anh 

-.Bn{(/3;-3u;)+(2+v)(/~·/~)} cos /3nh sinh anhJBn 

(n=2, 4, 6, 8) 

5. Stresses in Specimens 

(3·8b) 

Unknown constants An and Bn (n up to 8) are calculated for v=0.2 and 

listed in Table 1. Stresses are shown in Figs. 4, 5, 6 and 7, in which com

pressive stresses are taken to be positive. 

Stresses along y=h, are expected to become smoother as more terms of 

fn(x) are considered. Theoretically ax will be uniform on y=h except the 

corner point (singular point). At the point the magnitude of ax approaches 

to infinity as proceeded along y=h whereas that remains zero as proceeded 

along x = 1. Distribution of , "y is approximately triangular. Near the singular 

point •xY behaves in the similar manner as ax. 

The restraining effect of the end faces appears considerable in the distri-



Stresses in Rectangular Blocks Compressed Between Rough Plates 

'1/~ 0.2 y 

(a) 

y Lox 0.2 0.4 0.6 a.a 1.0 

<i;,joay 
1.2 

1.0 

0.8 

06 

0.4 

I o.2 
r----+------+------+---+----l-~ ! 0~ 

l J~· 
o"") 

(b) 

(rt' 
---'-:---L_______L _ _j__L__j/0-

1.0 

y 

~ x 0.2 o.4 o.6 a.a 

(c) 

Fig. 4. Stresses in the specicimen with height/width=0.5. 
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Fig. 5. Stresses in the specimen with height/width=l.0 

butions of ax and rxY in short specimens, whereas the distribution of ay is 
almost uniform over the entire specimen. The effect of the end friction is 

negligibly small in the mid-region when the height-width ratio is more than 

unity. If we want to assure the uniform compression zone in the mid-height 

such that the height of the zone is at least equal to the width of the speci

men, the total height of the specimen must be more than two times as the 

width. 



Stresses in Rectanguiar Blocks Compressed Between Rough Plates 25i 

(o) (b) 

I o;,/'tJ'; 
1.4 

(C) 

Fig. 6. Stresses in the specimen with height/width=2.0. 
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Fig. 7. Stresses in the specimen with height/width=4.0. 
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Table 1. Constants A. and B. 

~I 0.5 _I 1.0 
I 

2.0 I 4.0 

·-

2 -0.040043 -0.034988 -0.0264068 0.0486009 

4 -0.0218899 -0.0319351 0.0666166 -0.01027616 
A. 

6 -0.0310968 -0.0727056 -0.01055421 -0.01741922 

8 -0.0538632 0.0891128 0.01317538 -o.02•31345 

2 0.142912 0.038587 -0.0219598 -o.0•53793 
--

4 0.0220217 -o.0•40709 -0.0678766 -0.01130640 
B. 

6 0.0416657 -0.0514175 o.0•22261 0.01743214 
--

8 -0.0533730 0.0815150 -0.01324207 0.02658944 
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