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Stresses Produced in an Elastic Half-Plane by Moving
Loads along Its Surface

By
Yoshiji Niwa* and Shoichi KoBavasur*

(Received March 31, 1966)

Stresses and displacements induced in an elastic half-plane by arbitrary
loads moving along its surface with constant speed were studied. Three
different cases characterized by the speed of the moving loads, i.e. subsonic,
transsonic and supersonic cases, were individually investigated. The complete
solutions are obtained for each cases and numerical results for some simple
examples are presented.

1. Introduction

The response of an elastic half-plane to moving loads along its surface
is a problem of considerable importance in the design of blast-resistant and
aseismatic structures. Problems of this type have the essential features of
stress propagation. The problem consists of three different cases characteriz-
ed by the velocity of the moving loads:

a. The load is moving more slowly than either the longitudinal or the

transversal wave velocity in the elastic medium (subsonic case),

b. The load velocity is between the two wave velocities (transsonic case),

c. The load velocity is greater than either wave velocities (supersonic

case).

The problem of the subsonic case in the state of elastic plane strain was
first investigated by LN. Sneddon® by the aid of Fourier transform technique.
Using the same assumptions, J. Cole and J. Huth® have obtained the stresses
and displacements of the each cases in the elastic half-plane induced by a
concentrated moving load with constant velocity. J.W. Miles® has obtained
the formal integral solution for the response of an elastic half-space to a
radially symmetric pressure with variable velocity. He also has developed
an assymptotic approximation. No numerical results were obtained in his

paper.

Department of Civil Engineering.
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The authors of this paper studied the response of an elastic half-plane
to an arbitrary load moving with constant velocity along its surface and
presented some numerical results of simple examples.

2. Mathematical Formulation
We shall consider the response of an elastic half-plane (plane strain) to
moving loads p(x) and ¢(x) with constant velocity C. The general boundary
conditions are shown in Fig. 1. With respect to the fixed coordinates (%, 7)
in the medium, the stress-strain relations expressed in terms of displace-
ments are represented

p{x)

y

Fig. 1. Representation of boundary conditions.
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where 4., 6y and 7,, are the normal and shear stresses, and #, 7 are displace-
ments in X¥- and j-directions. 1 and x are Lamé’s constants which are expres-
sed in terms of elastic modulus E and Poisson’s ratio v as

___ B ,_ _E_
d+»A-2v)" 2A+vy)”
The equations of motion are expressed disregarding the body forces

65x+6?,,,, _ % arz,,_+85y oD (2-2)

9% oy Per oy “ar’

where p is the density of the medium. Substituting Eqs. (2-1) into Egs. (2-2),
we obtain the equations of motion expressed in terms of displacements
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(gx%axay) (zaxz 6?c26y+gz?>_"gztz’ 2-3)
“(%;2 5xay 26y2>“(agzay g})‘ 3?2-

After differentiating the 1st equation by % and the 2nd by 7, or the 1st by
¥ and the 2nd by X, then adding the first two equations, or substracting the
4th from the 3rd, we obtain expressions

QA +2u )Vz(au 60) o* <8u+65),

3% 33 ~ “ar\ox " 5y
V(@u av) 62(6u av) (2-4)
6y ox ot"\0y 0OX
h 2. 0L O
where pE= 6.‘22 Er

If we introduce a dilatational potential ¢ and a shear potential ¢ such
that the displacements are defined as

;=08 04 5 _ 09, 0¢ .
“=3x 85 "Ta5tam @-5)
then the Egs. (2-1) and (2-4) are expressed as follows.
1% o?
“’“72“2“(65? Gfgy‘)’
gy = zyz¢+zﬂ(g;§ 'a%b) (2-6)
— ( ¢ _ @)
e 6.‘an oxr 9y
and
2, l 0%¢
Vo Cior
P = Lo @D
Cior’
where Cc= ﬁpz—”, cz=*

Eqgs. (2-7) are well-known wave equations; the 1st expresses the longi-
tudinal (dilatational) wave and the 2nd transversal (shear) wave. Cr and Cr
are the longitudinal and transversal wave velocities, respectively.

Now the assumption is made that the load is moving steadily for such
a long time as to produce a steady response with respect to moving co-
ordinates (x, y) with the same velocity C as the moving load.

Application of the Galilean transformation

X = 7+Ct; y=13, (2'8)
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to Egs. (2-5), (2-7) and (2-6) furnishes

~0¢_0b _0%,0¢ .
“= ox oy’ v 6y+6x’ @-9)
b° 0*
e =MiZ%, =MoL,
(2-10)
- C - <
ML - CL ’ MT CT.
and
— 20%% o' 8%¢
o2 ZM‘asz“z“( 6x6y)’
_ 29%¢ %, 0%¢ .
os = M3 29 2+zﬂ(ay2+axay) @-11)
- ¢ %P\ _ a2 0%
Tay = 2u(6x6y+8x2) ﬂMT@x :
Egs. (2-11) are rearranged by using the relation
A (CrL\ g _ (M1
a2 -G -2
and Eqgs. (2-10) as
. Ox _ 2 _ 2 aﬁ" o’
" (M% 2ML+2) pe 26x6y
0y _. 0* ¢ . ’
P —(2—M? ) +26x6y (2-11)
T — g 002~ M g,
§7
The general boundary conditions are expressed
= —px), ray=¢(x) at y=0, (2-12a)
lim [u,v; 62,065, 72y] =0. (2-12b)

Xytoa

These conditions are not always sufficient in the cases of subsonic and trans-
sonic. Additional conditions will be mentioned individually.

The character of the solutions will change in accordance with moving
velocity of the load C so that the three cases, i. e., b) M <1, Mr<1, subsonic,
b) Mr.<1, Mr>1, transsonic, ¢) Mp>1, Mr>1, supersonic, must be considered
individually.

3. Solutions

a) Subsonic case: Mr<1, Mr<1.
Substituting the expressions

My = (1-ai)'%, Mr=(1-a})"
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{az, ar can be assumed positive without loss of generality) into Egs. (2-10),
we obtain the Laplace type equations

262¢ +

8(11 %Y _ ~0.
T 6y ’

ox 7T ay (3'1)

abss

The solutions of Egs. (3-1) in terms of dilatational and shear potentials ¢ and
¢, respectively, with boundary conditions (2-12a), (2-12b) and

lim [#, 2; 64,05, 74y] =0, (3-2)

Yoo

lead to the stress and strain components expressed by Egs. (2-9) and (2-10),
respectively. The boundary conditions (2-12) and (3-2) are expressed in terms
of ¢ and ¢ such that

o6 ¢ 06 O 08 99 )
xllim[ax”ayz'axay 520y’ 6y’ 9z’ ‘”] : (3-3)

Yy

y—oo

( Strictly speaking lim [¢,0]=const., but this constant can be put equal )
x—-too

to zero without affecting the values of displacements and stresses.
Let @#(&, y) denote Fourier transform according to

HE, ) = B(x, y)et<dx

)
the inverse of this transform

8, 3) = =" B(e, peiveae.

Applying Fourier transform to Eqs. (3-1) with boundary conditions (3-3),
differential equations with parameter ¢ are derived

%_y) —afE%(E, y) =

o (3-4)
SUED) — apeie, ) = 0.

The solutions of these equations are

B(E, ) = Ay(E)e"EY 4 B{£)e®2 k1,
B(E, 9)— AE)e—oTH + B£)er 17 } ©-5)
The conditions (3-2) can be rewritten as
Him [@yy, 65 &5 &, &1 =0. (3-2y

Yoo

By(¢) and B(¢) must be equal to zero from these conditions. The expressions
(3-5) are reduced to simpler forms
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B(E, 3) = AL&)e~ K2, P&, y) = ALE)e rY (3-5y

Substituting Egs. (3-5) into the transformed equations of Egs. (2-11) and

using the boundary conditions (2-12a) at y=0, we obtain a system of equa-
tions with respect to unknowns A,(&) and A4¢)

@—MB)EA(E) + Ziaw | £] AfE) = — % ,
),

2 (3-6)
26aE1E|ALE)— (2—ME)EALE) = P
where
GRS /2 A" swessar,
- (37
, (&) = o S g(x)e=dx .
A,(¢) and A,(¢) are solved to
- -1 "
4O = L= a1 54 MO Bastlea), )
— 1 2
Az(E)—[(z_M Py~ 54 - [2ia.€(¢| p(&)+(2— ME)Eq(8)] .

The inverse transforms of Eqgs. (3-5) furnish displacement potentials ¢
and ¢

é(x, 3) = /2 S A(E)e%LklYemixtde

(3-9)
Uz, 3) = ]/28 Ay(E)e—r K12 g=ixig |

The displacements and stresses are obtained by putting Egs. (3-9) into
Eqgs. (2-9) and (2-11Y, respectively,

u {IA(&)ee"Ll1? —q, ALL)| & e~ 17} e—i5¢d¢E

- ;18“
v 2rd—=

% [ taanoelemmrriagercer iy eminae,
Ve

%2 igi {(M%—2M32+2)E2A(E)e LK1y

(3-10)
U=

+2apf | E| AfE)e*rklYYg—izégs |

["_te-mpeagoe—mun
- (3-11)
+2iag €] AdE)eor ) einidt ,

Ty L(7 o @y
== | Giaie1460)

— (2 — M%)EZAZ(E)e_"’r IGIJ} e—z‘xfdf .
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b). Transsonic case: My <1, Mr>1.
Using new parameters 8; and fr (both are assumed to be positive) such
that
My = (1—-85)7 Mr=1+4.)",
the Egs. (2.10) are rearranged into
20% , 0% _ 20% _ 0% _ .
PigpTap =0 Figup, =0 (3-12)
As the 1st equation is the same as that of Eqgs. (1-1) with regard to
dilatational potential, the similar solution to Egs. (3-5Y may be expected

under the same conditions as (3-3) and (3-2). The transformed solution is
expressed with unknown coefficient B,(£) as

B(&, y) = By()e el (3-13)

As the 2nd equation of Eqgs. (3-12) with regard to shear potential implies
the supersonic case concerning shear wave, some of the conditions for sub-
sonic case must be modified. Conditions (2-12) remain unmodified. As the
consequence, the conditions (3-3) with respect to x at infinity remain valid.
Conditions with respect to y at infinity cannot be determined, since the dis-
turbances excited along the surface of the half-plane will propagate to the
infinity of y retaining the original shape. The shear wave, however, is
restricted to only the backward running wave, so the solution is obtainable
irrespective of conditions of y at infinity.

The assumed function of the backward running wave

¢ =V(x—Fry)
and the conditions (2-12a) lead to

1’5‘ %) — @-MpZ8+26:9 (),
(3-15)

qlx) _ ”
P a +(2 MAOY (x),

where prime (’) implies the differentiation with respect to (x—£@ry). From
the above equations

1@~ MPp) - 2604(0)] = @~ MPSY (3-16)

4ﬂrax By

is obtained. The transformed expression of Eq. (3-16) with conditions

lim[g—ﬁ,¢]=0 is

Xyo0

%[(z—MTz)ﬁw)—zmw)J = —EX2— MAYH(E)+ 4iBrEFE). 3-17)



Stresses Produced in an Elastic Half-Plane by Moving Loads along Its Surface 261
The unknown B,(¢) is determined from Eq. (3-17) with Eq. (3-13) as

—[@2—MHp(£)—2675()]

= . : . 3-18
() = Te—1ye+ 4i8.5:¢ 1€1T 318

Finally the dilatational potential is obtained
Bz, y) = /2 S B1(£)e BLKIY gistdL (3-19)

Substituting Eq. (3-19) into Eq. (3-15), we have the alternative expressions

@M (s 3) = 1522 f D) BOA" pioreleleiesinae,
or “ (3-20)
28,0 (B ) = LE BN\ CEMD(® p yergmiceemnae
7 V2 -

Y x—ABry) can be easily obtained by the direct integration of Eqs. (3-15),
although it may be obtained by integrating the above expressions. As the
integral constants can be put equal to zero (they at most introduce constant
displacements), the expressions

p(x) — _ 2 a_¢ 7
Sde = @-Mp)2L+28:9(),

4%) 4, — 999 0 _ pzyw-
Sﬂdx 2ay+(2 MP¥(x)

are obtained. These expressions with ¢ furnish the alternative expressions
of ¥ (x—B8ry)

ZﬂTW’(x—ﬁTy)= Sp(x ’ny)d(x Br y)+1(2,/21‘41')8 BI(E)ge—:cx~ﬂﬂ)ed5,

or (3-21)

@MDY e g23) = (1 2o e+ D" mieie1ee e,

Y(x—Ary) is not shown here, since it has no centribution to displacements’
and stresses.

Displacements and stresses are determined from Egs. (2-9) and (2-11Y
with Eqgs. (3-19), (3-20) and (3-21) as follows.
“= l7—2—17ES_mBl(E)fe“’L'f';”e—""fd&-'

Br SQ(J‘ —Bry)
2—-M$)

2ﬂLﬂT

+ V2@~ M3)

d(x—PBry)+ S B(&)| & e—icx—BrMEgE |

or
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—1

Z_Si By(&)fe BLIYg—ixéds
Sp(x —Bry)
u

\

q

i(2— MT)

d(x ﬂr )+ 2'/2

2 S B(E)e“"‘ ﬁTy)Edg

_ﬂ ) B
T /2;5 B\(&)|&| e—Brlél? e—ixtdg

or

+

1 (¢(x—Bry) 28, oo
(Z—M}.)S u d(x_ﬂry)’*'mg Bl(f)lflg < BJ’)EdE,

B (=

0= BO)Iglepuitreistae

9=
7

or
Oz
7

gy

7

or

Oy
un

Txy
7

or

Txy

+ p(x uﬂTy)d(x B )+i(2 MT)S Bl(f)ge—icx—ﬂﬂ')edf,

2/9TS 20 2n By

— Zoe(Mi—2M3 +2)] B puiremistde

24(’5 ﬂry)ﬂz'_ 4i5.Pr
w(2—M3) V2 (2—M2)

S Bl(f)é'l El e"(x—ﬂry)EdE

= I/Z_(Mz 2M§+2)Si By(&)e%BLllYo—ixtgr

_1_?(?5—/91'}’) (2—Mp)
o Vv 2z

_ 2—Mp)

V'2n

_ 2Bpglx— /31'3’) 428
2— M3 MO 2— M3

|"_B(oweicemaz,

[" Bogesimreinae

[~ B@ieresereerae,

_@-Mh 2p—BLIE1Y g— i,
X [ BUEYe ek emintd

P(x uﬂry) (2';2]‘_4;—)5ijx(E)fzg—i("-ﬂT’de,

_ 2if,("

BEL" gl elempare-iniae

glx—FBry) 2i8;
T T ,/ng

B 1L emir—petge

21[3 - - —ix
- 172:LS~ Bl(E)EIEle BrltTgmiztge

(2 MT) (2 MT) 2, —i(X—
e =) + U pereeiemmntae.

(3-22)

(3-23)
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c). Supersonic case: M;>1, Mp>1.
The wave equations (2-10) are rearranged with positive parameters 7,
7y such that M;=Q1+7,)"% Mpy=(1+77)"% into

62¢ % _ 20%¢ 0% _ .
gy =0 a0 (3-24)
¢=0x—7r, 9 ¢=Px—7r,y (3-25)

are obviously the solutions of Egs. (3-24), and their forms will be determined
by boundary conditions (2-12a) and (2-12b).
Substituting Eqs. (3-25) into conditions (2-12a), we have the relations

p(x) = (2— M2)D"(x)+27 ¥ (),

( ) (3-26)
7 = =27 0"(x) +2—MH¥ (x).
These are solved
_ 2 —
0(x) = @ MT)p(:zc) 2r(x)
wl@—Mzy+4rcry] 3-27)
#L@—MEY +4r,7,1 "
Therefore, the expressions for @(x—7r,y) and ¥"(x—r,y) are
o @—MANx—1,9)=27rqx—7,9)
R e ¥/ St % 398)
\ .
W7y 3) ~ 27 (5 —7p3) + Q—Mig(x—7,9)

W I[@C—MzY+4rire]
Applying Fourier transform to Eqs. (3-27) with conditions lim [@/(x),
X> oo

¥’(x)]1=0 which are equivalent to conditions (2-12b), we have the expressions

i[2—MBHHE) 27 g(£)]

O(¢) = u[@—MEy+4rrple (329
piey  T2TBE) 2 M) 2
ul2—MEY +4r.7rp]E
The inverse transforms of the above expressions are
, ‘ P(f) ()
R o v M ol St (330
V) = o [ [z P—@+(2—M=’-)1(5—)]e—fxedf o
/ZW‘#[(Z*MTZ)2+47'LT1'] R e '

Therefore ¢’ and ¢ are obtained in the forms
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=0(x—7,5

- i " oM BE) _ o, &Y. gmics-r,
V' 2m p[(2— MR + 4rLrT]S—,-[(2 M#) g 2 5] eI

¢ =V(x—71,9) 8-31)

= V2. uf(2— ]‘.412')2*‘47’1,7’,']8 [27‘LP(5) +(2— Mz)Q(f)] i —TpAgE |

Finally the displacements and stresses are determined from Egs. (2-9)
and (2-11) with Egs. (3-31) and (3.28) as follows.

i BO_py, B
V2 ul@- MT>2+4mTJS Je-mp¥O—2r, 5} e

+err: 28+ 7,0 mpPl) e—“””r”f]df ;

3-32)
5 p(f) FEN ,—icx—7,7%
1/27/: e M"’)2+47‘LTT]S i{rL(Z MHES 27, 7p } x—1 9>
—{er B0+ @—MpTD} it e,
0x = 5 M;)Z o [(MZ—2ME+2){@— MD)p(x—7,3)—2r,a(x—7,3)
+2rp 27 (% —7,9)+2—MPa(x—r, 11,
_ —1 _ _ W — _ \
oy = @——m[@ MBH{C—MPp(x—7,9)—2Trgx—7 ,9)} (3-33)
+2rp 27 i pa—7,9)+QC—MPg(x—7, 9} ],
-1 [27 {2~ MPWx—1 ,9)— 27 q(x — 7,9}

T T MR+ Arire
—@—MH2r 1 p(x—71,9)+2C—MPgx—7,30]1.

4. Examples
A). A concentrated vertical load P.

As the simplest example, we consider the response of an elastic half-
plane induced by a concentrated vertical load moving with constant velocity
along its surface. The same problem has been solved by J. Cole and J.
Huth?®

The general boundary conditions of this problem are easily visualized in
Fig. 1 by putting

Hx) = po(x), q(x)=0 (A-1)

where 6(x) means the Dirac’s delita function.
a). Subsonic case.
From Egs. (3-7) with Egs. (A-1), p(¢) and (&) are expressed.
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&) =
&) (A-2)
g&) =
Eqgs. (3-8) and (A-2) furnish A,(f) and A)¢)
-KP 1
Al(f) = —L . =3?
T e *-9
I .16
Ade) = St L
where
Kl 2— Mz 2(1);

C—MIP— b = Gy —dayer

Substituting A,(&) and A ¢) into Egs. (3-10) and (3-11), we obtain displacements
and stresses as follows.

M . K, tan~Y % | —apK,tan—' [-F- ),
P 1 tan (aLy) arfitan (aly) (A-4)
-’E?ﬁ‘_” =—a;K, In(x*+ 0} y*)+ K, In(x*+ a3 ),
no a
= (M- 2M§+2)le2+‘{y2 —2ar Ky 55— 2+ W
oy 2 ary A-5
Ve 2- M)lehr yz+2a"K’x2+ AP’ (A-5)
TTxy _. _ X
P 2aLKI[x’-I— aty? x2+a§-y2]'
b) Transsonic case.
Substltutlon p(&) and ¢7(E) into Eq. (3-18) leads to
B(O) = 5t e-My| T =i ],
’ 2 Mz 2
T~ a1 (A-6)

T.—  ABifs
= @M+ 16FIFE

Egs. (3-22) and (3-33) with Eq. (A-6) furnish displacements and stresses.

Y~ (2 MT)[Zn: tan“‘( i~ ) T, In(* + f% f)]
+268.6r [_T1 In(x— By w+aTHx—fry)],

a0 - - mp| Ty InGet+ A+ 2Ttan( 2 )| A1)
+28,[ T, ln(x‘ﬂry)‘*‘ ”TzH(x—ﬂTy)] »

. 1 for xZﬂTy
H ﬂTy)_{O for x<PBry.
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Tpt =(Mi—2M3+2)2—MANT\fry+ sz)ﬂﬂzyz

—4/8;:,91'[ _7,; y—ﬂ'Tza(x—ﬂz'y)];

B = —@-MIH(T\Bry+ Tot) s

2+ Y202 .2
. Ty &8
48,8 [ /f;ry—nm(x—ﬂry)],
5 = 28R MA) (T + Tohry) s ﬂz 7
— YN I S _
26,2~ M ;4— T2 )].
¢). Supersonic case.
Displacements are obtained from Egs. (3-32) with Egs. (A-2) as
% = SlH(x_TLy)+7’TSZH(x—rTy) ,
B = —rSHE—r N+ SHE-1,3),
.. o Mz (A-9)
YU @—MEyY 4Ty’
S,— . 2,
2 2—-ME 4y
Stresses are obtained from Egs. (3-33) with Egs. (A-1)
7 = (ME—2ME+2)S.0(x—7,3)+ 27, Sud(x—7,3),
B = —@—MPSH(x—7,9)~2r, SH(x—7,), (A-10)
Txy

B = "2rp S50 —7 )+ 2-MHSH(x—1,3).

Stresses are shown in Figs. 2, 3 and 4. Figs. 5, 6 and 7 shows the stresses

as Mr approaches to 1. The results obtained here agree with those of J.
J. Cole and Huth.?

B). A concentrated horizontal load Q.
A concentrated horizontal load @ moving with constant velocity C is
represented in Fig. 1 as

px)=0, qlx)=Qdx).
a). Subsonic case.
Egs. (3-8) and

Ho=0, &)= /2 (B-1)

furnish
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_ 19K,  |£]
AI(E ) = 175—;;2 M F ’
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' @2-MEF—daser’
) 2ar )
K= aommr—1aa:

Displacements and stresses are obtained from Eqs. (3-10) and (3-11) with Egs.
(B-2) as

% [aTKlln(x2+a Y—K;In(x*+a2s)].
(B-3)
Tuy _ | .2 -1 X
N K, tan (ary) a K, tan l(azy) ,
%=2aTK,xz+’ZW (M3— 2M§+2)K,x,+ T
TL'Gy 2 .
Q 2aTK1xz+ 2y2+(2 M)K’x2+ 7% (B-4)
TTxy _ 2
Q (2 MT)lez+ Tyz 2K3a5 2+ yz
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T

-IZT

Fig. 7.
wt.yy/P as My approaches to 1.

Fig. 6. =oy-y/P as My approaches to 1.

b). Transsonic case
Substitution Egs. (B-1) into Eq. (3-18) furnishes

5o =291 L i1 ],

Vv 2nu e
@— Mz)2
SR s T -9
T2 — 4/9Lﬂ1'

- 2—-MEf+16835%"
Displacements and stresses are obtained from Egs. (3-22) and (3-23) with Eqgs.
(B-5) as follows.

"“u = B [—ZT1 tan“(ﬂL ) +7T,In (x2+/91.y2)]
+Br2— M) [z T\ H(x—Fry)—T:In (x—Fr )],

Y = fubr [ 7.0 G2+ 8257) +2T, tan*‘(ﬂ—:y )]
+@—M) [T \H(x—Fry)—T:In(x—Bry)],

(B-6)
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Q

Q

TTxy _

Q

"0 — 28, (2— M| T2,

= 23,8z [T xz Bry ]
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20z (M7 —2M+ 2)[T‘x2 o T +;§y2]

+285 @~ MP| 2 T3 — )= ]

F B x2+ﬁzy’]

T,
26,2~ Mp| =T~ e~ 2]

(B-7)

lxz‘i”ﬂzyz x 2+ G307

+@= M a T80~ ey~ |

c). Supersonic case
Displacements and stresses are obtained from Egs. (3-32) and (3-33) with

Egs. (B-1).

Fig. 8. Distribution of zo,/Q
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Fig. 9. Distribution of zo,/Q.

% — 2rTSIH(x—rL-y)—SsH(x"—TLy) ’

%1) = S H(x—7,0)+7,SHE~7,9), (B-8)

Y@ MEE Ay Y C—-MEF AT’

Z)—“ =27 Si0(x — 7, 3)—(MF—2ME+2)S0(x—7 %) »
Z)l = 21p S,[0(x—71,9)—8(x—7,3], (B-9)
T = Q- MPSOG—1,5)+2r S8 7).

Stresses are shown in Figs. 8,9 and 10. In Figs. 11, 12 and 13 the stress com-
ponents as Mz approaches to 1 are shown.
C). A distributed vertical load of constant intensity.

The response of the elastic half-plane to a distributed vertical load p(x)
of constant intensity over a length 2¢ will be considered. The solution may
be constructed from the results of the example A) by superposition.- Stresses
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(a)

|
Bags|_f e —

(b)
Fig. 10. Distribution of zt.,/Q.

obtained here, however, are derived directly from the general solutions.
It may be convenient to shift the origin of the moving co-ordinates (x, y)
to the right by ¢ in Fig. 1 so that the distributed load may be expressed as
Hx) = p{H(x+a)—H(x—a)}, q(x) =0, -1
where p, is the intensity of the distributed load. Egs. (3-7) corresponding to
Egs. (C-1) are

5(5)2%_@%@’ (& =0. C-2)

a). Subsonic case.
A(€) and A, ¢) are determined from Egs. (3-8) with Eqgs. (C.2)

Al(f) — __211‘0_K1 . Sin (af),

vV 2ru &
Axe) = 2ok 1E 50D, (€-3)
Kl 2_M12' Kz . 2ab

T @—MpF—daar’ T (@—MEP—4damar

Stresses are expressed Egs. (3-11) and (C-3) as follows.
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Fig. 11. =o,-y/Q as Mp approaches to 1. Fig. 12. may+y/Q as My approaches to'l.
2
i % g 5 &%
M7 /ML=
/V=‘/3
-2r
Fig. 13. =#r,y-y/Q as My approaches to 1.
TO0x _ (M2 —_2M2 -1 2aapyy tan—! - 2aary
Do (MI' ZML-I-Z)Kltan m ZaTKz an xz————+ a}?y“’—a”
0y _ _(D_ M2 1 2aa.y tan—t 2aary .
Do (2 Mr)Kx tan x2—————-—+ aﬁyz——az+ 2ar Kz an xz————-+ a%yz—az, (C 4)
iy _ _ aiy’+ (x+a) | (2— M), aby*+(x+af
) whin o=t 2 eyt

b). Transsonic case.
Eq. (3-18) with Egs. (C-2) yields
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Bi&) = S22 @ Mp| T, 1 —iT. ¢ |sin ae),

54
(2 MEy
T = G- mar 16535 (C-5)
T2 4 ﬁl/gT

(2— M3y +16838%°
Egs. (3-23) with Egs. (C-5) lead to

TOx _ (o A2\ M2Z_ONf2 o  2aBy B3y +(x +af
%2 — (2— MPXM} 2M3+2) T, tan (x—_ 2 yz—az) TGt a)z]
x+a—fry _
+ 46265 T [EEE=002 | 19T (e 5r 5)),
_ 2 2a8ry  \_ Ty, 039+ (x+a)
—@- M)lT‘ fan” (2+ﬂ§yz—a2) lnﬂ%yz+(x—a)z]

—4ﬂLﬂT[T,1n"ﬂ—/§:—§\ +2T.FG—fe3)],

TTxy _ _ Biy*+(x+a) 2a8.y (C.6)
2 = f, 2 M 7 7.1 By (ita 12T, tan 2oy o yz—az)
—2T, 1n{’£“+z gry
1’

Ta

T

—ATF @ 629)),
0 for 0<x—fgry<a
F(x— fpy) = for x—fry=a

for a<x—fry<oco.

4
£
2

c). Supersonic case.

Eqgs. (3-33) with Egs. (C-1) provide stresses as follows.

;: = (MF—2M3+2)S{H(x+a—7,9)—H(x—a—r )}
+2rr SAH(x+a—r,y)—Hx—a—r, )},

T='(2 ME)S{H(x+a—7r,9)—Hx—a—7, )}
=21 SAH(xYa—r,3)~H(x—a—7r,9)},

T = o7 S{H a7 ) H—a—r,) ©n

—{H(x+a—r,y)—Hx—a—7r, ],
S 2 MT
Y @-MEE ATy’

2T BT MR AT,

D). A distributed horizontal load of constant intensity.
Although the superposition of the results of the example B) may provide
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the solution of this example, the direct calculated results from the general

solutions are shown here.

The origin of the moving co-ordinates (x,y) in Fig. 1 is shifted ¢ to the

right for the sake of convenience so that the load may be expressed

() =0, ¢(x) = q{H(x+a)—H(x—a)},

where ¢, is the intensity of the load.
B(&) and g(¢) are expressed as

A — 0 (e — 240 . sin(af)
&) =0, g¢&) e E
a). Subsonic case.
Egs. (3.8) with Eqgs. (D-2) yield

Ao = 225 1ol sinar),

ALE) = %%; ) sinégf) ,
K= G iy amn
K= s

Egs. (3-11) with Eqgs. (D-3) furnish

oz _ _Ksinra onrs aiy*+(x+a)
A 2 (MT 2ML+2)lna§y2+(x—a)2
a} ¥+ (x+ay
aty+(x—a)’
7oy _ Ko apov, @33+ (x+a)?

2 @ MT)lncz%yzwL(x—»a)2
aty*+(x +a)
a$y*+ (x—ap’

+arK, In

0

— aTKl In

TTxy _ K.tan-! 2aa.y
0 2ok tan™ G gy

_ a2 —1 _zaary
+(2 MT)Kl tan xz—az+a%y2 .

b). Transsonic case.
Eq. (3-18) with Eqgs. (D-2) provide

By(&) = 4ﬁ’—”ﬁ[n%—m € l]sin (at),

Vv 2nu &
T @—Miy
Y @2-MEr+16625%°
1"1 4ﬂLBT

T @M +1656%

(D-1)

(D-2)

(D-3)

(D-4)

(D-5)
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Substituting Egs. (D-5) into Eqgs. (3-23), we obtain stresses

TOx _ __(Af2_o g2 -1 2aBry iy +(xta)
0 — —(MF-2M}+2) 2T, tan 22000 TSt (x-—a)z]

£ta—Pfry ]
x—a—PBryil’

7:;,. =fr (2—M%)[2 T, tan—! 2afry T,ln H%y2+(x—a)2]
(3

+267(2 —M%)[Z T, F(x—fry)—T:In

¥ —a'+ By By +(x—ay (D-6)
~252~ MP[2TF (s 5r9) ~ Tuln | L= 623 ],

TTay _ B2y*+(x+a) -1 _2aBry
7 BrlBr [T1 In ﬂ§y2+(x—a)2+2T2 tan x————~—z_az+ﬁ%y2]

+(2_M§)2[2T1F(x—ﬁry)— T:ln ‘ % H .

¢). Supersonic case.
Egs. (3-33) with Egs. (D-1) yield

OE = —(MF-2M3+2)Sy{H(x+a—7,9)—H(x—a—r,5)}

’ +27,S{H(x+a—r,y)—H(x—a—r,)},
% =272 S{H(x+a—7,9)—H@x—a—71, )}
—{H@x+a—r,)—Hx—a—r, m}1, (D-7)

%1 =27 S{H(x+a—7, 3)—H(x—a—7r )}
+@2-MHS{H(x+a—r,y)—Hx—a—r, )},

S, = 2—M# S. = 27p
! (Z—Mzz')2+47’l7’1- P (2—M5)2+4TL7’T )
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